Skip to main content

Advertisement

Log in

Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Granule-containing vacuoles in the cytoplasm of hippocampal neurons are a neuropathological feature of Alzheimer’s disease. Granulovacuolar degeneration (GVD) is not disease-specific and can be observed in other neurodegenerative disorders and even in the brains of non-demented elderly people. However, several studies have reported much higher numbers of neurons undergoing GVD in the hippocampus of Alzheimer’s disease cases. Recently, a neuropathological staging system for GVD has facilitated neuropathological assessment. Data obtained by electron microscopy and immunolabeling suggest that GVD inclusions are a special form of autophagic vacuole. GVD frequently occurs together with pathological changes of the microtubule-associated protein tau, but to date, the relationship between the two lesions remains elusive. Originally identified in hematoxylin- and silver-stained sections, immunolabeling has shown that the granules are composed of a variety of proteins, including those related to tau pathology, autophagy, diverse signal transduction pathways, cell stress and apoptosis. Several of these proteins serve as markers of GVD. Most researchers and authors have interpreted the sequestration of proteins into GVD inclusions as either a cellular defense mechanism or one that leads to the impairment of important cellular functions. This review provides a detailed overview of the various aspects of GVD and focuses on the relationship between tau pathology and GVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R (1997) β-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16:3797–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agostini L (1958) La dégénérescence d’Alzheimer dans les cellules nerveuses de l’allocortex; topographie, cytologie, histochimie. Psychiatr Neurol (Basel) 136:1–17

    Article  CAS  Google Scholar 

  3. Amador-Ortiz C, Lin WL, Ahmed Z, Personett D, Davies P, Duara R, Graff-Radford NR, Hutton ML, Dickson DW (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61(5):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anderson P, Kedersha N (2009) Stress granules. Curr Biol 19(10):R397–R398

    Article  CAS  PubMed  Google Scholar 

  5. Ando K, Brion JP, Stygelbout V, Suain V, Authelet M, Dedecker R, Chanut A, Lacor P, Lavaur J, Sazdovitch V, Rogaeva E, Potier MC, Duyckaerts C (2013) Clathrin adaptor CALM/PICALM is associated with neurofibrillary tangles and is cleaved in Alzheimer’s brains. Acta Neuropathol 125(6):861–878

    Article  CAS  PubMed  Google Scholar 

  6. Aplin A, Jasionowski T, Tuttle DL, Lenk SE, Dunn WA Jr (1992) Cytoskeletal elements are required for the formation and maturation of autophagic vacuoles. J Cell Physiol 152(3):458–466

    Article  CAS  PubMed  Google Scholar 

  7. Arai T, Mackenzie IR, Hasegawa M, Nonoka T, Niizato K, Tsuchiya K, Iritani S, Onaya M, Akiyama H (2009) Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 117(2):125–136

    Article  CAS  PubMed  Google Scholar 

  8. Aronica E, Dickson DW, Kress Y, Morrison JH, Zukin RS (1998) Non-plaque dystrophic dendrites in Alzheimer hippocampus: a new pathological structure revealed by glutamate receptor immunocytochemistry. Neuroscience 82(4):979–991

    Article  CAS  PubMed  Google Scholar 

  9. Bakhoum M, Ding Z, Carlton S, Jackson G (2012) Autophagic aggregates resembling granulovacuolar degeneration in a Drosophila model of tauopathy. Alzheimer’s Dement 8(4):294 (abstract)

    Article  Google Scholar 

  10. Bakhoum MF, Bakhoum CY, Ding Z, Carlton SM, Campbell GA, Jackson GR (2014) Evidence for autophagic gridlock in aging and neurodegeneration. Transl Res 164(1):1–12

    Article  PubMed  Google Scholar 

  11. Ball MJ, Lo P (1977) Granulovacuolar degeneration in the ageing brain and in dementia. J Neuropathol Exp Neurol 36:474–487

    Article  CAS  PubMed  Google Scholar 

  12. Ball MJ (1978) Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients. A quantitative study. Acta Neuropathol 42:73–80

    Article  CAS  PubMed  Google Scholar 

  13. Ball MJ, Vis CL (1978) Relationship of granulovacuolar degeneration in hippocampal neurones to aging and to dementia in normal-pressure hydrocephalics. J Gerontol 33:815–824

    Article  CAS  PubMed  Google Scholar 

  14. Ball MJ, Nuttall K (1980) Neurofibrillary tangles, granulovacuolar degeneration, and neuron loss in Down Syndrome: quantitative comparison with Alzheimer dementia. Ann Neurol 7(5):462–465

    Article  CAS  PubMed  Google Scholar 

  15. Barrachina M, Maes T, Buesa C, Ferrer I (2006) Lysosome-associated membrane protein 1 (LAMP-1) in Alzheimer’s disease. Neuropathol Appl Neurobiol 32:505–516

    Article  CAS  PubMed  Google Scholar 

  16. Bennett DA, Shannon KM, Beckett LA, Goetz CG, Wilson RS (1997) Metric properties of nurses’ ratings of parkinsonian signs with a modified unified Parkinson’s disease rating scale. Neurology 49(6):1580–1587

    Article  CAS  PubMed  Google Scholar 

  17. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28(27):6926–6937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bondareff W, Wischik CM, Novak M, Roth M (1991) Sequestration of tau by granulovacuolar degeneration in Alzheimer’s disease. Am J Pathol 139(3):641–647

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  20. Burger PC, Vogel FS (1973) The development of the pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome. Am J Pathol 73:457–476

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Cairns NJ, Bigio EH, Mackenzie IR, Neumann M, Lee VM, Hatanpaa KJ, White CL 3rd, Schneider JA, Grinberg LT, Halliday G, Duyckaerts C, Lowe JS, Holm IE, Tolnay M, Okamoto K, Yokoo H, Murayama S, Woulfe J, Munoz DG, Dickson DW, Ince PG, Trojanowski JQ, Mann DM, Consortium for Frontotemporal Lobar Degeneration (2007) Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the consortium for frontotemporal lobar degeneration. Acta Neuropathol 114(1):5–22

    Article  PubMed  PubMed Central  Google Scholar 

  22. Caltagarone J, Hamilton RL, Murdoch G, Jing Z, DeFranco DB, Bowser R (2010) Paxillin and hydrogen peroxide-inducible clone 5 expression and distribution in control and Alzheimer disease hippocampi. J Neuropathol Exp Neurol 69:356–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carmel G, Mager EM, Binder LI, Kuret J (1996) The structural basis of monoclonal antibody Alz50’s selectivity for Alzheimer’s disease pathology. J Biol Chem 271(51):32789–32795

    Article  CAS  PubMed  Google Scholar 

  24. Carretero MT, Harrington CR, Wischik CM (1995) Changes in a CSF antigen associated with dementia. Dementia 6(5):281–285

    CAS  PubMed  Google Scholar 

  25. Castellani RJ, Gupta Y, Sheng B, Siedlak SL, Harris PL, Coller JM, Perry G, Lee HG, Tabaton M, Smith MA, Wang X, Zhu X (2011) A novel origin for granulovacuolar degeneration in aging and Alzheimer’s disease: parallels to stress granules. Lab Invest 91(12):1777–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chalmers KA, Love S (2007) Neurofibrillary tangles may interfere with Smad 2/3 signaling in neurons. J Neuropathol Exp Neurol 66(2):158–167

    Article  CAS  PubMed  Google Scholar 

  27. Chalmers KA, Love S (2007) Phosphorylated Smad 2/3 colocalizes with phospho-tau inclusions in Pick disease, progressive supranuclear palsy, and corticobasal degeneration but not with alpha-synuclein inclusions in multiple system atrophy or dementia with Lewy bodies. J Neuropathol Exp Neurol 66(11):1019–1026

    Article  CAS  PubMed  Google Scholar 

  28. Cox LE, Ferraiuolo L, Goodall EF, Heath PR, Higginbottom A, Mortiboys H, Hollinger HC, Hartley JA, Brockington A, Burness CE, Morrison KE, Wharton SB, Grierson AJ, Ince PG, Kirby J, Shaw PJ (2010) Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One 5(3):e9872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Dakson A, Yokota O, Esiri M, Bigio EH, Horan M, Pendleton N, Richardson A, Neary D, Snowden JS, Robinson A, Davidson YS, Mann DM (2011) Granular expression of prolyl-peptidyl isomerase PIN1 is a constant and specific feature of Alzheimer’s disease pathology and is independent of tau, Aβ and TDP-43 pathology. Acta Neuropathol 121(5):635–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Derkinderen P, Scales TM, Hanger DP, Leung KY, Byers HL, Ward MA, Lenz C, Price C, Bird IN, Perera T, Kellie S, Williamson R, Noble W, Van Etten RA, Leroy K, Brion JP, Reynolds CH, Anderton BH (2005) Tyrosine 394 is phosphorylated in Alzheimer’s paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci 25(28):6584–6593

    Article  CAS  PubMed  Google Scholar 

  31. Dickson DW, Ksiezak-Reding H, Davies P, Yen SH (1987) A monoclonal antibody that recognizes a phosphorylated epitope in Alzheimer neurofibrillary tangles, neurofilaments and tau proteins immunostains granulovacuolar degeneration. Acta Neuropathol 73:254–258

    Article  CAS  PubMed  Google Scholar 

  32. Dickson DW, Liu WK, Kress Y, Ku J, DeJesus O, Yen SH (1993) Phosphorylated tau immunoreactivity of granulovacuolar bodies (GVB) of Alzheimer’s disease: localization of two amino terminal tau epitopes in GVB. Acta Neuropathol 85:463–470

    Article  CAS  PubMed  Google Scholar 

  33. Dong C, Li Z, Alvarez R Jr, Feng XH, Goldschmidt-Clermont PJ (2000) Microtubule binding to Smads may regulate TGF beta activity. Mol Cell 5(1):27–34

    Article  CAS  PubMed  Google Scholar 

  34. Esiri MM, Hyman BT, Beyreuther K, Masters C (1997) Aging and dementia. In: Graham DL, Lantos PI (eds) Greenfield’s neuropathology, 6th edn. Arnold, London, pp 153–234

    Google Scholar 

  35. Eskelinen EL (2005) Maturation of autophagic vacuoles in Mammalian cells. Autophagy 1(1):1–10

    Article  CAS  PubMed  Google Scholar 

  36. Ferrer I, Gomez-Isla T, Puig B, Freixes M, Ribé E, Dalfó E, Avila J (2005) Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies. Curr Alzheimer Res 2(1):3–18

    Article  CAS  PubMed  Google Scholar 

  37. Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerød L, Fisher EM, Isaacs A, Brech A, Stenmark H, Simonsen A (2007) Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol 179(3):485–500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Funk KE, Mrak RE, Kuret J (2011) Granulovacuolar degeneration (GVD) bodies of Alzheimer’s disease (AD) resemble late-stage autophagic organelles. Neuropathol Appl Neurobiol 37:295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Funk KE, Kuret J (2012) Lysosomal fusion dysfunction as a unifying hypothesis for Alzheimer’s disease pathology. Int J Alzheimers Dis 2012:752894

    PubMed  PubMed Central  Google Scholar 

  40. Gellerstedt N (1933) Zur Kenntnis der Hirnveränderungen bei der normalen Altersinvolution. Inauguraldissertation. Upsala Läkareförenings Förhandlingar, N. F. Bd. 38, häft. 5–6

  41. Ghanevati M, Miller CA (2005) Phospho-beta-catenin accumulation in Alzheimer’s disease and in aggresomes attributable to proteasome dysfunction. J Mol Neurosci 25:79–94

    Article  CAS  PubMed  Google Scholar 

  42. Gheuens J, Cras P, Perry G, Boons J, Ceuterick-de Groote C, Lübke U, Mercken M, Tabaton M, Gambetti PL, Vandermeeren M et al (1991) Demonstration of a novel neurofilament associated antigen with the neurofibrillary pathology of Alzheimer and related diseases. Brain Res 558(1):43–52

    Article  CAS  PubMed  Google Scholar 

  43. Ghoshal N, Smiley JF, DeMaggio AJ, Hoekstra MF, Cochran EJ, Binder LI, Kuret J (1999) A new molecular link between the fibrillar and granulovacuolar lesions of Alzheimer’s disease. Am J Pathol 155:1163–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghoshal N, García-Sierra F, Wuu J, Leurgans S, Bennett DA, Berry RW, Binder LI (2002) Tau conformational changes correspond to impairments of episodic memory in mild cognitive impairment and Alzheimer’s disease. Exp Neurol 177:475–493

    Article  CAS  PubMed  Google Scholar 

  45. Gibb WR, Luthert PJ, Marsden CD (1989) Corticobasal degeneration. Brain 112(Pt 5):1171–1192

    Article  PubMed  Google Scholar 

  46. Gibson PH, Stones M, Tomlinson BE (1976) Senile changes in the human neocortex and hippocampus compared by the use of the electron and light microscopes. J Neurol Sci 27:389–405

    Article  CAS  PubMed  Google Scholar 

  47. Goedert M, Spillantini MG, Jakes R (1991) Localization of the Alz-50 epitope in recombinant human microtubule-associated protein tau. Neurosci Lett 126(2):149–154

    Article  CAS  PubMed  Google Scholar 

  48. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hanger DP, Byers HL, Wray S, Leung KY, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH (2007) Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem 282(32):23645–23654

    Article  CAS  PubMed  Google Scholar 

  50. Harding HP, Calfon M, Urano F, Novoa I, Ron D (2002) Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18:575–599

    Article  CAS  PubMed  Google Scholar 

  51. Hirano A, Malamud N, Kurland LT (1961) Parkinsonism-dementia complex, an endemic disease on the island of Guam. II. Pathological features. Brain 84:662–679

    Article  CAS  PubMed  Google Scholar 

  52. Hirano A, Dembitzer HM, Kurland LT, Zimmerman HM (1968) The fine structure of some intraganglionic alterations. Neurofibrillary tangles, granulovacuolar bodies and “rod-like” structures as seen in Guam amyotrophic lateral sclerosis and parkinsonism-dementia complex. J Neuropathol Exp Neurol 27:167–182

    Article  CAS  PubMed  Google Scholar 

  53. Holzer M, Gärtner U, Stöbe A, Härtig W, Gruschka H, Brückner MK, Arendt T (2002) Inverse association of Pin1 and tau accumulation in Alzheimer’s disease hippocampus. Acta Neuropathol 104(5):471–481

    CAS  PubMed  Google Scholar 

  54. Hooper WM, Vogel FS (1976) The limbic system in Alzheimer’s disease. Am J Pathol 85:1–19

    Google Scholar 

  55. Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, Scheper W (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110:165–172

    Article  CAS  PubMed  Google Scholar 

  56. Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354(3):707–711

    Article  CAS  PubMed  Google Scholar 

  57. Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174:1241–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hunter S, Minett T, Polvikoski T, Mukaetova-Ladinska E, Brayne C, Cambridge City over-75s Cohort Collaboration (2015) Re-examining tau-immunoreactive pathology in the population: granulovacuolar degeneration and neurofibrillary tangles. Alzheimers Res Ther 7(1):57

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ikegami K, Kimura T, Katsuragi S, Ono T, Yamamoto H, Miyamoto E, Miyakawa T (1996) Immunohistochemical examination of phosphorylated tau in granulovacuolar degeneration granules. Psychiatry Clin Neurosci 50:137–140

    Article  CAS  PubMed  Google Scholar 

  60. Ince P, Irving D, MacArthur F, Perry RH (1991) Quantitative neuropathological study of Alzheimer-type pathology in the hippocampus: comparison of senile dementia of Alzheimer type, senile dementia of Lewy body type, Parkinson’s disease and non-demented elderly control patients. J Neurol Sci 106(2):142–152

    Article  CAS  PubMed  Google Scholar 

  61. Isaacs AM, Johannsen P, Holm I, Nielsen JE, FReJA consortium (2011) Frontotemporal dementia caused by CHMP2B mutations. Curr Alzheimer Res 8(3):246–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ishizawa T, Sahara N, Ishiguro K, Kersh J, McGowan E, Lewis J, Hutton M, Dickson DW, Yen SH (2003) Co-localization of glycogen synthase kinase-3 with neurofibrillary tangles and granulovacuolar degeneration in transgenic mice. Am J Pathol 163:1057–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Iyer AM, van Scheppingen J, Milenkovic I, Anink JJ, Adle-Biassette H, Kovacs GG, Aronica E (2014) mTOR Hyperactivation in down syndrome hippocampus appears early during development. J Neuropathol Exp Neurol 73(7):671–683

    Article  CAS  PubMed  Google Scholar 

  64. Jakes R, Spillantini MG, Goedert M (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345(1):27–32

    Article  CAS  PubMed  Google Scholar 

  65. Jellinger KA, Stadelmann C (2001) Problems of cell death in neurodegeneration and Alzheimer’s Disease. J Alzheimers Dis 3:31–40

    CAS  PubMed  Google Scholar 

  66. Jing Z, Caltagarone J, Bowser R (2009) Altered subcellular distribution of c-Abl in Alzheimer’s disease. J Alzheimers Dis 17(2):409–422

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Joachim CL, Morris JH, Selkoe DJ, Kosik KS (1987) Tau epitopes are incorporated into a range of lesions in Alzheimer’s disease. J Neuropathol Exp Neurol 46:611–622

    Article  CAS  PubMed  Google Scholar 

  68. Kadokura A, Yamazaki T, Kakuda S, Makioka K, Lemere CA, Fujita Y, Takatama M, Okamoto K (2009) Phosphorylation-dependent TDP-43 antibody detects intraneuronal dot-like structures showing morphological characters of granulovacuolar degeneration. Neurosci Lett 463(1):87–92

    Article  CAS  PubMed  Google Scholar 

  69. Kahn J, Anderton BH, Probst A, Ulrich J, Esiri MM (1985) Immunohistological study of granulovacuolar degeneration using monoclonal antibodies to neurofilaments. J Neurol Neurosurg Psychiatry 48:924–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kannanayakal TJ, Tao H, Vandre DD, Kuret J (2006) Casein kinase-1 isoforms differentially associate with neurofibrillary and granulovacuolar degeneration lesions. Acta Neuropathol 111:413–421

    Article  CAS  PubMed  Google Scholar 

  71. Kayali F, Montie HL, Rafols JA (2005) DeGracia DJ (2005) Prolonged translation arrest in reperfused hippocampal cornu Ammonis 1 is mediated by stress granules. Neuroscience 134(4):1223–1245

    Article  CAS  PubMed  Google Scholar 

  72. Keage HA, Ince PG, Matthews FE, Wharton SB, McKeith IG, Brayne C, MRC CFAS and CC75C (2012) Impact of less common and “disregarded” neurodegenerative pathologies on dementia burden in a population-based cohort. J Alzheimers Dis 28(2):485–493

    CAS  PubMed  Google Scholar 

  73. Knippschild U, Gocht A, Wolff S, Huber N, Löhler J, Stöter M (2005) The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal 17(6):675–689

    Article  CAS  PubMed  Google Scholar 

  74. Köchl R, Hu XW, Chan EY, Tooze SA (2006) Microtubules facilitate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7(2):129–145

    Article  PubMed  CAS  Google Scholar 

  75. Köhler C, Dinekov M, Götz J (2013) Active glycogen synthase kinase-3 and tau pathology-related tyrosine phosphorylation in pR5 human tau transgenic mice. Neurobiol Aging 34:1369–1379

    Article  PubMed  CAS  Google Scholar 

  76. Köhler C, Dinekov M, Götz J (2014) Granulovacuolar degeneration and unfolded protein response in mouse models of tauopathy and Aβ amyloidosis. Neurobiol Dis 71:169–179

    Article  PubMed  CAS  Google Scholar 

  77. Kumar S, Wirths O, Stüber K, Wunderlich P, Koch P, Theil S, Rezaei-Ghaleh N, Zweckstetter M, Bayer TA, Brüstle O, Thal DR, Walter J (2016) Phosphorylation of the amyloid β-peptide at Ser26 stabilizes oligomeric assembly and increases neurotoxicity. Acta Neuropathol. doi:10.1007/s00401-016-1546-0

    PubMed  PubMed Central  Google Scholar 

  78. Kuranaga E (2012) Beyond apoptosis: caspase regulatory mechanisms and functions in vivo. Genes Cells 17(2):83–97

    Article  CAS  PubMed  Google Scholar 

  79. Kurashige T, Takahashi T, Yamazaki Y, Hiji M, Izumi Y, Yamawaki T, Matsumoto M (2013) Localization of CHMP2B-immunoreactivity in the brainstem of Lewy body disease. Neuropathology 33(3):237–245

    Article  CAS  PubMed  Google Scholar 

  80. Krigman MR, Feldman RG, Bensch K (1965) Alzheimer’s presenile dementia. A histochemical and electron microscopic study. Lab Invest 14:381–389

    CAS  PubMed  Google Scholar 

  81. Lagalwar S, Guillozet-Bongaarts AL, Berry RW, Binder LI (2006) Formation of phospho-SAPK/JNK granules in the hippocampus is an early event in Alzheimer disease. J Neuropathol Exp Neurol 65:455–464

    Article  PubMed  Google Scholar 

  82. Lagalwar S, Berry RW, Binder LI (2007) Relation of hippocampal phospho-SAPK/JNK granules in Alzheimer’s disease and tauopathies to granulovacuolar degeneration bodies. Acta Neuropathol 113:63–73

    Article  CAS  PubMed  Google Scholar 

  83. Lang E, Otvos L Jr (1992) A serine– > proline change in the Alzheimer’s disease-associated epitope Tau 2 results in altered secondary structure, but phosphorylation overcomes the conformational gap. Biochem Biophys Res Commun 188:162–169

    Article  CAS  PubMed  Google Scholar 

  84. Lebouvier T, Scales TM, Hanger DP, Geahlen RL, Lardeux B, Reynolds CH, Anderton BH, Derkinderen P (2008) The microtubule-associated protein tau is phosphorylated by Syk. Biochim Biophys Acta 1783(2):188–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee HG, Ueda M, Zhu X, Perry G, Smith MA (2006) Ectopic expression of phospho-Smad2 in Alzheimer’s disease: uncoupling of the transforming growth factor-beta pathway? J Neurosci Res 84(8):1856–1861

    Article  CAS  PubMed  Google Scholar 

  87. Leigh PN, Probst A, Dale GE, Power DP, Brion JP, Dodson A, Anderton BH (1989) New aspects of the pathology of neurodegenerative disorders as revealed by ubiquitin antibodies. Acta Neuropathol 79(1):61–72

    Article  CAS  PubMed  Google Scholar 

  88. Leroy K, Boutajangout A, Authelet M, Woodgett JR, Anderton BH, Brion JP (2002) The active form of glycogen synthase kinase-3beta is associated with granulovacuolar degeneration in neurons in Alzheimer’s disease. Acta Neuropathol 103(2):91–99

    Article  CAS  PubMed  Google Scholar 

  89. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 24:1487–1491

    Article  Google Scholar 

  90. Liou YC, Sun A, Ryo A, Zhou XZ, Yu ZX, Huang HK, Uchida T, Bronson R, Bing G, Li X, Hunter T, Lu KP (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424(6948):556–561

    Article  CAS  PubMed  Google Scholar 

  91. Lippa CF, Rosso AL, Stutzbach LD, Neumann M, Lee VM, Trojanowski JQ (2009) Transactive response DNA-binding protein 43 burden in familial Alzheimer disease and Down syndrome. Arch Neurol 66(12):1483–1488

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lipton JO, Sahin M (2014) The neurology of mTOR. Neuron 84(2):275–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lorente de No R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Psychol Neurol 46:113–177

    Google Scholar 

  94. Love S, Saitoh T, Quijada S, Cole GM, Terry RD (1988) Alz-50, ubiquitin and tau immunoreactivity of neurofibrillary tangles, Pick bodies and Lewy bodies. J Neuropathol Exp Neurol 47:393–405

    Article  CAS  PubMed  Google Scholar 

  95. Lowe J, McDermott H, Kenward N, Landon M, Mayer RJ, Bruce M, McBride P, Somerville RA, Hope J (1990) Ubiquitin conjugate immunoreactivity in the brains of scrapie infected mice. J Pathol 162:61–66

    Article  CAS  PubMed  Google Scholar 

  96. Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380(6574):544–547

    Article  CAS  PubMed  Google Scholar 

  97. Lu PJ, Wulf G, Zhou XZ, Davies P, Lu KP (1999) The prolyl isomerase Pin1 restores the function of Alzheimer-associated phosphorylated tau protein. Nature 399(6738):784–788

    Article  CAS  PubMed  Google Scholar 

  98. Lund H, Gustafsson E, Svensson A, Nilsson M, Berg M, Sunnemark D, von Euler G (2014) MARK4 and MARK3 associate with early tau phosphorylation in Alzheimer’s disease granulovacuolar degeneration bodies. Acta Neuropathol Commun 17(2):22

    Article  Google Scholar 

  99. Makioka K, Yamazaki T, Fujita Y, Takatama M, Nakazato Y, Okamoto K (2010) Involvement of endoplasmic reticulum stress defined by activated unfolded protein response in multiple system atrophy. J Neurol Sci 297(1–2):60–65

    Article  CAS  PubMed  Google Scholar 

  100. Malamud N, Hirano A, Kurland LT (1961) Pathoanatomic changes in amyotrophic lateral sclerosis on Guam. Special reference to the occurrence of neurofibrillary changes. Arch Neurol 5:401–415

    Article  CAS  PubMed  Google Scholar 

  101. Manetto V, Perry G, Tabaton M, Mulvihill P, Fried VA, Smith HT, Gambetti P, Autilio-Gambetti L (1988) Ubiquitin is associated with abnormal cytoplasmic filaments characteristic of neurodegenerative diseases. Proc Natl Acad Sci USA 85:4501–4505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mann DM (1978) Granulovacuolar degeneration in pyramidal cells of the hippocampus. Acta Neuropathol 42:149–151

    Article  CAS  PubMed  Google Scholar 

  103. Mattson MP, Engle MG, Rychlik B (1991) Effects of elevated intracellular calcium levels on the cytoskeleton and tau in cultured human cortical neurons. Mol Chem Neuropathol 15(2):117–142

    Article  CAS  PubMed  Google Scholar 

  104. McShea A, Harris PL, Webster KR, Wahl AF, Smith MA (1997) Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease. Am J Pathol 150(6):1933–1939

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Mena R, Robitaille Y, Cuello AC (1992) New patterns of intraneuronal accumulation of the microtubular binding domain of tau in granulovacuolar degeneration. J Geriatr Psychiatry Neurol 5:132–141

    Article  CAS  PubMed  Google Scholar 

  106. Mielke K, Herdegen T (2000) JNK and p38 stresskinases–degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol 61(1):45–60

    Article  CAS  PubMed  Google Scholar 

  107. Morel F, Wildi E (1952) General and cellular pathochemistry of senile and presenile alterations of the brain. Proceedings of the first international congress of neuropathology (Rome), 2. Rosenberg and Sellier, Turin, pp 347–374

    Google Scholar 

  108. Nakamori M, Takahashi T, Yamazaki Y, Kurashige T, Yamawaki T, Matsumoto M (2012) Cyclin-dependent kinase 5 immunoreactivity for granulovacuolar degeneration. NeuroReport 23(15):867–872

    Article  CAS  PubMed  Google Scholar 

  109. Nasreddine ZS, Loginov M, Clark LN, Lamarche J, Miller BL, Lamontagne A, Zhukareva V, Lee VM, Wilhelmsen KC, Geschwind DH (1999) From genotype to phenotype: a clinical pathological, and biochemical investigation of frontotemporal dementia and parkinsonism (FTDP-17) caused by the P301L tau mutation. Ann Neurol 45(6):704–715

    Article  CAS  PubMed  Google Scholar 

  110. Nijholt DA, van Haastert ES, Rozemuller AJ, Scheper W, Hoozemans JJ (2012) The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J Pathol 226:693–702

    Article  CAS  PubMed  Google Scholar 

  111. Nilsson P, Loganathan K, Sekiguchi M, Matsuba Y, Hui K, Tsubuki S, Tanaka M, Iwata N, Saito T, Saido TC (2013) Aβ secretion and plaque formation depend on autophagy. Cell Rep 5(1):61–69

    Article  CAS  PubMed  Google Scholar 

  112. Nishikawa T, Takahashi T, Nakamori M, Yamazaki Y, Kurashige T, Nagano Y, Nishida Y, Izumi Y, Matsumoto M (2014) Phosphatidylinositol-4,5-bisphosphate is enriched in granulovacuolar degeneration bodies and neurofibrillary tangles. Neuropathol Appl Neurobiol 40(4):489–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Nishikawa T, Takahashi T, Nakamori M, Hosomi N, Maruyama H, Miyazaki Y, Izumi Y, Matsumoto M (2015) The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments. Neuropathol Appl Neurobiol. doi:10.1111/nan.12288 (Epub ahead of print)

    PubMed  Google Scholar 

  114. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64(2):113–122

    Article  PubMed  Google Scholar 

  115. Novak M, Jakes R, Edwards PC, Milstein C, Wischik CM (1991) Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci USA 88:5837–5841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Okamoto K, Hirai S, Iizuka T, Yanagisawa T, Watanabe M (1991) Reexamination of granulovacuolar degeneration. Acta Neuropathol 82:340–345

    Article  CAS  PubMed  Google Scholar 

  117. Oyanagi S, Ikuta F (1974) An ultrastructural observation on granulovacuolar degenerations in reference to the process of their formation. Brain Nerve (Tokyo) 26:783–788

    Google Scholar 

  118. Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF (1999) Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58(9):1010–1019

    Article  CAS  PubMed  Google Scholar 

  119. Perl DP (2010) Neuropathology of Alzheimer’s disease. Mt Sinai J Med 77(1):32–42

    Article  PubMed  PubMed Central  Google Scholar 

  120. Prayson RA, Estes ML (1994) The search for diagnostic criteria in Alzheimer’s disease: an update. Cleve Clin J Med 61(2):115–122

    Article  CAS  PubMed  Google Scholar 

  121. Price DL, Altschuler RJ, Struble RG, Casanova MF, Cork LC, Murphy DB (1986) Sequestration of tubulin in neurons in Alzheimer’s disease. Brain Res 385(2):305–310

    Article  CAS  PubMed  Google Scholar 

  122. Probst A, Herzig MC, Mistl C, Ipsen S, Tolnay M (2001) Perisomatic granules (non-plaque dystrophic dendrites) of hippocampal CA1 neurons in Alzheimer’s disease and Pick’s disease: a lesion distinct from granulovacuolar degeneration. Acta Neuropathol 102(6):636–644

    Article  CAS  PubMed  Google Scholar 

  123. Ramakrishnan P, Dickson DW, Davies P (2003) Pin1 colocalization with phosphorylated tau in Alzheimer’s disease and other tauopathies. Neurobiol Dis 14(2):251–264

    Article  CAS  PubMed  Google Scholar 

  124. Rose M (1927) Der Allocortex bei Tier und Mensch. J Psychol Neurol Lpz 34:261–404

    Google Scholar 

  125. Satoh J, Tabunoki H, Arima K (2009) Molecular network analysis suggests aberrant CREB-mediated gene regulation in the Alzheimer disease hippocampus. Dis Mark 27(5):239–252. doi:10.3233/DMA-2009-0670

    Article  CAS  Google Scholar 

  126. Satoh J, Tabunoki H, Ishida T, Yagishita S, Jinnai K, Futamura N, Kobayashi M, Toyoshima I, Yoshioka T, Enomoto K, Arai N, Saito Y, Arima K (2012) Phosphorylated Syk expression is enhanced in Nasu-Hakola disease brains. Neuropathology 32(2):149–157

    Article  PubMed  Google Scholar 

  127. Scheper W, Hoozemans JJ (2015) The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathol 130(3):315–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schwab C, DeMaggio AJ, Ghoshal N, Binder LI, Kuret J, McGeer PL (2000) Casein kinase 1 delta is associated with pathological accumulation of tau in several neurodegenerative diseases. Neurobiol Aging 21:503–510

    Article  CAS  PubMed  Google Scholar 

  129. Selznick LA, Holtzman DM, Han BH, Gökden M, Srinivasan AN, Johnson EM Jr, Roth KA (1999) In situ immunodetection of neuronal caspase-3 activation in Alzheimer disease. J Neuropathol Exp Neurol 58(9):1020–1026

    Article  CAS  PubMed  Google Scholar 

  130. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189. doi:10.1101/cshperspect.a006189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Simchowicz T (1911) Histologische Studien über die senile Demenz. In: Nissl F, Alzheimer A (eds) Histologie und histopathologische Arbeiten über die Großhirnrinde. Fischer, Jena, pp 267–444

    Google Scholar 

  132. Smith MA, Rudnicka-Nawrot M, Richey PL, Praprotnik D, Mulvihill P, Miller CA, Sayre LM, Perry G (1995) Carbonyl-related posttranslational modification of neurofilament protein in the neurofibrillary pathology of Alzheimer’s disease. J Neurochem 64(6):2660–2666

    Article  CAS  PubMed  Google Scholar 

  133. Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Brück W, Jellinger K, Lassmann H (1999) Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol 155:1459–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy. Arch Neurol 10:339–359

    Article  Google Scholar 

  135. Stutzbach LD, Xie SX, Naj AC, Albin R, Gilman S, PSP Genetics Study Group, Lee VM, Trojanowski JQ, Devlin B, Schellenberg GD (2013) The unfolded protein response is activated in disease-affected brain regions in progressive supranuclear palsy and Alzheimer’s disease. Acta Neuropathol Commun 1:31

    Article  PubMed  PubMed Central  Google Scholar 

  136. Su JH, Kesslak JP, Head E, Cotman CW (2002) Caspase-cleaved amyloid precursor protein and activated caspase-3 are co-localized in the granules of granulovacuolar degeneration in Alzheimer’s disease and Down’s syndrome brain. Acta Neuropathol 104:1–6

    Article  CAS  PubMed  Google Scholar 

  137. Szendrei GI, Lee VM, Otvos L Jr (1993) Recognition of the minimal epitope of monoclonal antibody Tau-1 depends upon the presence of a phosphate group but not its location. J Neurosci Res 34(2):243–249

    Article  CAS  PubMed  Google Scholar 

  138. Takei H, Kosarac O, Powell SZ (2009) Cytomorphologic manifestations of Alzheimer’s disease using brain squash smears: an autopsy study with histology-cytology correlation. Diagn Cytopathol 37(9):654–660

    Article  PubMed  Google Scholar 

  139. Tanikawa S, Mori F, Tanji K, Kakita A, Takahashi H, Wakabayashi K (2012) Endosomal sorting related protein CHMP2B is localized in Lewy bodies and glial cytoplasmic inclusions in α-synucleinopathy. Neurosci Lett 527(1):16–21

    Article  CAS  PubMed  Google Scholar 

  140. Tavares IA, Touma D, Lynham S, Troakes C, Schober M, Causevic M, Garg R, Noble W, Killick R, Bodi I, Hanger DP, Morris JD (2013) Prostate-derived sterile 20-like kinases (PSKs/TAOKs) phosphorylate tau protein and are activated in tangle-bearing neurons in Alzheimer disease. J Biol Chem 288(21):15418–15429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Terry RD, Wisniewski HM (1972) Ultrastructure of senile dementia and of experimental analogs. In: Gaitz CM (ed) Aging and the brain. Plenum Press, New York, pp 89–115

    Chapter  Google Scholar 

  142. Thakur A, Wang X, Siedlak SL, Perry G, Smith MA, Zhu X (2007) c-Jun phosphorylation in Alzheimer disease. J Neurosci Res 85(8):1668–1673

    Article  CAS  PubMed  Google Scholar 

  143. Thal DR, Del Tredici K, Ludolph AC, Hoozemans JJ, Rozemuller AJ, Braak H, Knippschild U (2011) Stages of granulovacuolar degeneration: their relation to Alzheimer’s disease and chronic stress response. Acta Neuropathol 122:577–589

    Article  CAS  PubMed  Google Scholar 

  144. Thal DR, von Arnim C, Griffin WS, Yamaguchi H, Mrak RE, Attems J, Upadhaya AR (2013) Pathology of clinical and preclinical Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 263(Suppl 2):S137–S145

    Article  PubMed  Google Scholar 

  145. Tomlinson BE, Blessed G, Roth M (1968) Observations on the brains of non-demented old people. J Neurol Sci 7:331–356

    Article  CAS  PubMed  Google Scholar 

  146. Tomlinson BE, Blessed G, Roth M (1970) Observations on the Brains of Demented Old People. J Neurol Sci 11:205–242

    Article  CAS  PubMed  Google Scholar 

  147. Tomlinson BE, Kitchener D (1972) Granulovacuolar degeneration of hippocampal pyramidal cells. J Pathol 106(3):165–185

    Article  CAS  PubMed  Google Scholar 

  148. Tomlinson BE (1992) Aging and dementias. In: Adams H, Duchen LW (eds) Greenfield’s neuropathology, 5th edn. Arnold, London, pp 1284–1410

    Google Scholar 

  149. Towfighi J (1972) Early Pick’s disease. A light and ultrastructural study. Acta Neuropathol 21(3):224–231

    Article  CAS  PubMed  Google Scholar 

  150. Ueberham U, Ueberham E, Gruschka H, Arendt T (2006) Altered subcellular location of phosphorylated Smads in Alzheimer’s disease. Eur J Neurosci 24(8):2327–2334

    Article  PubMed  Google Scholar 

  151. Ueberham U, Rohn S, Ueberham E, Wodischeck S, Hilbrich I, Holzer M, Brückner MK, Gruschka H, Arendt T (2014) Pin1 promotes degradation of Smad proteins and their interaction with phosphorylated tau in Alzheimer’s disease. Neuropathol Appl Neurobiol 40(7):815–832

    Article  CAS  PubMed  Google Scholar 

  152. Unterberger U, Höftberger R, Gelpi E, Flicker H, Budka H, Voigtländer T (2006) Endoplasmic reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. J Neuropathol Exp Neurol 65(4):348–357

    Article  CAS  PubMed  Google Scholar 

  153. Urwin H, Authier A, Nielsen JE, Metcalf D, Powell C, Froud K, Malcolm DS, Holm I, Johannsen P, Brown J, Fisher EM, van der Zee J, Bruyland M, FReJA Consortium, Van Broeckhoven C, Collinge J, Brandner S, Futter C, Isaacs AM (2010) Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum Mol Genet 19(11):2228–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Vincent I, Zheng JH, Dickson DW, Kress Y, Davies P (1998) Mitotic phosphoepitopes precede paired helical filaments in Alzheimer’s disease. Neurobiol Aging 19(4):287–296

    Article  CAS  PubMed  Google Scholar 

  155. Webb JL, Ravikumar B, Rubinsztein DC (2004) Microtubule disruption inhibits autophagosome-lysosome fusion: implications for studying the roles of aggresomes in polyglutamine diseases. Int J Biochem Cell Biol 36(12):2541–2550

    Article  CAS  PubMed  Google Scholar 

  156. Wegiel J, Dowjat K, Kaczmarski W, Kuchna I, Nowicki K, Frackowiak J, Mazur Kolecka B, Wegiel J, Silverman WP, Reisberg B, Deleon M, Wisniewski T, Gong CX, Liu F, Adayev T, Chen-Hwang MC, Hwang YW (2008) The role of overexpressed DYRK1A protein in the early onset of neurofibrillary degeneration in Down syndrome. Acta Neuropathol 116(4):391–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17(3):278–282

    Article  CAS  PubMed  Google Scholar 

  158. Wood JN, Lathangue NB, McLachlan DR, Smith BJ, Anderton BH, Dowding AJ (1985) Chromatin proteins share antigenic determinants with neurofilaments. J Neurochem 44(1):149–154

    Article  CAS  PubMed  Google Scholar 

  159. Woodard JS (1962) Clinicopathologic significance of granulovacuolar degeneration in Alzheimer’s disease. J Neuropathol Exp Neurol 21:85–91

    Article  CAS  PubMed  Google Scholar 

  160. Woodard JS (1966) Alzheimer’s disease in late adult life. Am J Pathol 49:1157–1169

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Xie R, Nguyen S, McKeehan WL, Liu L (2010) Acetylated microtubules are required for fusion of autophagosomes with lysosomes. BMC Cell Biol 11:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Xu M, Shibayama H, Kobayashi H, Yamada K, Ishihara R, Zhao P, Takeuchi T, Yoshida K, Inagaki T, Nokura K (1992) Granulovacuolar degeneration in the hippocampal cortex of aging and demented patients–a quantitative study. Acta Neuropathol 85:1–9

    Article  CAS  PubMed  Google Scholar 

  163. Yamazaki Y, Takahashi T, Hiji M, Kurashige T, Izumi Y, Yamawaki T, Matsumoto M (2010) Immunopositivity for ESCRT-III subunit CHMP2B in granulovacuolar degeneration of neurons in the Alzheimer’s disease hippocampus. Neurosci Lett 477:86–90

    Article  CAS  PubMed  Google Scholar 

  164. Yamazaki Y, Matsubara T, Takahashi T, Kurashige T, Dohi E, Hiji M, Nagano Y, Yamawaki T, Matsumoto M (2011) Granulovacuolar degenerations appear in relation to hippocampal phosphorylated tau accumulation in various neurodegenerative disorders. PLoS One 6:e26996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Yasojima K, Kuret J, DeMaggio AJ, McGeer E, McGeer PL (2000) Casein kinase 1 delta mRNA is upregulated in Alzheimer disease brain. Brain Res. 865:116–120

    Article  CAS  PubMed  Google Scholar 

  166. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Näslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy—a novel Beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171(1):87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G, Küllertz G, Stark M, Fischer G, Lu KP (2000) Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6(4):873–883

    Article  CAS  PubMed  Google Scholar 

  168. Zhu X, Rottkamp CA, Boux H, Takeda A, Perry G, Smith MA (2000) Activation of p38 kinase links tau phosphorylation, oxidative stress, and cell cycle-related events in Alzheimer disease. J Neuropathol Exp Neurol 59(10):880–888

    Article  CAS  PubMed  Google Scholar 

  169. Zhu X, McShea A, Harris PL, Raina AK, Castellani RJ, Funk JO, Shah S, Atwood C, Bowen R, Bowser R, Morelli L, Perry G, Smith MA (2004) Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer’s disease. J Neurosci Res 75(5):698–703

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Maja Dinekov and Kirsten Pilz (Institute II for Anatomy, University of Cologne, Cologne, Germany) for expert technical assistance. The author thanks Prof. Jürgen Götz (Clem Jones Centre for Ageing Dementia Research (CADR), The University of Queensland, Brisbane, Australia) and Prof. Hannsjörg Schröder (Institute II for Anatomy, University of Cologne, Cologne, Germany) for reading the manuscript. Brain tissue was obtained from the Neurobiobank Munich/Brain-Net Germany (http://www.brain-net.net).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Köhler.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köhler, C. Granulovacuolar degeneration: a neurodegenerative change that accompanies tau pathology. Acta Neuropathol 132, 339–359 (2016). https://doi.org/10.1007/s00401-016-1562-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-016-1562-0

Keywords

Navigation