Skip to main content
Log in

Polyolefin films with outstanding barrier properties based on one-step coassembled nanocoatings

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Polyolefin (PO) films are commonly used for food packaging and other consumer applications. However, while polyolefins are good water vapor barriers, they are highly permeable to oxygen. To resolve this issue, montmorillonite (MMT) nanosheets were one-step coassembled with polyvinyl alcohol (PVA) chains via facile and scalable dip coating. In a one-step coassembly process, MMT nanosheets are aligned to form a nacre-like structure with PVA chains by gravity-induced shear as the aqueous coating dispersion flows and subsequently dries on the substrate surface. The surface properties of the PO substrates were modified using high-power corona discharge treatment. The resulting nanocoating layer had vastly improved barrier properties, especially against oxygen, thanks to the highly ordered nacre-like structure of the assembled MMT nanosheets creating a tortuous path for gas transport. The structure of the nanocoatings was verified via X-ray diffraction (XRD) and small angle X-ray scattering (SAXS). This nanocoating technique has unique implications for thin film vapor barrier technology such as food packaging materials, biomedical devices, and construction materials.

Graphical abstract

Exfoliated montmorillonite (MMT) nanosheets were coassembled with polyvinyl alcohol (PVA) binder in a one-step dip-coating system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Matheson RR (2002) 20th- to 21st-century technological challenges in soft coatings. Science 297(5583):976–979. https://doi.org/10.1126/science.1075707

  2. Gugliuzza A, Drioli E (2013) A review on membrane engineering for innovation in wearable fabrics and protective textiles. J Memb Sci 446:350–375. https://doi.org/10.1016/j.memsci.2013.07.014

  3. Das S, Kumar S, Samal SK, Mohanty S, Nayak SK (2018) A review on superhydrophobic polymer nanocoatings: recent development and applications. Ind Eng Chem Res 57(8):2727–2745. https://doi.org/10.1021/acs.iecr.7b04887

    Article  CAS  Google Scholar 

  4. Xiang F, Givens TM, Ward SM, Grunlan JC (2015) Elastomeric polymer multilayer thin film with sustainable gas barrier at high strain. ACS Appl Mater Interfaces 7(30):16148–16151. https://doi.org/10.1021/acsami.5b04500

    Article  CAS  Google Scholar 

  5. Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC (2019) Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. Nanoscale 11(11):4653–4682.  https://doi.org/10.1039/c9nr00117d

  6. Chen X et al (2020) MXene/polymer nanocomposites: preparation, properties, and applications. Polym Rev 61(1):80–115. https://doi.org/10.1080/15583724.2020.1729179

    Article  CAS  Google Scholar 

  7. Wu F, Misra M, Mohanty AK (2021) Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog Polym Sci 117:101395. https://doi.org/10.1016/J.PROGPOLYMSCI.2021.101395

    Article  CAS  Google Scholar 

  8. Sun L, Sue HJ (2009) Permeation properties of epoxy nanocomposites. Barrier Prop Polym Clay Nanocomp 73–93

  9. Huang W, Zeng S, Liu J, Sun L (2015) Bi-axially oriented polystyrene/montmorillonite nanocomposite films. RSC Adv 5(72):58191–58198. https://doi.org/10.1039/C5RA09598K

    Article  CAS  Google Scholar 

  10. Han JH (2013) Innovations in food packaging, 2nd edn.

  11. Atta OM et al (2021) Silver decorated bacterial cellulose nanocomposites as antimicrobial food packaging materials. https://www.espublisher.com/ 6(0):12–26. https://doi.org/10.30919/ESFAF590

  12. Brody AL, Bugusu B, Han JH, Sand CK, McHugh TH (2008) Scientific status summary. Innovative food packaging solutions. J Food Sci 73(8):R107–R116. https://doi.org/10.1111/j.1750-3841.2008.00933.x

  13. Marsh K, Bugusu B (2007) Food packaging - roles, materials, and environmental issues: Scientific status summary. J Food Sci 72(3):R39–R55. https://doi.org/10.1111/j.1750-3841.2007.00301.x

    Article  CAS  Google Scholar 

  14. Mo C, Yuan W, Lei W, Shijiu Y (2014) Effects of temperature and humidity on the barrier properties of biaxially-oriented polypropylene and polyvinyl alcohol films. J Appl Packag Res 6(1):40–46. https://doi.org/10.14448/japr.01.0004

    Article  Google Scholar 

  15. Massey LK (2002) Permeability properties of plastics and elastomers

  16. Khalifa YIM (2016) Effect of the printing remedies and lamination techniques on barrier properties ‘WVTR and OTR Value’ for polypropylene film. EC Nutr 5:1089–1099

    Google Scholar 

  17. Todd WG (2003) Variables that affect/control high density polyethylene film oxygen/moisture barrier. Proc ANTEC, Nashville, TN

  18. Mattos LM, Moretti CL, Ferreira MD (2013) Modified atmosphere packaging for perishable plant products. Polypropylene 95–110. https://doi.org/10.5772/35835

  19. Bumbudsanpharoke N, Ko S (2019) Nanoclays in food and beverage packaging. J Nanomater 2019:1–13. https://doi.org/10.1155/2019/8927167

  20. Maes C, Luyten W, Herremans G, Peeters R, Carleer R Buntinx M (2018) Recent updates on the barrier properties of ethylene vinyl alcohol copolymer (EVOH): a review. Polym Rev 58(2):209–246. https://doi.org/10.1080/15583724.2017.1394323

  21. Vasile C (2018)Polymeric nanocomposites and nanocoatings for food packaging: a review. Materials MDPI 11(10). https://doi.org/10.3390/ma11101834

  22. Priolo MA, Holder KM, Greenlee SM, Grunlan JC (2012) Transparency, gas barrier, and moisture resistance of large-aspect-ratio vermiculite nanobrick wall thin films. ACS Appl Mater Interfaces 4(10):5529–5533. https://doi.org/10.1021/am3014289

    Article  CAS  Google Scholar 

  23. Nguyen-Tri P, Nguyen TA, Carriere P, Ngo Xuan C (2018) Nanocomposite coatings: preparation, characterization, properties, and applications. Int J Corros 1–19. https://doi.org/10.1155/2018/4749501

  24. Smith AT, LaChance AM, Zeng S, Liu B, Sun L (2019) Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater Sci 1(1):31–47. https://doi.org/10.1016/j.nanoms.2019.02.004

    Article  Google Scholar 

  25. Xiao C, Heyes DM (2002) Brownian dynamics simulations of attractive polymers in solution. J Chem Phys 117(5):2377–2388. https://doi.org/10.1063/1.1488928

    Article  CAS  Google Scholar 

  26. Hu X et al (2021) Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng Sci. https://doi.org/10.30919/ES8D474

    Article  Google Scholar 

  27. Chen Y, Ding L, Jiang B, Liu L, Du Y, Huang Y (2019) Excellent gas barrier properties PET film modified by silicone resin/sericite nanocomposite coatings. ES Mater Manuf. https://doi.org/10.30919/ESMM5F216

    Article  Google Scholar 

  28. Gan L et al (2016) Shear-induced orientation of functional graphene oxide sheets in isotactic polypropylene. J Mater Sci 51(11):5185–5195. https://doi.org/10.1007/s10853-016-9820-z

    Article  CAS  Google Scholar 

  29. Sun L, Boo WJ, Clearfield A, Sue HJ, Pham HQ (2008) Barrier properties of model epoxy nanocomposites. J Memb Sci 318(1–2):129–136. https://doi.org/10.1016/j.memsci.2008.02.041

    Article  CAS  Google Scholar 

  30. Ding F et al (2020) Sulfonated poly(fluorene ether ketone) (SPFEK)/α-zirconium phosphate (ZrP) nanocomposite membranes for fuel cell applications. Adv Compos Hybrid Mater 3:1–5. https://doi.org/10.1007/s42114-020-00184-y

    Article  CAS  Google Scholar 

  31. Hu H et al (2020) Sulfonated poly(fluorenyl ether ketone)/sulfonated α-zirconium phosphate nanocomposite membranes for proton exchange membrane fuel cells. Adv Compos Hybrid Mater 3:1–10. https://doi.org/10.1007/s42114-020-00182-0

    Article  CAS  Google Scholar 

  32. Tan B, Thomas NL (2016) A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J Memb Sci 514:595–612. https://doi.org/10.1016/j.memsci.2016.05.026

    Article  CAS  Google Scholar 

  33. Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon 98:313–333. https://doi.org/10.1016/j.carbon.2015.11.018

  34. Sun L, Boo WJ, Sun D, Clearfield A, Sue HJ (2007) Preparation of exfoliated epoxy/α-zirconium phosphate nanocomposites containing high aspect ratio nanoplatelets. Chem Mater 19(7):1749–1754. https://doi.org/10.1021/cm062993r

    Article  CAS  Google Scholar 

  35. Boo WJ et al (2007) Morphology and mechanical behavior of exfoliated epoxy/α-zirconium phosphate nanocomposites. Compos Sci Technol 67(2):262–269. https://doi.org/10.1016/j.compscitech.2006.08.012

    Article  CAS  Google Scholar 

  36. Sun L et al (2009) Effect of nanoplatelets on the rheological behavior of epoxy monomers. Macromol Mater Eng 294(2):103–113. https://doi.org/10.1002/mame.200800258

    Article  CAS  Google Scholar 

  37. Boo WJ et al (2007) Effect of nanoplatelet dispersion on mechanical behavior of polymer nanocomposites. J Polym Sci Part B Polym Phys 45(12):1459–1469. https://doi.org/10.1002/polb.21163

    Article  CAS  Google Scholar 

  38. Boo WJ et al (2007) Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites. Polymer (Guildf) 48(4):1075–1082. https://doi.org/10.1016/j.polymer.2006.12.042

    Article  CAS  Google Scholar 

  39. Zhang D et al (2021) An environmentally-friendly sandwich-like structured nanocoating system for wash durable, flame retardant, and hydrophobic cotton fabrics. Cellulose. https://doi.org/10.1007/s10570-021-04177-y

    Article  Google Scholar 

  40. Lipton J, Weng GM, Rӧhr JA, Wang H, Taylor AD (2020) Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale. Matter 2(5):1148–1165. https://doi.org/10.1016/j.matt.2020.03.012

    Article  Google Scholar 

  41. Yang YH, Malek FA, Grunlan JC (2010) Influence of deposition time on layer-by-layer growth of clay-based thin films. Ind Eng Chem Res 49(18):8501–8509. https://doi.org/10.1021/ie100499x

    Article  CAS  Google Scholar 

  42. Yang YH, Bolling L, Priolo MA, Grunlan JC (2013) Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv Mater 25(4):503–508. https://doi.org/10.1002/adma.201202951

    Article  CAS  Google Scholar 

  43. Priolo MA, Gamboa D, Holder KM, Grunlan JC (2010) Super gas barrier of transparent polymer-clay multilayer ultrathin films. Nano Lett 10(12):4970–4974. https://doi.org/10.1021/nl103047k

    Article  CAS  Google Scholar 

  44. Lazar S, Garcia-Valdez O, Kennedy E, Champagne P, Cunningham M, Grunlan J (2019) Crosslinkable-chitosan-enabled moisture-resistant multilayer gas barrier thin film. Macromol Rapid Commun 40(6):1800853. https://doi.org/10.1002/marc.201800853

    Article  CAS  Google Scholar 

  45. Song Y, Tzeng P, Grunlan JC (2016) Super oxygen and improved water vapor barrier of polypropylene film with polyelectrolyte multilayer nanocoatings. Macromol Rapid Commun 37(12):963–968. https://doi.org/10.1002/marc.201600140

    Article  CAS  Google Scholar 

  46. Pandey JK, Takagi H, Nakagaito AN, Kim HJ (2015) Handbook of polymer nanocomposites. Processing, performance and application: Volume C: Poly Nanocomp  Cellu Nanopart

  47. Richardson JJ, Cui J, Björnmalm M, Braunger JA, Ejima H, Caruso F (2016) Innovation in layer-by-layer assembly. Chem Rev 116(23):14828–14867. https://doi.org/10.1021/acs.chemrev.6b00627

  48. Ding F et al (2017) Biomimetic nanocoatings with exceptional mechanical, barrier, and flame-retardant properties from large-scale one-step coassembly. Sci Adv 3(7). https://doi.org/10.1126/sciadv.1701212

  49. Yu J et al (2016) Synthesis of layered double hydroxide single-layer nanosheets in formamide. Inorg Chem 55(22):12036–12041. https://doi.org/10.1021/acs.inorgchem.6b02203

    Article  CAS  Google Scholar 

  50. Zhang D et al (2017) Flame retardant and hydrophobic coatings on cotton fabrics via sol-gel and self-assembly techniques. J Colloid Interface Sci 505:892–899. https://doi.org/10.1016/j.jcis.2017.06.087

    Article  CAS  Google Scholar 

  51. Zhang D et al (2018) Flame retardant and hydrophobic cotton fabrics from intumescent coatings. Adv Compos Hybrid Mater 1(1):177–184. https://doi.org/10.1007/s42114-017-0006-1

    Article  CAS  Google Scholar 

  52. Zhang D et al (2020) Self-assembled intumescent flame retardant coatings: influence of ph on the flammability of cotton fabrics. Eng Sci 12:106–112. https://doi.org/10.30919/es8d1134

    Article  CAS  Google Scholar 

  53. Chavez SE et al (2021) One-step coassembled nanocoatings on paper for potential packaging applications. ES Mater Manuf. https://doi.org/10.30919/ESMM5F510

    Article  Google Scholar 

  54. Liu J et al(2021) Ultra-transparent nanostructured coatings via flow-induced one-step coassembly. Nano Mater Sci1–7. https://doi.org/10.1016/j.nanoms.2021.07.001

  55. Williams B et al (2021) Highly efficient polyvinyl alcohol/montmorillonite flame retardant nanocoating for corrugated cardboard. Adv Compos Hybrid Mater 4. https://doi.org/10.1007/s42114-021-00299-w

  56. Strobel M et al (2003) A comparison of corona-treated and flame-treated polypropylene films. Plasmas Polym 8(1):61–95. https://doi.org/10.1023/A:1022817909276

    Article  CAS  Google Scholar 

  57. Dávila ME, Molodtsov SL, Laubschat C, Asensio MC (2002) Surface physico-chemistry of corona-discharge-treated poly(ethylene terephthalate) film. Surf Interface Anal 33(7):617–625. https://doi.org/10.1002/sia.1429

    Article  CAS  Google Scholar 

  58. Barish JA, Goddard JM (2011) Topographical and chemical characterization of polymer surfaces modified by physical and chemical processes. J Appl Polym Sci 120(5):2863–2871. https://doi.org/10.1002/app.33310

    Article  CAS  Google Scholar 

  59. Guruvenket S, Rao GM, Komath M, Raichur AM (2004) Plasma surface modification of polystyrene and polyethylene. Appl Surf Sci 236(1–4):278–284. https://doi.org/10.1016/j.apsusc.2004.04.033

    Article  CAS  Google Scholar 

  60. Lehocký M et al (2003) Plasma surface modification of polyethylene. Colloids Surf, A 222(1–3):125–131. https://doi.org/10.1016/S0927-7757(03)00242-5

    Article  CAS  Google Scholar 

  61. Drnovská H, Lapčík L, Buršíková V, Zemek J, Barros-Timmons AM (2003) Surface properties of polyethylene after low-temperature plasma treatment. Colloid Polym Sci 281(11):1025–1033. https://doi.org/10.1007/s00396-003-0871-8

    Article  CAS  Google Scholar 

  62. Banik I et al (2003) A closer look into the behavior of oxygen plasma-treated high-density polyethylene. Polymer (Guildf) 44(4):1163–1170. https://doi.org/10.1016/S0032-3861(02)00847-9

    Article  CAS  Google Scholar 

  63. Encinas N, Díaz-Benito B, Abenojar J, Martínez MA (2010) Extreme durability of wettability changes on polyolefin surfaces by atmospheric pressure plasma torch. Surf Coatings Technol 205(2):396–402. https://doi.org/10.1016/j.surfcoat.2010.06.069

    Article  CAS  Google Scholar 

  64. Šíra M, Trunec D, Sťahel P, Buršíková V, Navrátil Z, Buršík J (2005) Surface modification of polyethylene and polypropylene in atmospheric pressure glow discharge. J Phys D Appl Phys 38(4):621–627. https://doi.org/10.1088/0022-3727/38/4/015

    Article  CAS  Google Scholar 

  65. Leahy BD, Koch DL, Cohen I (2015) The effect of shear flow on the rotational diffusion of a single axisymmetric particle. J Fluid Mech 772:42–79. https://doi.org/10.1017/jfm.2015.186

    Article  CAS  Google Scholar 

  66. O’Brien SBG, Shwartz LW (2002) Theory and Modeling of thin film flows. Encyclo Surf  Colloid Sci 5283–5297. https://doi.org/10.1081/E-ESCS-120000885

  67. Sun L et al (2007) Preparation of intercalating agent-free epoxy/clay nanocomposites. Polym Eng Sci 47(10):1708–1714. https://doi.org/10.1002/pen.20864

    Article  CAS  Google Scholar 

  68. Witomska S, Leydecker T, Ciesielski A, Samorì P (2019) Production and patterning of liquid phase-exfoliated 2D sheets for applications in optoelectronics. Adv Funct Mater 1901126. https://doi.org/10.1002/adfm.201901126

  69. Zhou Y et al (2019) Nanofluidic energy conversion and molecular separation through highly stable clay-based membranes. J Mater Chem A 7(23):14089–14096. https://doi.org/10.1039/c9ta00801b

    Article  CAS  Google Scholar 

  70. Zhang B et al (2021) Reviving the ‘Schottky’ barrier for flexible polymer dielectrics with a superior 2D nano-assembly coating. Adv Mater 33(34):2101374

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Mu-Ping Nieh for valuable discussions on the SAXS characterization.

Funding

The authors received support from the National Science Foundation (CMMI-1562907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyi Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LaChance, A.M., Hou, Z., Farooqui, M.M. et al. Polyolefin films with outstanding barrier properties based on one-step coassembled nanocoatings. Adv Compos Hybrid Mater 5, 1067–1077 (2022). https://doi.org/10.1007/s42114-022-00421-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00421-6

Keywords

Navigation