Skip to main content
Log in

Effects of elevated intracellular calcium levels on the cytoskeleton and tau in cultured human cortical neurons

  • Original Articles
  • Published:
Molecular and Chemical Neuropathology

Abstract

Considerable evidence suggests that altered neuronal calcium homeostasis plays a role in the neuronal degeneration that occurs in an array of neurological disorders. A reduction in microtubules, the accumulation of 8–15 nm straight filaments, and altered antigenicity toward antibodies to the microtubule-associated protein tau and ubiquitin, as well as granulovacuolar degeneration, are observed in many human neurodegenerative disorders. Progress toward understanding how and why human neurons degenerate has been hindered by the inability to examine living human neurons under controlled conditions. We used cultured human fetal cerebral cortical neurons to examine ultrastructural and antigenic changes resulting from elevations in intracellular calcium levels. Elevation of intracellular calcium by exposure to a calcium ionophore or a reduced level of extracellular Na+ for periods of hours to days caused a loss of microtubules, an increase in 8–15 nm straight filaments, and increased immunostaining with Alz-50 and 5E2 (tau antibodies) and ubiquitin antibodies. Granulovacuolar degeneration was also observed. Antigenic changes in tau were sensitive to phosphatases, and the electrophoretic mobility of tau was altered in cells exposed to calcium ionophore, indicating that tau was excessively phosphorylated as the result of elevated intracellular calcium levels. Colchicine also caused an accumulation of straight filaments and altered tau immunoreactivity, suggesting that a disruption of microtubules secondary to altered calcium homeostasis may be a key event leading to altered tau disposition and neuronal degeneration. These data demonstrate that aberrant rises in intraneuronal calcium levels can result in changes in the neuronal cytoskeleton similar to those seen in neurodegenerative disorders, and suggest that this experimental system will be useful in furthering our understanding of the cellular and molecular mechanisms of human neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball M. J. (1978) Topographic distribution of neurofibrillary tangles and granulovacuolar degeneration in hippocampal cortex of aging and demented patients.Acta Neuropath. 42, 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Bancher C., Brunner C., Lassman H., Budka H., Jellinger K., Wiche G., Seitelberger F., Grundke-Iqbal I., Iqbal K., and Wisniewski H. M. (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease.Brain Res. 477, 90–99.

    Article  PubMed  CAS  Google Scholar 

  • Baudier J. and Cole R. D. (1987) Phosphorylation of tau proteins to a state like that in Alzheimer’s brain is catalyzed by a calcium/calmodulin-dependent kinase and modulated by phospholipids.J. Biol Chem. 36, 17577–17583.

    Google Scholar 

  • Blass J. P., Baker A. C., Ko L., and Black R. S. (1990) Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation.Arch. Neurol. 47, 864–869.

    PubMed  CAS  Google Scholar 

  • Browning M. D., Huganir R., and Greengard P. (1985) Protein phosphorylation and neuronal functionJ. Neurochem. 45, 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Carafoli E. (1987) Intracellular calcium homeostasis.Ann. Rev. Biochem. 56, 395–433.

    Article  PubMed  CAS  Google Scholar 

  • Choi D. W. (1988) Glutamate neurotoxicity and diseases of the nervous system.Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  • DeBoni U. and Crapper-McLachlan D. R. (1985) Controlled induction of paired helical filaments of the Alzheimer type in cultured human neurons, by glutamate and aspartate.J. Neurol. Sci. 68, 105–118.

    Article  CAS  Google Scholar 

  • Delacourte A., and Defossez A. (1986) Alzheimer’s disease tau proteins, the promoting factors of microtubule assembly, are major antigenic components of paired helical filaments.J. Neurol. Sci. 76, 173–186.

    Article  PubMed  CAS  Google Scholar 

  • del Cerro S., Larson J., Oliver M. W., and Lynch G. (1990) Development of hippocampal long-term potentiation is reduced by recently introduced calpain inhibitors.Brain Res,530, 91–95.

    Article  PubMed  Google Scholar 

  • Gibson G. E. and Peterson C. (1987) Calcium and the aging nervous sytem.Neurobiol. Aging 8, 329–343.

    Article  PubMed  CAS  Google Scholar 

  • Greenamyre J. T. and Young A. B. (1989) Excitatory amino acids and Alzheimer’s disease.Neurobiol. Aging 10, 593–602.

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I., Iqbal K., Tung Y.-C., Quinlan M., Wisniewski H. M., and Binder L. I. (1986) Abnormal phosphorylation of the microtubule-associated protein tau in Alzheimer cytoskeletal pathology.Proc. Natl. Acad. Sci. USA83, 4913–4917.

    Article  PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I., Vorbrodt A. W., Iqbal K., Tung Y.-C., Wang G. P., and Wisniewski H. M. (1988) Microtubule-associated polypeptides tau are altered in Alzheimer paired helical filaments.Mol. Brain Res. 4, 43–52.

    Article  CAS  Google Scholar 

  • Grynkiewicz G., Poenie M., and Tsien R. Y. (1985) A new generation of calcium indicators with greatly improved fluorescence properties.J. Biol. Chem. 260, 1440–1447.

    Google Scholar 

  • Hoshi M., Nishida E., Miyata Y., Sakai H., Miyoshi T., Ogawara H., and Akiyama T. (1987) Protein Kinase C phosphorylates tau and induces its functional alterations.FEBS Lett. 217, 237–241.

    Article  PubMed  CAS  Google Scholar 

  • Ihara Y., Nukina N., Miura R., and Ogawara M. (1986) Phosphorylated tau protein is integrated into paired helical filaments in Alzheimer’s disease.J. Biochem. 99, 1807–1810.

    PubMed  CAS  Google Scholar 

  • Iimoto D. S., Masliah E., De Teresa R., Terry R. D., and Saitoh T. (1989) Aberrant casein kinase II in Alzheimer’s disease.Brain Res. 507, 273–280.

    Article  Google Scholar 

  • Joachim C. L., Morris J. H., Selkoe D. J., and Kosik K. S. (1987) Tau epitopes are incorporated into a range of lesions in Alzheimer’s disease.J. Neuropath. Exp. Neurol. 46, 611–622.

    Article  PubMed  CAS  Google Scholar 

  • Kater S. B., Mattson M. P., Cohan C. S., and Connor J. A. (1988) Calcium regulation of the neuronal growth cone.Trends Neurosci. 11, 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Kato T., Hirano A., Katagiri T., Sasaki H., and Yamada S. (1988) Neurofibrillary tangle formation, in the nucleus basalis of Meynert ipsilateral to a massive cerebral infarct.Ann. Neurol. 23, 620–623.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy M. B. (1989) Do activity-dependent changes in expression of regulatory proteins play a role in the progression of central nervous system neural degeneration?.Ann. NY Acad. Sci. 568, 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Kim S. U. (1971) Demonstration of neurofibrillary degeneration induced by anoxia in spinal motor neurons in vitro.Experientia 27, 264, 265.

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto A., Kikkawa U., Ogita K., Shearman M. S., and Nishizuka Y. (1989) The protein kinase C family in the brain: Heterogeneity and its implications.Ann. NY Acad. Sci. 568, 181–186.

    Article  PubMed  CAS  Google Scholar 

  • Ko L.-W., Sheu K.-F.R., Young O., Thaler H., and Blass J. P. (1990) Expression in cultured human neuroblastoma cells of epitopes associated with affected neurons in Alzheimer’s disease.Amer. J. Pathol. 136, 867–879.

    CAS  Google Scholar 

  • Kosik K. S., Orecchio L. D., Binder L., Trojanowski J. Q., Lee V. M.-Y., and Lee G. (1988) Epitopes that span the tau molecule are shared with paired helical filaments.Neuron 1, 817–825.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 277, 680–685.

    Article  Google Scholar 

  • Lindwall G. and Cole R. D. (1984) Phosphorylation, affects the ability of tau protein to promote microtubule assembly.J. Biol. Chem. 259, 5301–5305.

    PubMed  CAS  Google Scholar 

  • Love S., Saitoh T., Quijada S., Cole G. M., and Terry R. D. (1988) Alz-50, ubiquitin, and tau immunoreactivity of neurofibrillary tangles.J. Neuropathol. Exp. Neurol. 47, 393–405.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1989) Cellular signaling mechanisms common to the development and degeneration of neuroarchitecture.Mech. Ageing Dev. 50, 103–157.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1990a) second messengers in neuronal growth and degeneration.Current Aspects of the Neurosciences (Osborne N., ed.), vol. 2, pp. 1–48, MacMillan.

  • Mattson M. P. (1990b) Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and calcium influx in cultured hippocampal neurons.Neuron 4, 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. (1991) Evidence for the involvement of protein kinase C in neurodegenerative changes in cultured human cortical neurons.Exp. Neurol.,112, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P. and Rychlik B. (1990) Cell culture of cryopreserved human fetal cerebral cortical and hippocampal neurons: Neuronal development and responses to trophic factors.Brain Res. 522, 204–214.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Dou P., and Kater S. B. (1988) Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons.J. Neurosci. 8, 2087–2100.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Murrain M., Guthrie P. B., and Kater S. B. (1989a) Fibroblast growth factor and glutamate: Opposing roles in the generation and degeneration of hippocampal neuroarchitectureJ. Neurosci,9, 3728–3740.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Gunthrie P. B., and Kater S. B. (1989b) A role for Na+-dependent calcium extrusion in protection against neuronal excitotoxicity.FASEB J. 3, 2519–2526.

    PubMed  CAS  Google Scholar 

  • Mattson M. P., Murrain, M., and Guthrie, P. B. (1990) Localized calcium influx orients axon formation in embryonic hippocampal pyramidal neurons.Dev. Brain Res. 52, 201–209.

    Article  CAS  Google Scholar 

  • Mattson M. P., Rychlik B., You J.-S., and Sisken J. E. (1991a) Sensitivity of cultured human embryonic cerebral cortical neurons to excitatory amino acid-induced calcium influx and neurotoxicity.Brain Res. 542, 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Mattson M. P., Chu C., Rychlik B., and Christakos S. (1991b) Evidence for calcium reducing and excitoprotective roles for the calcium binding protein calbindin-D28k in cultured hippocampal neurons.Neuron 6, 41–51.

    Article  PubMed  CAS  Google Scholar 

  • McKee A. C., Kosik K. S., Kennedy M. B., and Kowall N. W. (1990) Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase.J. Neuropathol. Exp. Neurol. 49, 49–63.

    Article  PubMed  CAS  Google Scholar 

  • Metuzals J., Robitaille Y., Houghton S., Gauthier S., Kang C. Y., and Leblanc R. (1988) Neuronal transformations in Alzheimer’s disease.Cell Tissue Res. 252, 239–248.

    PubMed  CAS  Google Scholar 

  • Mori H., Kondo J., and Ihara T. (1987) Ubiquitin is a component of paired helical filaments in Alzheimer’s disease.Science 235, 1641–1644.

    Article  PubMed  CAS  Google Scholar 

  • Murayama S., Mori H., Ihara Y., and Tomonaga M (1990) Immunocytochemical and ultrastructural studies of Pick’s disease.Ann. Neurol. 27, 394–405.

    Article  PubMed  CAS  Google Scholar 

  • Nukina N., Kosik K. S., and Selkoe D. J. (1987) Recognition of Alzheimer paired helical filaments by monoclonal neurofilament antibodies is due to cross reaction with tau protein.Proc. Natl. Acad. Sci. USA 84, 3415–3419.

    Article  PubMed  CAS  Google Scholar 

  • Perry G., Mulvihill P., Manetto V., Autilio-Gambetti L., and Gambetti P. (1987a) Immunocytochemical properties of Alzheimer straight filaments.J. Neurosci. 7, 3736–3738.

    PubMed  CAS  Google Scholar 

  • Perry G., Friedman R., Shaw G., and Chau B. (1987b) Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer’s disease.Proc. Natl. Acad. Sci. USA 84, 3030–3036.

    Google Scholar 

  • St. George-Hyslop P. H., Haines J. L., Farrer L. A., Polinsky R., Van Broeckhovens C., Goate A., McLachlan D. R. C., Orr H., Bruni A. C., Sorbi S., Rainero I., Foncin J. F., Pollen D., Cantu J. M., Tupler R., Voskresenskaya N., Mayeux R., Growdon J., Fried V. A., Myers R. H., Nee L., Backhovens H., Martins J. J., Rossor M., Owen M. J., Mullan M., Percy M. E., Karlinsky H., Rich S., Heston L., Montesi M., Mortilla M., Nacmias N., Gusella J. F., and Hardy J. A. (1990) Genetic linkage studies suggest that Alzheimer’s disease is not a single homogeneous disorder.Nature 347, 194–197.

    Article  PubMed  CAS  Google Scholar 

  • Saito T. and Iimoto D. (1989) Aberrant protein phosphorylation and cytoarchitecture in Alzheimer’s disease.Prog. Clin. Biol. Res. 317, 769–780.

    Google Scholar 

  • Seil F. J. (1968) Neurofibrillary tangles induced by vincristine and vinblastine sulfate, in central and peripheral neurons in vitro.Exp. Neurol. 21, 219–230.

    Article  PubMed  CAS  Google Scholar 

  • Selkoe D. J. (1989) Biochemistry of altered brain proteins in Alzheimer’s disease.Ann. Rev. Neurosci. 12, 463–490.

    Article  PubMed  CAS  Google Scholar 

  • Sternberger N. H., Sternberger L. A., and Ulrich J. (1985) Aberrant neurofilament phosphorylation in Alzheimer’s disease.Proc. Natl. Acad. Sci. USA 82, 4274–4276.

    Article  PubMed  CAS  Google Scholar 

  • Terry R. D. (1963) The fine structure of neurofibrillary tangles in Alzheimer’s disease.J. Neuropathol. Exp. Neurol. 22, 629–642.

    Article  PubMed  CAS  Google Scholar 

  • Ueda K., Masliah E., Saitoh T., Bakalis S. L., Scoble H., and Kosik K. S. (1990) Alz-50 recognizes a phosphorylated epitope in tau.J. Neurosci,10, 3295–3304.

    PubMed  CAS  Google Scholar 

  • Weisenberg R. C. (1972) Microtubule formation in vitro in solutions containing low calcium concentrations.Science 177, 1104–1105.

    Article  PubMed  CAS  Google Scholar 

  • Wisniewski H. and Terry R. D. (1967) Experimental colchicine encephalopathy: Induction of neurofibrillary degeneration.Lab. Invest. 17, 577–587.

    PubMed  CAS  Google Scholar 

  • Wisniewski K., Jervis G. A., Moretz R. C., and Wisniewski H. M. (1979) Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia.Ann. Neurol. 5, 288–294.

    Article  PubMed  CAS  Google Scholar 

  • Wolozin B. L., Pruchnicki A., Dickson D. W., and Davies P. (1986) A neuronal antigen in the brains of Alzheimer’s patients.Science 232, 648–650.

    Article  PubMed  CAS  Google Scholar 

  • Wood J. G., Mirra S. S., Pollock N. J., and Binder L. I. (1986) Neurofibrillary tangles of Alzheimer’s disease share antigenic determinants with the axonal microtubule-associated protein, tau.Proc. Natl. Acad. Sci. USA 83, 4040–4044.

    Article  PubMed  CAS  Google Scholar 

  • Woodard J. S. (1962) Clinico-pathological significance of granulovacuolar degeneration in Alzheimer’s disease.J. Neuropath. Exp. Neurol. 21, 85–89.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, M.P., Engle, M.G. & Rychlik, B. Effects of elevated intracellular calcium levels on the cytoskeleton and tau in cultured human cortical neurons. Molecular and Chemical Neuropathology 15, 117–142 (1991). https://doi.org/10.1007/BF03159951

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03159951

Index Entries

Navigation