Skip to main content
Log in

Synthesis and characterization of poly(butanediol sebacate-butanediol) terephthalate (PBSeT) reinforced by hydrogen bond containing amide group, with good mechanical properties and improved water vapor barrier

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A PBSeT copolyester was synthesized by introducing a polar amide unit into the molecular chain, coordinating with decyldiamine through hydrogen bonds between the amide groups and hydrogen atoms on the chains. Two-step esterification and one-step polycondensation melt polymerization were adopted. ATR-FTIR and HNMR demonstrated the successful introduction of the amide unit. The effect of adding an amide unit on many properties was also discussed. Due to the formation of hydrogen bonds, both the force of molecular chain and the crystallinity increased by 5.91%. Consequently, yield and tear strength increased by 40.7% and 74.8%, respectively. The addition of 1,10-decyldiamine has no significant effect on the glass transition temperature and thermal stability of polyester. The introduction of an amide unit decreased free volume and increased combined crystallinity, which also increased the water vapor barrier. At the same time, PBSeT copolyester still maintained its biodegradability under hydrolysis and enzymatic hydrolysis. Addtionally, the change of surface morphology upon the degradation was examed by AFM. This work discussesed a synthesis method of PBSeT copolyester strengthened by the hydrogen bond. The modified material has higher crystallinity, better mechanical properties, and a better water vapor barrier while maintaining certain biodegradation ability. It can be used in disposable products, food packaging, and other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Geyer R, Jambeck JR, Law KL (2017) Law, Production, use, and fate of all plastics ever made. Sci Adv 3(7). https://doi.org/10.1126/sciadv.1700782

  2. Luckachan GE, Pillai CKS (2011) Biodegradable polymers- a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676. https://doi.org/10.1007/s10924-011-0317-1

    Article  CAS  Google Scholar 

  3. Dong X, Dong M, Li Y, Li Z, Wang W, Cao N, Mahmoud KH, El-Bahy SM, El-Bahy ZM, Huang M, Guo Z (2022) Building blend from recycling acrylonitrile–butadiene–styrene and high impact-resistance polystyrene through dextro-glucose. React Funct Polym 175. https://doi.org/10.1016/j.reactfunctpolym.2022.105287

  4. Maddodi BS, Lathashri UA, Devesh S, Rao AU, Shenoy GB, Wijerathne HT, Sooriyaperkasam N (2022) Repurposing plastic wastes in non-conventional engineered wood building bricks for constructional application–a mechanical characterization, Engineered Science 18:329–336. https://doi.org/10.30919/es8d696

  5. Siegenthaler KO, Kunkel A, Skupin G, Yamamoto M (2012) Ecoflex (R) and Ecovio (R): biodegradable, performance-enabling plastics, in: B. Rieger, A. Kunkel, G.W. Coates, R. Reichardt, E. Dinjus, T.A. Zevaco (Eds.). Synthetic Biodegradable Polymers 91–136. https://doi.org/10.1007/12.2010.106

  6. Jayanth D, Kumar PS, Nayak GC, Kumar JS, Pal SK, Rajasekar R (2018) A review on biodegradable polymeric materials striving towards the attainment of green environment. J Polym Environ 26(2):838–865. https://doi.org/10.1007/s10924-017-0985-6

    Article  CAS  Google Scholar 

  7. Hussain F, Jeong J, Park S, Jeong E, Kang S-J, Yoon K, Kim J (2020) Fabrication and characterization of a novel terpolyester film: An alternative substrate polymer for flexible electronic devices, Polymer 210. https://doi.org/10.1016/j.polymer.2020.123019

  8. Jing C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology 69:111–122. https://doi.org/10.1016/j.partic.2021.11.013

    Article  CAS  Google Scholar 

  9. Zhou H, Wang J, Liu Y, Chen Z, Zhang J (2022) Study on copolymer from cyclic butylene terephthalate and polycaprolactone by in-situ polymerization, ES Materials & Manufacturing, 17:44–52. https://doi.org/10.30919/esmm5f544

  10. Li B, Liu L, Wang X, Ma Y, Pan D, Maganti S, Xu B, Guo Z (2022) Effects of nano-barium sulfate on the properties of polybutylece terephthalate/polyethylene terephthalate composites. ES Mater Manuf 17:83–91. https://doi.org/10.30919/esmm5f634

  11. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72. https://doi.org/10.1016/j.jmst.2021.08.049

  12. Zhao Y, Liu K, Hou H, Chen L (2022) Role of interfacial energy anisotropy in dendrite orientation in Al-Zn alloys: A phase field study. Mater Des 216:110555. https://doi.org/10.1016/j.matdes.2022.110555

    Article  CAS  Google Scholar 

  13. Costa ARM, Almeida TG, Silva SML, Carvalho LH, Canedo EL (2015) Chain extension in poly(butylene-adipate-terephthalate). Inline testing in a laboratory internal mixer, Polymer Testing 42:115–121. https://doi.org/10.1016/j.polymertesting.2015.01.007

    Article  CAS  Google Scholar 

  14. Messin T, Marais S, Follain N, Guinault A, Gaucher V, Delpouve N, Sollogoub C (2020) Biodegradable PLA/PBS multinanolayer membrane with enhanced barrier performances. J Membr Sci 598. https://doi.org/10.1016/j.memsci.2019.117777

  15. Wang C, Ming W, Yan D, Zhang C, Yang M, Liu Y, Zhang Y, Guo B, Wan Y, Xing J (2014) Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate). Bioresour Technol 156:6–13. https://doi.org/10.1016/j.biortech.2013.12.043

    Article  CAS  Google Scholar 

  16. Hu H, Zhang R, Shi L, Ying WB, Wang J, Zhu J (2018) Modification of poly(butylene 2,5-furandicarboxylate) with lactic acid for biodegradable copolyesters with good mechanical and barrier properties. Ind Eng Chem Res 57(32):11020–11030. https://doi.org/10.1021/acs.iecr.8b02169

    Article  CAS  Google Scholar 

  17. Sangroniz A, Sangroniz L, Gonzalez A, Santamaria A, del Rio J, Iriarte M, Etxeberria A (2019) Improving the barrier properties of a biodegradable polyester for packaging applications. Eur Polymer J 115:76–85. https://doi.org/10.1016/j.eurpolymj.2019.03.026

    Article  CAS  Google Scholar 

  18. Feng Y, Li Y, Ye X, Li Z, Wang W, Liu T, Azab IHE, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Synthesis and characterization of 2,5-furandicarboxylic acid poly(butanediol sebacate-butanediol) terephthalate (PBSeT) segment copolyesters with excellent water vapor barrier and good mechanical properties. J Mater Sci 57(24):10997–11012. https://doi.org/10.1007/s10853-022-07269-7

    Article  CAS  Google Scholar 

  19. Messin T, Marais S, Follain N, Guinault A, Gaucher V, Delpouve N, Sollogoub C (2022) Repurposing plastic wastes in non-conventional engineered wood building bricks for constructional application - a mechanical characterization using experimental and statistical analysis. Eng Sci 18:329–336. https://doi.org/10.30919/es8d696

  20. Das R, Vupputuri S, Hu Q, Chen Y, Colorado H, Guo Z, Wang Z (2008) Synthesis and characterization of antiflammable vinyl ester resin nanocomposites with surface functionalized nanotitania. ES Mater Manuf 8:46–53. https://doi.org/10.30919/esmm5f709

  21. Chen Y, Tan L, Chen L, Yang Y, Wang X (2008) Study on biodegradable aromatic/aliphatic copolyesters. Braz J Chem Eng 25(2):321–335. https://doi.org/10.1590/s0104-66322008000200011

    Article  CAS  Google Scholar 

  22. Muller RJ, Kleeberg I, Deckwer WD (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86(2):87–95. https://doi.org/10.1016/s0168-1656(00)00407-7

    Article  CAS  Google Scholar 

  23. Ukielski R, Kondratowicz F, Kotowski D (2013) Production, properties and trends in development of biodegradable polyesters with particular respect to aliphatic-aromatic copolymers. Polimery 58(3):167–176

    Article  Google Scholar 

  24. Novello MV, Carreira LG, Canto LB (2014) Post-consumer polyethylene terephthalate and polyamide 66 blends and corresponding short glass fiber reinforced composites. Mater Res-Ibero-Am J Mater 17(5):1285–1294. https://doi.org/10.1590/1516-1439.281914

    Article  Google Scholar 

  25. Ju L, Dennis JM, Heifferon KV, Long TE, Moore RB (2019) Compatibilization of Polyester/Polyamide Blends with a Phosphonated Poly(Ethylene Terephthalate) Ionomer: Comparison of Monovalent and Divalent Pendant Ions. ACS Appl Polym Mater. https://doi.org/10.1021/acsapm.9b00097

    Article  Google Scholar 

  26. Jin Y, Wang E, Weng Y, Men S, Dong Y, Sima Y, Huang Z (2018) the investigation of the toughening mechanism of PHBV/PBAT with a novel hyperbranched ethylenediamine triazine polymer based modifier: the formation of the transition layer and the microcrosslinking structure. J Polym Environ 26(10):4158–4167. https://doi.org/10.1007/s10924-018-1286-4

    Article  CAS  Google Scholar 

  27. Retolaza A, Eguiazábal JI, Nazábal J (2004) Structure and mechanical properties of polyamide-6,6/poly(ethylene terephthalate) blends. Polym Eng Sci 44(8):1405–1413. https://doi.org/10.1002/pen.20136

    Article  CAS  Google Scholar 

  28. Yuan H, Yu B, Cong H, Chi M, Cheng Y, Lv C (2018) Preparation of hierarchical highly ordered porous films of brominated poly(phenylene oxide) and hydrophilic SiO2/C membrane via the breath figure method. Materials 11(4). https://doi.org/10.3390/ma11040481

  29. Wu H, Mu Z, Qi G, Zhang Y, Wang X, Xie P, Wu N, Yuan H, Sui K, Fan R, Liu C (2021) Negative permittivity behavior in Ti3AlC2-polyimide composites and the regulation mechanism. J Mater Sci:Mater Electron 32(8):10388–10397. https://doi.org/10.1007/s10854-021-05695-y

    Article  CAS  Google Scholar 

  30. Yan Y, Gooneie A, Ye H, Deng L, Qiu Z, Reifler FA, Hufenus R (2018) Hufenus, Morphology and crystallization of biobased polyamide 56 blended with polyethylene terephthalate. Macromol Mater Eng 303(9). https://doi.org/10.1002/mame.201800214

  31. Hu YS, Prattipati V, Mehta S, Schiraldi DA, Hiltner A, Baer E (2005) Improving gas barrier of PET by blending with aromatic polyamides. Polymer 46(8):2685–2698. https://doi.org/10.1016/j.polymer.2005.01.056

    Article  CAS  Google Scholar 

  32. Ye H-M, Wang R-D, Liu J, Xu J, Guo B-H (2012) Isomorphism in poly(butylene succinate-co-butylene fumarate) and its application as polymeric nucleating agent for poly(butylene succinate). Macromolecules 45(14):5667–5675. https://doi.org/10.1021/ma300685f

    Article  CAS  Google Scholar 

  33. Chang B, Li Y, Wang W, Song G, Lin J, Murugadoss V, Naik N, Guo Z (2021) Impacts of chain extenders on thermal property, degradation, and rheological performance of poly(butylene adipate-co-terephthalate). J Mater Res 36(15):3134–3144. https://doi.org/10.1557/s43578-021-00308-0

    Article  CAS  Google Scholar 

  34. Triki R, Abid M, Tessier M, Abid S, El Gharbi R, Fradet A (2013) Furan-based poly(esteramide)s by bulk copolycondensation. Eur Polymer J 49(7):1852–1860. https://doi.org/10.1016/j.eurpolymj.2013.04.014

    Article  CAS  Google Scholar 

  35. Dai Z-H, Qiang L, Tang L-M, Guo B-H (2015) A novel supramolecular polymer fabricated via stronger hydrogen-bonding interactions between substituted amide groups: design, synthesis, properties and mechanism. RSC Adv 5(102):84104–84112. https://doi.org/10.1039/c5ra10876d

    Article  CAS  Google Scholar 

  36. Li Z, Li Y, Dong X, Wang W, Zhu YC, Murugadoss V, Song G, Naik N, Pan D, Guo Z (2021) Synthesis, characterization and properties of poly(butanediol sebacate-butanediol terephthalate) (PBSeT) copolyesters using glycerol as crosslinking agent. Mater Today Commun 28. https://doi.org/10.1016/j.mtcomm.2021.102557

  37. Gao H, Cao W, He J, Bai Y (2021) Bai, Highly transparent biaxially oriented poly(ester amide) film with improved gas barrier properties and good mechanical strength. Eur Polym J 156. https://doi.org/10.1016/j.eurpolymj.2021.110620

  38. Zheng Y, Pan P (2020) Crystallization of biodegradable and biobased polyesters: polymorphism, cocrystallization, and structure-property relationship. Prog Polym Sci 109. https://doi.org/10.1016/j.progpolymsci.2020.101291

  39. Cranston E, Kawada J, Raymond S, Morin FG, Marchessault RH (2003) Marchessault, Cocrystallization Model for Synthetic Biodegradable Poly(butylene adipate-co-butylene terephthalate). Macromolecules. https://doi.org/10.1021/bm034089n

  40. Wittmann JC, Lotz B (1981) Epitaxial crystallization of polyethylene on organic substrates: a reappraisal of the mode of action of selected nucleating agents. J Polym Sci Polym Phys Ed 19(12):1837–1851

    Article  CAS  Google Scholar 

  41. Li Z, Li Y, Lei H, Feng Y, Wang W, Li J, Ding T, Yuan B (2022) The effect of synergistic/inhibitory mechanism of terephthalic acid and glycerol on the puncture, tearing, and degradation properties of PBSeT copolyesters. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00405-y

    Article  Google Scholar 

  42. Hbaieb S, Kammoun W, Delaite C, Abid M, Abid S, El Gharbi R (2015) New copolyesters containing aliphatic and bio-based furanic units by bulk copolycondensation. Journal of Macromolecular Science Part a-Pure and Applied Chemistry 52(5):365–373. https://doi.org/10.1080/10601325.2015.1018807

    Article  CAS  Google Scholar 

  43. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95(12):2641–2647

    Article  CAS  Google Scholar 

  44. Peng S, Wu L, Li BG, Dubois P (2017) Hydrolytic and compost degradation of biobased PBSF and PBAF copolyesters with 40–60 mol% B.F. unit. Polym Degrad Stab 146:223–228. https://doi.org/10.1016/j.polymdegradstab.2017.07.016

  45. Feng Y, Li Y, Ye X, Li Z, Wang W, Liu T, El Azab IH, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Synthesis and characterization of 2, 5-furandicarboxylic acid poly(butanediol sebacate-butanediol) terephthalate (PBSeT) segment copolyesters with excellent water vapor barrier and good mechanical properties. J Mater Sci 57:10997–11012. https://doi.org/10.1007/s10853-022-07269-7

    Article  CAS  Google Scholar 

  46. Gao S, Zhao X, Fu Q, Zhang T, Zhu J, Hou F, Ni J, Zhu C, Li T, Wang Y, Murugadoss V, Mersal GAM, Ibrahim MM, El-Bahy ZM, Huang M, Guo Z (2022) Highly transmitted silver nanowires-swcnts conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J Mater Sci & Tech 126:152–160. https://doi.org/10.1016/j.jmst.2022.03.012

    Article  Google Scholar 

  47. Maddodi BS, Lathashri UA, Devesh A, Rao AU, Shenoy GB, Wijerathne HT, Sooriyaperkasam N, Kumar MP (2022) Engineering hierarchical heterostructure material based on metal-organic frameworks and cotton fiber for high-efficient microwave absorber. Nano Res. 15:6841–6850. https://doi.org/10.1007/s12274-022-4533-x

  48. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal GAM, Ibrahim MM, El-Bahy ZM, Li Y, Huang M, Guo Z (2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat 168:106875. https://doi.org/10.1016/j.porgcoat.2022.106875

    Article  CAS  Google Scholar 

  49. Huang X, Witherspoon E, Li Y, Ward S, Yu J, Wu HF, Ding H, Li Q, Wang Z, Dong P (2022) Sustainable generator and in-situ monitor for reactive oxygen species using photodynamic effect of single-walled carbon nanotubes in ionic liquids. Materials Today Sustainability 19:100171. https://doi.org/10.1016/j.mtsust.2022.100171

    Article  Google Scholar 

  50. Wang Z, Nautiyal A, Alexopoulos C, Aqrawi R, Huang X, Ali A, Lawson KE, Riley K, Adamczyk AJ, Dong P, Zhang X (2022) Fentanyl assay derived from intermolecular interaction-enabled small molecule recognition (Imsr) with differential impedance analysis for point-of-care testing. Anal Chem 94(26):9242–9251. https://doi.org/10.1021/acs.analchem.2c00017

    Article  CAS  Google Scholar 

  51. Jing C, Zhang Y, Zheng J, Ge S, Lin J, Pan D, Naik N, Guo Z (2022) In-situ constructing visible light Cds/Cd-Mof photocatalyst with enhanced photodegradation of methylene blue. Particuol. 69:111–122. https://doi.org/10.1016/j.partic.2021.11.013

  52. Chen Y, Lin J, Mersal GAM, Zuo J, Li J, Wang Q, Feng Y, Liu J, Liu Z, Wang B, Xu BB, Guo Z (2022) “Several birds with one stone” strategy of pH/thermoresponsive flame-retardant/photothermal bactericidal oil-absorbing material for recovering complex spilled oil. J Mat Sci & Tech 128:82–97. https://doi.org/10.1016/j.jmst.2022.05.002

    Article  Google Scholar 

Download references

Funding

The authors are financially supported by the North University of China, Taiyuan University of Science and Technology, and Taif University Researchers Supporting Project number (TURSP-2020/44), Taif University, Taif, Saudi Arabia. Z.W. is supported by the Oakland University.

Author information

Authors and Affiliations

Authors

Contributions

Y.L and Z.W. have designed this project and contributed to the main manuscript text. Y. F. conducted experiments and wrote the main manuscript text. Ab.Al., X.M., A. Alh., X.Y., M.I., X.G., H.A., M.H., and W. W. have contributed to conducting the experiments, preparing figures, and writing. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Yingchun Li or Zhe Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Li, Y., Almalki, A.S.A. et al. Synthesis and characterization of poly(butanediol sebacate-butanediol) terephthalate (PBSeT) reinforced by hydrogen bond containing amide group, with good mechanical properties and improved water vapor barrier. Adv Compos Hybrid Mater 5, 2051–2065 (2022). https://doi.org/10.1007/s42114-022-00542-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00542-y

Keywords

Navigation