Skip to main content
Log in

The effect of synergistic/inhibitory mechanism of terephthalic acid and glycerol on the puncture, tearing, and degradation properties of PBSeT copolyesters

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

To explore the effect of terephthalic acid/glycerol interaction on the performance of poly (butanediol sebacate—butanediol terephthalate) (PBSeT) copolyesters, the puncture, tearing, and degradation properties of PBSeT copolyesters with different terephthalic acid content and glycerol content 0 ~ 0.1 mol were investigated. The results showed that the puncture and tear strength of the copolyesters were improved with the content of terephthalic acid but first rose and then declined with the increase of glycerol content, which glycerol and terephthalic acid exhibited synergistic mechanism in puncture and tearing performance within a certain range. Compared with LDPE, the optimal puncture and tearing strength of the copolyesters were 1.82 and 2.49 times, respectively. As far as hydrolysis was concerned, a greater weight loss was observed under alkaline conditions than acidic conditions. Moreover, higher terephthalic acid and glycerol content exhibited a synergistic effect to hinder the hydrolysis under alkaline conditions. Surprisingly, the addition of a certain content of glycerol promoted the enzymatic degradation of all copolyesters except for the 0.04 mol content, and the weight loss of enzyme degradation reached the maximum at 0.06 mol content; however, the high terephthalic acid content made the enzyme degradation performance deteriorates. Therefore, inhibitory mechanism in enzymatic degradation was showed by terephthalic acid and glycerol. To sum up, this suggested a potential utility and application prospect in the field of agriculture, packaging, and engineering materials.

Graphical abstract

Synergistic/inhibitory mechanism of terephthalic acid and glycerol on the puncture, tearing, and degradation properties of PBSeT copolyesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fan T, Deng W, Gang Y, Du Z, Li Y (2021) Degradation of hazardous organics via cathodic flow-through process using a spinel FeCo2O4/CNT decorated stainless-steel mesh. ES Materials & Manufacturing. https://doi.org/10.30919/esmm5f417

    Article  Google Scholar 

  2. Jadhav P, Shinde S, Suryawanshi SS, Teli SB, Patil PS, Ramteke AA, Hiremath NG, Prasad NR (2020) Green AgNPs decorated ZnO nanocomposites for dye degradation and antimicrobial applications. Engineered Science. https://doi.org/10.30919/es8d1138

    Article  Google Scholar 

  3. Chang B, Li Y, Wang W, Song G, Lin J, Murugadoss V, Naik N, Guo Z (2021) Impacts of chain extenders on thermal property, degradation, and rheological performance of poly(butylene adipate-co-terephthalate). J Mater Res 36(15):3134–3144. https://doi.org/10.1557/s43578-021-00308-0

    Article  CAS  Google Scholar 

  4. Naz F, Zuber M, Mehmood Zia K, Salman M, Chakraborty J, Nath I, Verpoort F (2018) Synthesis and characterization of chitosan-based waterborne polyurethane for textile finishes. Carbohydr Polym 200:54–62. https://doi.org/10.1016/j.carbpol.2018.07.076

    Article  CAS  Google Scholar 

  5. Guidotti G, Soccio M, Gazzano M, Bloise N, Bruni G, Aluigi A, Visai L, Munari A, Lotti N (2020) Biocompatible PBS-based copolymer for soft tissue engineering: introduction of disulfide bonds as winning tool to tune the final properties. Polym Degrad Stab 182. https://doi.org/10.1016/j.polymdegradstab.2020.109403

  6. Pan D, Su F, Liu H, Liu C, Umar A, Castañeda LC, Algadi H, Wang C, Guo Z, (2021) Research progress on catalytic pyrolysis and reuse of waste plastics and petroleum sludge. ES Materials & Manufacturing 11:3–15. https://doi.org/10.30919/esmm5f415

    Article  CAS  Google Scholar 

  7. Qiu S, Zhou Y, Waterhouse GIN, Gong R, Xie J, Zhang K, Xu J (2021) Optimizing interfacial adhesion in PBAT/PLA nanocomposite for biodegradable packaging films. Food Chem 334:127487. https://doi.org/10.1016/j.foodchem.2020.127487

    Article  CAS  Google Scholar 

  8. Chen L, Li J, Zhao Y, Li M, Li L, Hou H, Chen L (2020) Numerical simulation and optimization of indirect squeeze casting process. Engineered Science 13:65–70

    Google Scholar 

  9. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Advanced Composites and Hybrid Materials. https://doi.org/10.1007/s42114-021-00378-y

    Article  Google Scholar 

  10. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Advanced Composites and Hybrid Materials 4(4):1226–1238. https://doi.org/10.1007/s42114-021-00368-0

    Article  CAS  Google Scholar 

  11. Emonson NS, Eyckens DJ, Allardyce BJ, Hendlmeier A, Stanfield MK, Soulsby LC, Stojcevski F, Henderson LC (2020) Using in situ polymerization to increase puncture resistance and induce reversible formability in silk membranes. Materials (Basel) 13 (10). https://doi.org/10.3390/ma13102252

  12. Chuang YC, Bao L, Lin MC, Lou CW, Lin T (2019) Mechanical and static stab resistant properties of hybrid-fabric fibrous planks: manufacturing process of nonwoven fabrics made of recycled fibers. Polymers (Basel) 11 (7). https://doi.org/10.3390/polym11071140

  13. Li T-T, Wang R, Lou C-W, Lin J-H (2014) Static and dynamic puncture behaviors of compound fabrics with recycled high-performance Kevlar fibers. Compos B Eng 59:60–66. https://doi.org/10.1016/j.compositesb.2013.10.063

    Article  CAS  Google Scholar 

  14. Ma Y, Zhuang Z, Ma M, Yang Y, Li W, Dong M, Wu S, Ding T, Guo Z (2019) Solid polyaniline dendrites consisting of high aspect ratio branches self-assembled using sodium lauryl sulfonate as soft templates: synthesis and electrochemical performance. Polymer 182:121808

  15. Gürgen S, Kuşhan MC (2017) The ballistic performance of aramid based fabrics impregnated with multi-phase shear thickening fluids. Polym Testing 64:296–306. https://doi.org/10.1016/j.polymertesting.2017.11.003

    Article  CAS  Google Scholar 

  16. Chuang YC, Bao L, Lin MC, Lin TA, Lou CW (2019) Fabric composites reinforced with thermally bonded and irregularly aligned filaments: preparation and puncture resistant performance. polymers (Basel) 11 (4). https://doi.org/10.3390/polym11040706

  17. Kashfipour MA, Mehra N, Dent RS, Zhu J (2019) Regulating intermolecular chain interaction of biopolymer with natural polyol for flexible, optically transparent and thermally conductive hybrids. Engineered Science 8:11–18. https://doi.org/10.30919/es8d508

    Article  Google Scholar 

  18. Chen L-Q, Zhao Y (2021) From classical thermodynamics to phase-field method. Prog Mater Sci:100868

  19. Zhao Y-H, Ying J-H, Chen L-W, Hou H (2021) Current research status of interface of ceramic-metal laminated composite material for armor protection. Acta Metall Sin

  20. Feng S, Yue Y, Chen J, Zhou J, Li Y, Zhang Q (2020) Biodegradation mechanism of polycaprolactone by a novel esterase MGS0156: a QM/MM approach. Environ Sci Process Impacts 22(12):2332–2344. https://doi.org/10.1039/d0em00340a

    Article  CAS  Google Scholar 

  21. Haider TP, Volker C, Kramm J, Landfester K, Wurm FR (2019) Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew Chem Int Ed Engl 58(1):50–62. https://doi.org/10.1002/anie.201805766

    Article  CAS  Google Scholar 

  22. Hajighasemi M, Nocek BP, Tchigvintsev A, Brown G, Flick R, Xu X, Cui H, Hai T, Joachimiak A, Golyshin PN, Savchenko A, Edwards EA, Yakunin AF (2016) Biochemical and structural insights into enzymatic depolymerization of polylactic acid and other polyesters by microbial carboxylesterases. Biomacromol 17(6):2027–2039. https://doi.org/10.1021/acs.biomac.6b00223

    Article  CAS  Google Scholar 

  23. García JM (2016) Catalyst: design challenges for the future of plastics recycling. Chem 1(6):813–815. https://doi.org/10.1016/j.chempr.2016.11.003

    Article  CAS  Google Scholar 

  24. Vinod B, Suresh S, Sudhakara D (2020) Investigation of biodegradable hybrid composites: effect of fibers on tribo-mechanical characteristics. Advanced Composites and Hybrid Materials 3(2):194–204. https://doi.org/10.1007/s42114-020-00148-2

    Article  Google Scholar 

  25. Ma Y, Hou C, Zhang H, Qiao M, Chen Y, Zhang H, Zhang Q, Guo Z (2017) Morphology-dependent electrochemical supercapacitors in multi-dimensional polyaniline nanostructures. J Mater Chem A 5(27):14041–14052. https://doi.org/10.1039/c7ta03279j

    Article  CAS  Google Scholar 

  26. Zhuang Z, Wang W, Wei Y, Li T, Ma M, Ma Y (2021) Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Advanced Composites and Hybrid Materials: https://doi.org/10.1007/s42114-42021-00225-42110

    Article  Google Scholar 

  27. Kawai F, Oda M, Tamashiro T, Waku T, Tanaka N, Yamamoto M, Mizushima H, Miyakawa T, Tanokura M (2014) A novel Ca(2)(+)-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 98(24):10053–10064. https://doi.org/10.1007/s00253-014-5860-y

    Article  CAS  Google Scholar 

  28. Ma Y, Hou C, Zhang H, Zhang Q, Liu H, Wu S, Guo Z (2019) Three-dimensional core-shell Fe3O4/polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes. Electrochim Acta 315:114–123. https://doi.org/10.1016/j.electacta.2019.05.073

    Article  CAS  Google Scholar 

  29. Perz V, Bleymaier K, Sinkel C, Kueper U, Bonnekessel M, Ribitsch D, Guebitz GM (2016) Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates. N Biotechnol 33(2):295–304. https://doi.org/10.1016/j.nbt.2015.11.004

    Article  CAS  Google Scholar 

  30. Marten E, Müller R-J, Deckwer W-D (2005) Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters. Polymer Degradation and Stability 88 (3):371–381. doi:https://doi.org/10.1016/j.polymdegradstab.2004.12.001

  31. Shanmugam L, Kazemi ME, Qiu C, Rui M, Yang L, Yang J (2020) Influence of UHMWPE fiber and Ti6Al4V metal surface treatments on the low-velocity impact behavior of thermoplastic fiber metal laminates. Advanced Composites and Hybrid Materials 3(4):508–521. https://doi.org/10.1007/s42114-020-00189-7

    Article  CAS  Google Scholar 

  32. Perz V, Hromic A, Baumschlager A, Steinkellner G, Pavkov-Keller T, Gruber K, Bleymaier K, Zitzenbacher S, Zankel A, Mayrhofer C, Sinkel C, Kueper U, Schlegel K, Ribitsch D, Guebitz GM (2016) An esterase from anaerobic clostridium hathewayi can hydrolyze aliphatic-aromatic polyesters. Environ Sci Technol 50(6):2899–2907. https://doi.org/10.1021/acs.est.5b04346

    Article  CAS  Google Scholar 

  33. Biundo A, Hromic A, Pavkov-Keller T, Gruber K, Quartinello F, Haernvall K, Perz V, Arrell MS, Zinn M, Ribitsch D, Guebitz GM (2016) Characterization of a poly(butylene adipate-co-terephthalate)- hydrolyzing lipase from Pelosinus fermentans. Appl Microbiol Biotechnol 100(4):1753–1764. https://doi.org/10.1007/s00253-015-7031-1

    Article  CAS  Google Scholar 

  34. Shah AA, Kato S, Shintani N, Kamini NR, Nakajima-Kambe T (2014) Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters. Appl Microbiol Biotechnol 98(8):3437–3447. https://doi.org/10.1007/s00253-014-5558-1

    Article  CAS  Google Scholar 

  35. Z Li Y Li X Dong W Wang Y-C Zhu V Murugadoss G Song N Naik D Pan Z Guo 2021 Synthesis, characterization and properties of poly(butanediol sebacate–butanediol terephthalate) (PBSeT) copolyesters using glycerol as cross-linking agent Materials Today Communications 28 https://doi.org/10.1016/j.mtcomm.2021.102557

  36. Heidarzadeh N, Rafizadeh M, Taromi FA, del Valle LJ, Franco L, Puiggalí J (2017) Biodegradability and biocompatibility of copoly(butylene sebacate-co-terephthalate)s. Polym Degrad Stab 135:18–30. https://doi.org/10.1016/j.polymdegradstab.2016.11.013

    Article  CAS  Google Scholar 

  37. Lu J, Wu L, Li B-G (2017) Long chain branched poly(butylene succinate-co-terephthalate) copolyesters using pentaerythritol as branching agent: Synthesis, thermo-mechanical, and rheological properties. J. Appl Polym Sci 134 (9). https://doi.org/10.1002/app.44544

  38. Lu J, Wu L, Li B-G (2017) High molecular weight polyesters derived from bio-based 1,5-pentanediol and a variety of aliphatic diacids: Synthesis, characterization and thermo-mechanical properties. ACS Sustainable Chemistry & Engineering

  39. Lai L, Wang S, Li J, Liu P, Wu L, Wu H, Xu J, Severtson SJ, Wang WJ (2020) Stiffening, strengthening, and toughening of biodegradable poly(butylene adipate-co-terephthalate) with a low nanoinclusion usage. Carbohydr Polym 247:116687. https://doi.org/10.1016/j.carbpol.2020.116687

    Article  CAS  Google Scholar 

  40. Sultan M, Islam A, Gull N, Bhatti HN, Safa Y (2014) Structural variation in soft segment of waterborne polyurethane acrylate nanoemulsions. J Appl Polym Sci 132(12):41706. https://doi.org/10.1002/app.41706

  41. Nissen KE, Stuart BH, Stevens MG, Baker AT (2008) The tensile and tear properties of a biodegradable polyester film. Int J Polym Anal Charact 13(3):190–199. https://doi.org/10.1080/10236660802070538

    Article  CAS  Google Scholar 

  42. Chen C, Xu R, Chen X, Xie J, Zhang F, Yang Y, Lei C (2016) Influence of cocrystallization behavior on structure and properties of HDPE/LLDPE microporous membrane. J Polym Res 23(3). https://doi.org/10.1007/s10965-016-0935-3

  43. Tabatabaei SH, Carreau PJ, Ajji A (2009) Structure and properties of MDO stretched polypropylene. Polymer 50(16):3981–3989. https://doi.org/10.1016/j.polymer.2009.06.059

    Article  CAS  Google Scholar 

  44. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95(12):2641–2647. https://doi.org/10.1016/j.polymdegradstab.2010.07.018

    Article  CAS  Google Scholar 

  45. Peng S, Wu L, Li B-G, Dubois P (2017) Hydrolytic and compost degradation of biobased PBSF and PBAF copolyesters with 40–60 mol% BF unit. Polym Degrad Stab 146:223–228. https://doi.org/10.1016/j.polymdegradstab.2017.07.016

    Article  CAS  Google Scholar 

  46. Hbaieb S, Kammoun W, Delaite C, Abid M, Abid S, El Gharbi R (2015) New copolyesters containing aliphatic and bio-based furanic units by bulk copolycondensation. Journal of Macromolecular Science, Part A 52(5):365–373. https://doi.org/10.1080/10601325.2015.1018807

    Article  CAS  Google Scholar 

  47. Mohanan N, Montazer Z, Sharma PK, Levin DB (2020) Microbial and enzymatic degradation of synthetic plastics. Front Microbiol 11:580709. https://doi.org/10.3389/fmicb.2020.580709

    Article  Google Scholar 

  48. Li F, Xu X, Yu J, Cao A (2007) The morphological effects upon enzymatic degradation of poly(butylene succinate-co-butylene terephthalate)s (PBST). Polym Degrad Stab 92(6):1053–1060. https://doi.org/10.1016/j.polymdegradstab.2007.02.008

    Article  CAS  Google Scholar 

  49. De Hoe GX, Zumstein MT, Getzinger GJ, Ruegsegger I, Kohler HE, Maurer-Jones MA, Sander M, Hillmyer MA, McNeill K (2019) Photochemical transformation of poly(butylene adipate- co-terephthalate) and its effects on enzymatic hydrolyzability. Environ Sci Technol 53(5):2472–2481. https://doi.org/10.1021/acs.est.8b06458

    Article  CAS  Google Scholar 

  50. Aarthy M, Puhazhselvan P, Aparna R, George AS, Gowthaman MK, Ayyadurai N, Masaki K, Nakajima-Kambe T, Kamini NR (2018) Growth associated degradation of aliphatic-aromatic copolyesters by Cryptococcus sp. MTCC 5455. Polym Degrad Stab 152:20–28. https://doi.org/10.1016/j.polymdegradstab.2018.03.021

    Article  CAS  Google Scholar 

  51. Nikolić MAL, Gauthier E, Colwell JM, Halley P, Bottle SE, Laycock B, Truss R (2017) The challenges in lifetime prediction of oxodegradable polyolefin and biodegradable polymer films. Polym Degrad Stab 145:102–119. https://doi.org/10.1016/j.polymdegradstab.2017.07.018

    Article  CAS  Google Scholar 

  52. Zhou W, Wang X, Yang B, Xu Y, Zhang W, Zhang Y, Ji J (2013) Synthesis, physical properties and enzymatic degradation of bio-based poly(butylene adipate-co-butylene furandicarboxylate) copolyesters. Polym Degrad Stab 98(11):2177–2183. https://doi.org/10.1016/j.polymdegradstab.2013.08.025

    Article  CAS  Google Scholar 

  53. Saadi Z, Cesar G, Bewa H, Benguigui L (2013) Fungal degradation of poly(butylene adipate-Co-terephthalate) in soil and in compost. J Polym Environ 21(4):893–901. https://doi.org/10.1007/s10924-013-0582-2

    Article  CAS  Google Scholar 

  54. Bag PP (2021) Introduction of plasticity to change mechanical behaviour of pharmaceutical crystals by co-crystallization: a solution of long standing problem in isoniazid. Engineered Science 15:129–137

    CAS  Google Scholar 

  55. Lv X, Tang Y, Tian Q, Wang Y, Ding T (2020) Ultra-stretchable membrane with high electrical and thermal conductivity via electrospinning and in-situ nanosilver deposition. Compos Sci Technol 200:108414

  56. Kang X, Lu Z, Feng W, Wang J, Fang X, Xu Y, Wang Y, Liu B, Ding T, Ma Y (2021) A novel phosphorous and silicon-containing benzoxazine: highly efficient multifunctional flame-retardant synergist for polyoxymethylene. Advanced Composites and Hybrid Materials 4(1):127–137

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Maoyong He of Taiyuan Institute of Technology for his help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingchun Li, Tao Ding or Bingnan Yuan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 870 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Li, Y., Lei, H. et al. The effect of synergistic/inhibitory mechanism of terephthalic acid and glycerol on the puncture, tearing, and degradation properties of PBSeT copolyesters. Adv Compos Hybrid Mater 5, 1335–1349 (2022). https://doi.org/10.1007/s42114-021-00405-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00405-y

Keywords

Navigation