Skip to main content

Advertisement

Log in

Hybrid 0D/2D heterostructures: in-situ growth of 0D g-C3N4 on 2D BiOI for efficient photocatalyst

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Binary composite catalyst of g-C3N4 and BiOI has been shown to have tremendous potential in visible light catalytic degradation of organic pollutant. However, the adjustment of scale and morphology of the heterojunction composite catalyst (g-C3N4/BiOI) has attracted unprecedented attention for improving the photocatalytic efficiency. Herein, a facile preparation method of Z-scheme heterojunction composite catalyst of zero-dimensional g-C3N4 growing on two-dimensional BiOI (0D/2D g-C3N4/BiOI) was proposed, which features with a self-assembled organic supramolecular as precursor intercalating into the laminar 2D BiOI to prepare a highly dispersed 0D g-C3N4 in situ growth on it. The result demonstrates that the as-prepared 0D/2D g-C3N4/BiOI is superior to non-noble metal heterojunction catalysts and comparable to some noble metal catalysts and exhibits a 22.1 times higher kinetic constant for tetracycline hydrochloride degradation than that of g-C3N4 with a degradation rate of 92.1%. Additionally, 0D/2D g-C3N4/BiOI also indicates excellent stability of cyclic photocatalysis and resistance to ionic interference. The underlying photocatalytic degradation mechanism is considered that the generated superoxide radical (·O2) of 0D/2D g-C3N4/BiOI can intensely catalyse the refractory organic matter, including tetracycline hydrochloride, tetracycline hydrochloride, methyl orange, and p-chlorophenol. This work provides a universal approach to construct 0D/2D heterojunction composite catalyst to enhance the photocatalytic performance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Figure 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Figure 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu Z, Zhou G, Song M, Liu X, Tang H, Dong H, Huo P, Yan F, Du P, Xing G (2020) Development of magnetic imprinted PEDOT/CdS heterojunction photocatalytic nanoreactors: 3-Dimensional specific recognition for selectively photocatalyzing danofloxacin mesylate. Applied Catalysis B-Environmental 268:1–15

    Article  Google Scholar 

  2. Padervand M, Rhimi B, Wang C (2021) One-pot synthesis of novel ternary Fe3N/Fe2O3/C3N4 photocatalyst for efficient removal of rhodamine B and CO2 reduction. J Alloy Compd 852:1–14

    Article  Google Scholar 

  3. Qin Y, Li H, Lu J, Meng F, Ma C, Yan Y, Meng M (2020) Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem Eng J 384:1–11

    Article  Google Scholar 

  4. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8(1):76–80

    Article  CAS  Google Scholar 

  5. Liu CY, Huang HW, Ye LQ, Yu SX, Tian N, Du X, Zhang TR, Zhang YH (2017) Intermediate-mediated strategy to horn-like hollow mesoporous ultrathin g-C3N4 tube with spatial anisotropic charge separation for superior photocatalytic H-2 evolution. Nano Energy 41:738–748

    Article  CAS  Google Scholar 

  6. Zhao RR, Gao JP, Mei SK, Wu YL, Wang XX, Zhai XG, Yang JB, Hao CY, Yan J (2017) Facile synthesis of graphitic C3N4 nanoporous-tube with high enhancement of visible-light photocatalytic activity. Nanotechnology 28(49):1–13

    Article  CAS  Google Scholar 

  7. Zheng Y, Lin L, Wang B, Wang X (2015) Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angewandte Chemie-International Edition 54(44):12868–12884

    Article  CAS  Google Scholar 

  8. Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH (2016) 2D materials and van der Waals heterostructures. Science 353(6298)

  9. Zhang ZZ, Zhang JX, Li SY, Liu JP, Dong MY, Li YC, Lu N, Lei SY, Tang JJ, Fan JC, Guo ZH (2019) Effect of graphene liquid crystal on dielectric properties of polydimethylsiloxane nanocomposites. Composites Part B-Engineering 176:1–9

    Article  Google Scholar 

  10. Dai W-W, Zhao Z-Y (2017) Understanding the interfacial properties of graphene-based materials/BiOI heterostructures by DFT calculations. Appl Surf Sci 406:8–20

    Article  CAS  Google Scholar 

  11. Jiang JJ, Mu Z, Zhao P, Wang HT, Lin YH (2020) Photogenerated charge behavior of BiOI/g-C3N4 photocatalyst in photoreduction of Cr (VI): a novel understanding for high-performance. Mater Chem Phys 252:1–10

    Article  Google Scholar 

  12. Jiang DL, Chen LL, Zhu JJ, Chen M, Shi WD, Xie JM (2013) Novel p-n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity. Dalton Trans 42(44):15726–15734

    Article  CAS  Google Scholar 

  13. Di J, Xia JX, Yin S, Xu H, Xu L, Xu YG, He MQ, Li HM (2014) Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. Journal of Materials Chemistry A 2(15):5340–5351

    Article  CAS  Google Scholar 

  14. Dai K, Lu LH, Liang CH, Zhu G, Liu QZ, Geng L, He JQ (2015) A high efficient graphitic-C3N4/BiOI/graphene oxide ternary nanocomposite heterostructured photocatalyst with graphene oxide as electron transport buffer material. Dalton Trans 44(17):7903–7910

    Article  CAS  Google Scholar 

  15. Mousavi M, Habibi-Yangjeh A (2016) Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposites: novel visible-light-driven photocatalysts based on graphitic carbon nitride. J Colloid Interface Sci 465:83–92

    Article  CAS  Google Scholar 

  16. Lin CL, Liu BY, Pu LY, Sun Y, Xue YL, Chang ML, Li X, Lu XY, Chen R, Zhang JX (2021) Photocatalytic oxidation removal of fluoride ion in wastewater by g-C3N4/TiO2 under simulated visible light. Advanced Composites and Hybrid Materials 4(2):339–349

    Article  CAS  Google Scholar 

  17. Lin C, Qiao Z, Zhang J, Tang J, Guo Z (2019) Highly efficient fluoride adsorption in domestic water with RGO/Ag nanomaterials. ES Energy & Environment 4:27–33

    Google Scholar 

  18. Liang Q, Cui SN, Jin J, Liu CH, Xu S, Yao C, Li ZY (2018) Fabrication of BiOI@UIO-66(NH2)@g-C3N4 ternary Z-scheme heterojunction with enhanced visible-light photocatalytic activity. Appl Surf Sci 456:899–907

    Article  CAS  Google Scholar 

  19. He RA, Cheng KY, Wei ZY, Zhang SY, Xu DF (2019) Room-temperature in situ fabrication and enhanced photocatalytic activity of direct Z-scheme BiOI/g-C3N4 photocatalyst. Appl Surf Sci 465:964–972

    Article  CAS  Google Scholar 

  20. Mafa PJ, Kuvarega AT, Mamba BB, Ntsendwana B (2019) Photoelectrocatalytic degradation of sulfamethoxazole on g-C3N4/BiOI/EG p-n heterojunction photoanode under visible light irradiation. Appl Surf Sci 483:506–520

    Article  CAS  Google Scholar 

  21. Gan WY, Gao HS, Zhao YC, Wen ZX, Lu GG, Jiang B, Yue ZF (2020) Influence of microstructure degradation induced by pretreatment on the creep behavior in Ni-based single-crystal superalloy with different orientations. J Mater Res 35(6):610–622

    Article  CAS  Google Scholar 

  22. Liu J, Zhang J, Tang J, Pu L, Guo Z (2020) Polydimethylsiloxane resin nanocomposite coating with alternating multilayer structure for corrosion protection performance. ES Materials & Manufacturing 10:29–38

    CAS  Google Scholar 

  23. Dong F, Ou MY, Jiang YK, Guo S, Wu ZB (2014) Efficient and durable visible light photocatalytic performance of porous carbon nitride nanosheets for air purification. Ind Eng Chem Res 53(6):2318–2330

    Article  CAS  Google Scholar 

  24. Wang J-C, Yao H-C, Fan Z-Y, Zhang L, Wang J-S, Zang S-Q, Li Z-J (2016) Indirect Z-scheme BiOl/g-C3N4 photocatalysts with enhanced photoreduction CO2 activity under visible light irradiation. ACS Appl Mater Interfaces 8(6):3765–3775

    Article  CAS  Google Scholar 

  25. Hu LL, He H, Xia DH, Huang YJ, Xu JR, Li HY, He C, Yang WJ, Shu D, Wong PK (2018) Highly Efficient performance and conversion pathway of photocatalytic CH3SH oxidation on self-stabilized indirect Z-scheme g-C3N4/I3–BiOI. ACS Appl Mater Interfaces 10(22):18693–18708

    Article  CAS  Google Scholar 

  26. Zhang JX, Zhang WR, Wei LP, Pu LY, Liu JP, Liu H, Li YC, Fan JC, Ding T, Guo ZH (2019) Alternating multilayer structural epoxy composite coating for corrosion protection of steel. Macromol Mater Eng 304(12):1–10

    Article  Google Scholar 

  27. Wang SR, Tu WW, Dai ZH (2018) An ultrasensitive photoelectrochemical bioanalysis strategy for tumor markers based on the significantly enhanced signal of a bismuth oxyiodine microsphere/graphitic carbon nitride composite. Analyst 143(8):1775–1779

    Article  CAS  Google Scholar 

  28. Gao YF, Zhang JX, Zhang ZH, Li ZC, Xiong Q, Deng LH, Zhou Q, Meng LY, Du YT, Zuo T, Yu YM, Lan Z, Gao P (2021) Plasmon-enhanced perovskite solar cells with efficiency beyond 21%: the asynchronous synergistic effect of water and gold nanorods. ChemPlusChem 86(2):291–297

    Article  CAS  Google Scholar 

  29. Jun YS, Lee EZ, Wang XC, Hong WH, Stucky GD, Thomas A (2013) From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres. Adv Func Mater 23(29):3661–3667

    Article  CAS  Google Scholar 

  30. Gupta NM (2017) Factors affecting the efficiency of a water splitting photocatalyst: a perspective. Renew Sustain Energy Rev 71:585–601

    Article  CAS  Google Scholar 

  31. Hu C, Chen R, Zheng N (2021) Chemical insights into interfacial effects in inorganic nanomaterials. Adv Mater 2006159:1–10

    Google Scholar 

  32. Jariwala D, Marks TJ, Hersam MC (2017) Mixed-dimensional van der Waals heterostructures. Nat Mater 16(2):170–181

    Article  CAS  Google Scholar 

  33. Hou J, Jiang T, Wang X, Zhang G, Zou J-J, Cao C (2021) Variable dimensional structure and interface design of g-C3N4/BiOI composites with oxygen vacancy for improving visible-light photocatalytic properties. J Clean Prod 287:1–9

    Article  Google Scholar 

  34. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401

    Article  CAS  Google Scholar 

  35. Liu Y, Guo X, Chen Z, Zhang W, Wang Y, Zheng Y, Tang X, Zhang M, Peng Z, Li R, Huang Y (2020) Microwave-synthesis of g-C3N4 nanoribbons assembled seaweed-like architecture with enhanced photocatalytic property. Applied Catalysis B-Environmental 266:1–11

    Article  Google Scholar 

  36. Zhang X, Ai ZH, Jia FL, Zhang LZ (2008) Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J Phys Chem C 112(3):747–753

    Article  CAS  Google Scholar 

  37. An H, Lin B, Xue C, Yan XQ, Dai YZ, Wei JJ, Yang GD (2018) Formation of BiOI/g-C3N4 nanosheet composites with high visible-light-driven photocatalytic activity. Chin J Catal 39(4):654–663

    Article  CAS  Google Scholar 

  38. Tiwari JN, Tiwari RN, Kim KS (2012) Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci 57(4):724–803

    Article  CAS  Google Scholar 

  39. Jing RS, Yang JS, Li ST, Zhao SF, Wang PF, Liu YY, Liu AJ, Meng ZL, Huang HW, Zhang ZL, Zhang Q (2020) Construction of PDDA functionalized black phosphorus nanosheets/BiOI Z-scheme photocatalyst with enhanced visible light photocatalytic activity. J Colloid Interface Sci 576:34–46

    Article  CAS  Google Scholar 

  40. Feng Z, Zeng L, Zhang QL, Ge SF, Zhao XY, Lin HJ, He YM (2020) In situ preparation of g-C3N4/Bi4O5I2 complex and its elevated photoactivity in Methyl Orange degradation under visible light. J Environ Sci 87:149–162

    Article  Google Scholar 

  41. Huang H, Liu C, Ou H, Ma T, Zhang Y (2019) Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis. Appl Surf Sci 470:1101–1110

    Article  CAS  Google Scholar 

  42. Dong GH, Zhao K, Zhang LZ (2012) Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4. Chem Commun 48(49):6178–6180

    Article  CAS  Google Scholar 

  43. Cheng FX, Yan J, Zhou CJ, Chen BH, Li PR, Chen Z, Dong XP (2016) An alkali treating strategy for the colloidization of graphitic carbon nitride and its excellent photocatalytic performance. J Colloid Interface Sci 468:103–109

    Article  CAS  Google Scholar 

  44. You ZY, Wu CY, Shen QH, Yu Y, Chen H, Su YX, Wang H, Wu CC, Zhang F, Yang H (2018) A novel efficient g-C3N4@BiOI p-n heterojunction photocatalyst constructed through the assembly of g-C3N4 nanoparticles. Dalton Trans 47(21):7353–7361

    Article  CAS  Google Scholar 

  45. Zhu Z, Lu Z, Wang D, Tang X, Yan Y, Shi W, Wang Y, Gao N, Yao X, Dong H (2016) Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Applied Catalysis B-Environmental 182:115–122

    Article  CAS  Google Scholar 

  46. Hong Y, Li C, Zhang G, Meng Y, Yin B, Zhao Y, Shi W (2016) Efficient and stable Nb2O5 modified g-C3N4 photocatalyst for removal of antibiotic pollutant. Chem Eng J 299:74–84

    Article  CAS  Google Scholar 

  47. Jiang L, Yuan X, Zeng G, Wu Z, Liang J, Chen X, Leng L, Wang H, Wang H (2018) Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Applied Catalysis B-Environmental 221:715–725

    Article  CAS  Google Scholar 

  48. Xue J, Ma S, Zhou Y, Zhang Z, He M (2015) Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation. ACS Appl Mater Interfaces 7(18):9630–9637

    Article  CAS  Google Scholar 

  49. Xiong J, Li XB, Huang JT, Gao XM, Chen Z, Liu JY, Li H, Kang BB, Yao WQ, Zhu YF (2020) CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Applied Catalysis B-Environmental 266:1–13

    Article  Google Scholar 

  50. Dong HJ, Zhang XX, Li JM, Zhou PJ, Yu SY, Song N, Liu CB, Che GB, Li CM (2020) Construction of morphology-controlled nonmetal 2D/3D homojunction towards enhancing photocatalytic activity and mechanism insight. Applied Catalysis B-Environmental 263:1–10

    Article  Google Scholar 

  51. Yuan X, Jiang L, Liang J, Pan Y, Zhang J, Wang H, Leng L, Wu Z, Guan R, Zeng G (2019) In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation. Chem Eng J 356:371–381

    Article  CAS  Google Scholar 

  52. Jiang L, Yuan X, Zeng G, Liang J, Chen X, Yu H, Wang H, Wu Z, Zhang J, Xiong T (2018) In-situ synthesis of direct solid-state dual Z-scheme WO3/g-C3N4/Bi2O3 photocatalyst for the degradation of refractory pollutant. Applied Catalysis B-Environmental 227:376–385

    Article  CAS  Google Scholar 

  53. Xu Y, You Y, Huang HW, Guo YX, Zhang YH (2020) Bi4NbO8Cl 001 nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction. J Hazard Mater 381:1–14

    Article  Google Scholar 

  54. Jiang D, Wang T, Xu Q, Li D, Meng S, Chen M (2017) Perovskite oxide ultrathin nanosheets/g-C3N4 2D–2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Applied Catalysis B-Environmental 201:617–628

    Article  CAS  Google Scholar 

  55. Chen P, Xing P, Chen Z, Hu X, Lin H, Zhao L, He Y (2019) In-situ synthesis of AgNbO3/g-C3N4 photocatalyst via microwave heating method for efficiently photocatalytic H-2 generation. J Colloid Interface Sci 534:163–171

    Article  CAS  Google Scholar 

  56. Ge L, Han CC, Liu J, Li YF (2011) Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Applied Catalysis a-General 409:215–222

    Article  Google Scholar 

  57. Wang K, Li Q, Liu BS, Cheng B, Ho WK, Yu JG (2015) Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Applied Catalysis B-Environmental 176:44–52

    Article  Google Scholar 

  58. Yan SC, Li ZS, Zou ZG (2010) Photodegradation of Rhodamine B and Methyl Orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26(6):3894–3901

    Article  CAS  Google Scholar 

  59. Lin J, Hu JT, Wang W, Liu KL, Zhou CL, Liu ZL, Kong SF, Lin SD, Deng YC, Guo ZH (2021) Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chem Eng J 407:1–18

    Article  Google Scholar 

  60. Wang YF, Liu ZL, Wei XC, Liu KL, Wang JH, Hu JT, Lin J (2021) An integrated strategy for achieving oil-in-water separation, removal, and anti-oil/dye/bacteria-fouling. Chem Eng J 413:1–16

    Article  Google Scholar 

Download references

Funding

The authors received financial support from the National Science Foundation of China (21676060 and 22078077), the Youth Foundation of the National Natural Science Foundation of China (22005070), the National Science Foundation of Guangdong Province (2021A1515010078), and the Scientific and Technological Plan of Guangdong Province, China (2019B090905007); the work is also supported by Qing Yuan HuaYan Institute of Science and Technology Collaborative Innovation Co., Ltd

Author information

Authors and Affiliations

Authors

Contributions

Liang Jiachi: Investigation, Material synthesis, Characterizations, Formal Analysis, Methodology. Li Xinqi: Conceptualization, Visualization, Writing, Data curation, Methodology. Zuo Jianliang: Supervision, Revision. Lin Jing: Supervision, Revision, Writing. Liu Zili: Supervision, Resources, Project administration.

Corresponding authors

Correspondence to Jing Lin or Zili Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5871 KB)

Supplementary file2 (DOCX 6120 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Li, X., Zuo, J. et al. Hybrid 0D/2D heterostructures: in-situ growth of 0D g-C3N4 on 2D BiOI for efficient photocatalyst. Adv Compos Hybrid Mater 4, 1122–1136 (2021). https://doi.org/10.1007/s42114-021-00341-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00341-x

Keywords

Navigation