Skip to main content

Broadening Genetic Base of Wheat for Improving Rust Resistance

  • Chapter
  • First Online:
New Horizons in Wheat and Barley Research

Abstract

Wheat is an important cereal crop cultivated throughout the world. The present-day climate change has raised new threats to wheat production. Such challenges include the evolution of new pathogen races and insect biotypes causing breakdown of resistance gene(s). This chapter includes details of three wheat rusts and details on each of them. We also have given comprehensive tables for all the genes available for the three rusts. Insight into popular alien introgressions and their utilization has been given as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali S, Gladieux P, Leconte M, Gautier A, Justesen AF, Hovmøller MS, Enjalbert J, de Vallavieille-Pope C (2014) Origin, migration routes and worldwide population genetic structure of the wheat yellow rust pathogen Puccinia striiformis f sp. tritici. PLoS Pathog 10:e1003903

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson MK, Williams ND, Maan SS (1971) Monosomic analysis of genes for stem rust resistance derived from Marquis and Reliance wheat. Crop Sci 11:556–558

    Article  Google Scholar 

  • Asad MA, Xia X, Wang C, He Z (2012) Molecular mapping of stripe rust resistance gene YrSN104 in Chinese wheat line Shaannong 104. Hereditas 149(4):146–152. https://doi.org/10.1111/j.1601-5223.2012.02261.x

    Article  PubMed  Google Scholar 

  • Ausemus ER, Harrington JB, Reitz LP, Worzella WW (1946) A summary of genetic studies in hexaploid and tetraploid wheats. J Am Soc Agron 38:1082–1099

    Article  Google Scholar 

  • Baker EP, Sanghi AK, McIntosh RA, Luig NH (1970) Cytogenetical studies in wheat III. Studies of a gene conditioning resistance to stem rust strains with unusual genes for avirulence. Aust J Biol Sci 23:369–375

    Article  Google Scholar 

  • Bansal UK, Hayden MJ, Gill MB, Bariana HS (2010) Chromosomal location of an uncharacterised stripe rust resistance gene in wheat. Euphytica 171:121–127

    Article  Google Scholar 

  • Bansal UK, Forrest KL, Hayden MJ, Miah H, Singh D, Bariana HS (2011) Characterisation of a new stripe rust resistance gene Yr47and its genetic association with the leaf rust resistance gene Lr52. Theor Appl Genet 122(8):1461–1466. https://doi.org/10.1007/s00122-011-1545-4

    Article  CAS  PubMed  Google Scholar 

  • Bansal UK, Muhammad S, Forrest KL, Hayden MJ, Bariana HS (2015) Mapping of a new stem rust resistance gene Sr49 in chromosome 5B of wheat. Theor Appl Genet 128(10):2113–2119. https://doi.org/10.1007/s00122-015-2571-4

    Article  CAS  PubMed  Google Scholar 

  • Bansal M, Kaur S, Dhaliwal HS, Bains NS, Bariana HS, Chhuneja P, Bansal UK (2016) Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol 66:38–44. https://doi.org/10.1111/ppa.12549

    Article  CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPMl and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    Article  CAS  PubMed  Google Scholar 

  • Bariana HS, McIntosh RA (1994) Characterisation and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica 76:53–61

    Article  Google Scholar 

  • Bariana HS, Brown GN, Bansal UK, Miah H, Standen GE, Lu M (2007) Breeding triple rust resistant wheat cultivars for Australia using conventional and marker assisted selection technologies. Aust J Agric Res 58:576–587

    Article  Google Scholar 

  • Beddow JM, Pardey PG, Chai Y, Hurley TM, Kriticos DJ, Braun H-J, Park RF, Cuddy WS, Yonow T (2015) Research investment implications of shifts in the global geography of wheat stripe rust. Nat Plants 1(10):1–5

    Article  Google Scholar 

  • Berlin A, Djurle A, Samils B, Yuen J (2012) Genetic variation in Puccinia graminis collected from oats, rye, and barberry. Phytopathology 102:1006–1012

    Article  PubMed  Google Scholar 

  • Bhardwaj SC, Gyanendra PS, Om PG, Pramod P, Subodh K (2019) Status of wheat rust research and progress in rust management-Indian context. Agronomy 9:892. https://doi.org/10.3390/agronomy9120892

    Article  CAS  Google Scholar 

  • Bockus WW, Appel JA, Bowden RL, Fritz AK, Gill BS, Martin TJ, Sears RG, Seifers DL (2001) Success stories: breeding for wheat disease resistance in Kansas. Plant Dis 85:453–461

    Article  PubMed  Google Scholar 

  • Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9:563–575

    Article  PubMed  PubMed Central  Google Scholar 

  • Briggs J, Chen S, Zhang W, Nelson S, Dubcovsky J, Rouse MN (2015) Mapping of SrTm4, a recessive stem rust resistance gene from diploid wheat effective to Ug99. Phytopathology 105(10):1347–1354. https://doi.org/10.1094/PHYTO-12-14-0382-R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browder LE (1973) Probable genotype of some Triticum aestivum ‘Agent’ derivatives for reaction to Puccinia recondita f sp tritici. Crop Sci 13:203–206

    Article  Google Scholar 

  • Brown-Guedira GL, Singh S, Fritz AK (2003) Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology 93:784–789

    Article  CAS  PubMed  Google Scholar 

  • Burdon JJ, Barrett LG, Rebetzke G, Thrall PH (2014) Guiding deployment of resistance in cereals using evolutionary principles. Evol Appl 7(6):609–624

    Article  PubMed  PubMed Central  Google Scholar 

  • Bux H, Rasheed A, Siyal MA, Mujeeb K (2012) An overview of stripe rust of wheat (Puccinia striiformis f sp tritici) in Pakistan. Arch Phytopathol Plant Protect 45(19):2278–2289

    Article  Google Scholar 

  • Calonnec A, Johnson R (1998) Chromosomal location of genes for resistance to Puccinia striiformis in the wheat line TP1295 selected from the cross of Soissonais-Desprez with Lemhi. Eur J Plant Pathol 104:835–847

    Article  CAS  Google Scholar 

  • Carver B, Rayburn AL (1994) Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: agronomic performance. Crop Sci 34:1505–1510

    Article  Google Scholar 

  • Chen XM, Line RF, Jones SS (1995a) Chromosomal location of genes for resistance to Puccinia striiformis in winter wheat cultivars Heines VII, Clement, Moro, Tyee, Tres, and Daws. Phytopathology 85:1362–1367

    Article  Google Scholar 

  • Chen XM, Jones SS, Line RF (1995b) Chromosomal location of genes for stripe rust resistance in spring wheat cultivars Compair, Fielder, Lee, and Lemhi and interactions of aneuploid wheats with races of Puccinia striiformis. Phytopathology 85:375–381

    Article  Google Scholar 

  • Chen XM, Jones SS, Line RF (1996) Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci. Phytopathology 86:1228–1233

    Article  CAS  Google Scholar 

  • Chen W, Wellings C, Chen X, Kang Z, Liu T (2014) Wheat stripe (yellow) rust caused by Puccinia striiformis f sp tritici. Mol Plant Pathol 15:433–446

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen S, Rouse MN, Zhang W, Jin Y, Akhunov E, Wei Y, Dubcovsky J (2015) Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor Appl Genet 128(4):645–656. https://doi.org/10.1007/s00122-015-2460-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Guo Y, Briggs J, Dubach F, Chao S, Zhang W, Rouse MN, Dubcovsky J (2018) Mapping and characterization of wheat stem rust resistance genes SrTm5 and Sr60 from Triticum monococcum. Theor Appl Genet 131:625–635

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Chen XM (2010) Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor Appl Genet 121:195–204

    Article  CAS  PubMed  Google Scholar 

  • Chhetri M (2015) Molecular mapping and genetic characterization of rust resistance in wheat. University of Sydney, Australia, Plant Breeding Institute

    Google Scholar 

  • Chhetri M, Bansal U, Toor A, Lagudah E, Bariana H (2016a) Genomic regions conferring resistance to rust diseases of wheat in a W195/BTSS mapping population. Euphytica 209(3):637–649

    Article  CAS  Google Scholar 

  • Chhetri M, Bariana H, Kandiah P, Bansal U (2016b) Yr58: a new stripe rust resistance gene and its interaction with Yr46 for enhanced resistance. Phytopathology 106:1530–1534

    Article  CAS  PubMed  Google Scholar 

  • Cox TS, Raupp WJ, Gill BS (1994) Leaf Rust-Resistance Genes Lr41, Lr42, and Lr43 Transferred from Triticum tauschii to Common Wheat. Crop Sci 34(2):339. https://doi.org/10.2135/cropsci1994.0011183x003400020005x

    Article  Google Scholar 

  • Eriksen L, Afshari F, Christiansen MJ, McIntosh RA, Jahoo A, Wellings CR (2004) Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. Theor Appl Genet 108:567–575

    Article  CAS  PubMed  Google Scholar 

  • da Silva GBP, Zanella CM, Martinelli JA, Chaves MS, Hiebert CW, McCallum BD, Boyd LA (2018) Quantitative trait loci conferring leaf rust resistance in hexaploid wheat. Phytopathology 108:1344–1354

    Article  Google Scholar 

  • Dadkhodaie NA, Karaoglou H, Wellings CR, Park RF (2011) Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor Appl Genet 122:479–487

    Article  CAS  PubMed  Google Scholar 

  • Doussinault G, Dosba F, Tanguy AM (1981) Analyse monosomique de la resistance a la rouille jaune u geniteur blé tendre VPM1. Académie D’Agriculture de France. Extrait du procés-verbal de la Seance du 14 Janvier 1981:133–138

    Google Scholar 

  • Doussinault G, Dosba F, Jahier J (1988) Use of a hybrid between Triticum aestivum L. and Aegilops ventricosa Tausch in wheat breeding. In: Miller TE, Koebner RMD (eds) Proceedings of the seventh international wheat genetics symposium. Institute of Plant Science Research, Cambridge, pp 253–258

    Google Scholar 

  • Driscoll CJ, Anderson LM (1967) Cytogenetic studies of Tansec—a wheat-rye translocation line. Can J Genet Cytol 9:375–380

    Article  Google Scholar 

  • Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR (1998) Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci 38(6):1655. https://doi.org/10.2135/cropsci1998.0011183x0038000600

    Article  CAS  Google Scholar 

  • Duplessis S, Joly DL, Dodds PN (2012) Rust effectors. In: Effectors in plant-microbe interactions. Wiley-Blackwell, Oxford, pp 155–193

    Google Scholar 

  • Duveiller E, Singh RP, Nicol J (2007) Challenges to maintaining wheat productivity: pests, diseases and potential epidemics. Euphytica 157:417–430

    Article  Google Scholar 

  • Dvořák J, Knott DR (1990) Location of a Triticum speltoides chromosome segment conferring resistance to leaf rust in Triticum aestivum. Genome 33(6):892–897. https://doi.org/10.1139/g90-134

  • Dyck PL (1979) Identification of the gene for adult-plant leaf rust resistance in Thatcher. Can J Plant Sci 59:499–501

    Article  Google Scholar 

  • Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469

    Article  Google Scholar 

  • Dyck PL (1992) Transfer of a gene for stem rust resistance from Triticum araraticum to hexaploid wheat. Genome 35:788–792

    Article  Google Scholar 

  • Dyck PL, Johnson R (1983) Temperature sensitivity of genes for resistance in wheat to Puccinia recondita. Can J Plant Pathol 5:229–234

    Article  Google Scholar 

  • Dyck PL, Kerber ER (1971) Chromosome location of three genes for leaf rust resistance in common wheat. Can J Genet Cytol 13(3):480–483. https://doi.org/10.1139/g71-072

    Article  Google Scholar 

  • Dyck PL, Kerber ER (1981) Aneuploid analysis of a gene for leaf rust resistance derived from the common wheat cultivar Terenzio. Can J Genet Cytol 23:405–409

    Article  Google Scholar 

  • Dyck PL, Samborski DJ (1968) Host-parasite interactions involving two genes for leaf rust resistance in wheat. In: Findlay FW, Shepard KW (eds) Proceedings of the third international wheat genetics symposium. Australian Academy of Science, Canberra, pp 245–250

    Google Scholar 

  • Dyck PL, Samborski DJ (1970) The genetics of two alleles for leaf rust resistance at the Lr14 locus in wheat. Can J Genet Cytol 12:689–694

    Article  Google Scholar 

  • Dyck PL, Samborski DJ (1974) Inheritance of virulence in Puccinia recondita of alleles at the Lr2 locus in wheat. Can J Genet Cytol 16:323–332

    Article  Google Scholar 

  • Dyck PL, Sykes EE (1994) Genetics of leaf-rust resistance in three spelt wheats. Can J Plant Sci 74(2):231–233. https://doi.org/10.4141/cjps94-047

    Article  Google Scholar 

  • Dyck PL, Samborski DJ, Anderson RG (1966) Inheritance of adult-plant leaf rust resistance derived from the common wheat varieties Exchange and Frontana. Can J Genet Cytol 8:665–671

    Article  Google Scholar 

  • Dyck PL, Kerber ER, Lukow OM (1987) Chromosome location and linkage of a new gene (Lr33) for reaction to Puccinia recondita in common wheat. Genome 29(3):463–466. https://doi.org/10.1139/g87-080

    Article  Google Scholar 

  • El-Bedewy R, Röbbelen G (1982) Chromosomal location and change of dominance of a gene for resistance against yellow rust, Puccinia striiformis West., in wheat, Triticum aestivum L. Z Pflanzenzüchtung 89:145–157

    Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng J, Wang M, See DR, Chao S, Zheng Y, Chen X (2018) Characterization of novel gene Yr79 and four additional quantitative trait loci for all-stage and high-temperature adult-plant resistance to stripe rust in spring wheat PI 182103. Phytopathology 108(6):737–747. https://doi.org/10.1094/phyto-11-17-0375-r

    Article  CAS  PubMed  Google Scholar 

  • Figueroa M, Upadhyaya NM, Sperschneider J, Park RF, Szabo LJ, Steffenson B, Ellis JG, Dodds PN (2016) Changing the game: using integrative genomics to probe virulence mechanisms of the stem rust pathogen Puccinia graminis f sp tritici. Front Plant Sci 7:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueroa M, Kim EH, Peter SS (2018) A review of wheat diseases—a field perspective. Mol Plant Pathol 19(6):1523–1536

    Article  PubMed  Google Scholar 

  • Friebe B, Zeller FJ, Mukai Y, Forster BP, Bartos P, McIntosh RA (1992) Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet 83:775–782. https://doi.org/10.1007/BF00226697

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91(1):59–87. https://doi.org/10.1007/BF00035277

    Article  Google Scholar 

  • Gerechter-Amitai ZK, Van Silfhout CH, Grama A, Kleitman F (1989) Yr15-a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica 43:187–190

    Google Scholar 

  • Gessese MK (2019) Description of wheat rusts and their virulence variations determined through annual pathotype surveys and controlled multi-Pathotype tests. Adv Agric 2019:1–7. https://doi.org/10.1155/2019/2673706

    Article  Google Scholar 

  • Gessese M, Bariana H, Wong D, Hayden M, Bansal U (2019) Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Dis PDIS–06–18–1055. https://doi.org/10.1094/pdis-06-18-1055-re

  • Green GJ, Knott DR, Watson IA, Pugsley AT (1960) Seedling reactions to stem rust of lines of Marquis wheat with substituted genes for rust resistance. Can J Plant Sci 40:524–538

    Article  Google Scholar 

  • Gupta N, Batra N, Bhardwaj SC (2017) Wheat rust research-Status, efforts and way ahead. J Wheat Res 9(2):72–86

    Google Scholar 

  • Haggag MEA, Dyck PL (1973) The inheritance of leaf rust resistance in four common wheat varieties possessing genes at or near the Lr3 Locus. Can J Genet Cytol 5(1):127–134. https://doi.org/10.1139/g73-013

    Article  Google Scholar 

  • Hayes HK, Parker JH, Kurtzweil (1920) Genetics of rust resistance in crosses of varieties of Triticum vulgare with varieties of T. durum and T. dicoccum. J Agric Res 19:523–542

    Google Scholar 

  • Helguera M, Vanzetti L, Soria M, Khan IA, Kolmer J, Dubcovsky J (2005) PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci 45:728–734

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Djurle A, Yuen J (2008) Molecuar mapping of a leaf rust resistance gene on the short arm of chromosome 6B of durum wheat. Plant Dis 92:1650–1654

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Foesse SA, Lagudah ES, Huerta-Espino J, Hayden MJ, Bariana HS, Singh D, Singh RP (2010) New slow rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet 122(1):239–249. https://doi.org/10.1007/s00122-010-1439-x

    Article  Google Scholar 

  • Heyns I, Pretorius Z, Marais F (2011) Derivation and characterization of recombinants of the Lr54/Yr37 translocation in common wheat. Open Plant Sci J 5:1–8

    Article  CAS  Google Scholar 

  • Hiebert C, Thomas J, McCallum B (2005) Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) in chromosome 5B by a new cytogenetic method. Theor Appl Genet 110:1453–1457

    Article  CAS  PubMed  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Somers DJ (2008) Genetic mapping of the wheat leaf rust resistance gene Lr60 (LrW2). Crop Sci 48:1020–1026

    Article  CAS  Google Scholar 

  • Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W (2010) An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet 121:1083–1091

    Article  PubMed  Google Scholar 

  • Hiebert CW, Kassa MT, McCartney CA, You FM, Rouse MN, Fobert P, Fetch TG (2016) Genetics and mapping of seedling resistance to Ug99 stem rust in winter wheat cultivar Triumph 64 and differentiation of SrTmp, SrCad, and Sr42. Theor Appl Genet 129:2171–2177. https://doi.org/10.1007/s00122-016-2765-4

    Article  CAS  PubMed  Google Scholar 

  • Hussain M, Hassan SF, Kirmani MAS (1980) Virulence in Puccinia recondita Rob. ex. Desm. F. sp. trtitici in Pakistan during 1978 and 1979. In: Proceedings of the 5th European and Mediterranean cereal rust conference. European and Mediterranean Cereal Rusts Foundation, Bari, Italy, pp 179–184

    Google Scholar 

  • Hubbard A, Lewis CM, Yoshida K, Ramirez-Gonzalez RH, de Vallavieille-Pope C, Thomas J, Kamoun S, Bayles R, Uauy C, Saunders DGO (2015) Field pathogenomics reveals the emergence of a diverse wheat yellow rust population. Genome Biol 16:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia JQ, Li GR, Liu C, Lei MP, Yang ZJ (2011) Characterization of wheat yellow rust resistance gene Yr17 using EST-SSR and rice syntenic region. Cereal Res Commun 39:88–99

    Article  CAS  Google Scholar 

  • Jin Y, Pretorius ZA, Singh RP (2007) New virulence within race TTKS (Ug99) of the stem rust Pathogen and effective resistance genes. Phytopathology 97:S137(Abstract)

    Google Scholar 

  • Johnson R (1983) Genetic background of durable resistance. In: Lamberti F, Waller JM, Van der Graaff NA (eds) Durable resistance in crops. Plenum Press, New York, pp 5–26

    Chapter  Google Scholar 

  • Johnson R, Law CN (1973) Cytogenetic studies of the resistance of the wheat variety Bersée to Puccinia striiformis. Cereal Rusts Bull 1:38–43

    Google Scholar 

  • Kerber ER (1987) Resistance to leaf rust in hexaploid wheat: Lr32 a third gene derived from Triticum tauschii1. Crop Sci 27(2):204. https://doi.org/10.2135/cropsci1987.0011183x002700020013x

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1973) Inheritance of stem rust resistance transferred from diploid wheat (Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the gene involved. Can J Genet Cytol 15:397–409

    Article  Google Scholar 

  • Kerber ER, Dyck PL (1979) Resistance to stem rust and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanujam S (ed) Proceedings of the 5th international wheat genetics symposium New Delhi, India, pp 358–364

    Google Scholar 

  • Kerber ER, Dyck PL (1990) Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of Aegilops speltoides x Triticum monococcum. Genome 33:530–537

    Article  CAS  Google Scholar 

  • Knott DR (1962) The inheritance of rust resistance IX. The inheritance of resistance to races 15B and 56 of stem rust in the wheat variety Khapstein. Can J Plant Sci 42:415–419

    Article  Google Scholar 

  • Knott DR (1965) A comparison of the reaction to stem rust of wheat lines backcrossed five and nine times to Marquis that carry the same resistance genes. Can J Plant Sci 45:106–107

    Article  Google Scholar 

  • Knott DR (1968) The inheritance of resistance to stem rust races 56 and 15B-1L (Can.) in the wheat varieties Hope and H-44. Can J Genet Cytol 10:311–320

    Article  Google Scholar 

  • Knott DR (1990) Near-isogenic lines of wheat carrying genes for stem rust resistance. Crop Sci 30:901–905

    Article  Google Scholar 

  • Knott DR, Anderson RG (1956) The inheritance of rust resistance I. The inheritance of stem rust resistance in ten varieties of common wheat. Can J Agric Sci 36:174–195. https://doi.org/10.4141/agsci-1956-0022

    Article  Google Scholar 

  • Knott DR, McIntosh RA (1978) Inheritance of stem rust resistance in ‘Webster’ wheat. Crop Sci 17:365–369

    Article  Google Scholar 

  • Kolmer JA, Anderson JA, Flor JM (2010) Chromosome location, linkage with simple sequence repeat markers, and leaf rust resistance conditioned by gene in wheat. Crop Sci 50(6):2392. https://doi.org/10.2135/cropsci2010.01.0005

    Article  Google Scholar 

  • Kolmer JA, Long DL, Hughes ME (2009) Physiologic specialization of Puccinia triticna on wheat in the United States in 2007. Plant Dis 93:538–544

    Article  CAS  PubMed  Google Scholar 

  • Kolmer JA, Su Z, Bernardo A, Bai G, Chao S (2018a) Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat. Theor Appl Genet 131:1553–1560. https://doi.org/10.1007/s00122-018-3097-3

    Article  CAS  PubMed  Google Scholar 

  • Kolmer JA, Chao S, Brown-Guedira G, Bansal U, Bariana H (2018b) Adult plant leaf rust resistance derived from the soft red winter wheat cultivar ‘Caldwell’ maps to chromosome 3BS. Crop Sci 58:152–158

    Article  CAS  Google Scholar 

  • Kumar S, Bhardwaj SC, Gangwar OP, Sharma A, Qureshi N, Kumaran VV, Khan H, Prasad P, Miah H, Singh GP, Sharma K, Verma H, Forrest KL, Trethowan RM, Bariana HS, Bansal UK (2021) Lr80: a new and widely effective source of leaf rust resistance of wheat for enhancing diversity of resistance among modern cultivars. Theor Appl Genet 134:849–858. https://doi.org/10.1007/s00122-020-03735-5

    Article  CAS  PubMed  Google Scholar 

  • Kuraparthy V, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007a) Characterization and mapping of cryptic alien introgression from Aegilops geniculata with new leaf rust and stripe rust resistance genes Lr57 and Yr40 in wheat. Theor Appl Genet 114(8):1379–1389. https://doi.org/10.1007/s00122-007-0524-2

    Article  CAS  PubMed  Google Scholar 

  • Kuraparthy V, Sood S, Chhuneja P, Dhaliwal HS, Kaur S, Bowden RL, Gill BS (2007b) A cryptic wheat—translocation with leaf rust resistance gene. Crop Sci 47(5):1995. https://doi.org/10.2135/cropsci2007.01.0038

    Article  CAS  Google Scholar 

  • Kuraparthy V, Sood S, See DR, Gill BS (2009) Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust resistance genes Lr57 and Yr40 into hard red winter wheats. Crop Sci 49:120–126

    Article  CAS  Google Scholar 

  • Labrum KE (1980) The location of Yr2 and Yr6 genes conferring resistance to yellow rust. In: Proceedings of the 5th European and Mediterranean cereal rusts conference, Bari, Italy, pp 41–45

    Google Scholar 

  • Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179(1):81–91

    Article  Google Scholar 

  • Lan C, Zhang Y, Herrera-Foessel SA, Basnet BR, Huerta-Espino J, Lagudah ES, Singh RP (2015) Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theor Appl Genet 128(3):549–561. https://doi.org/10.1007/s00122-015-2454-8

    Article  CAS  PubMed  Google Scholar 

  • Lelley J, Rajháthy T (1955) A búza és nemesítése. Akadémiai Kiadó, Budapest, p 544

    Google Scholar 

  • Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol 6(2):99–111

    Article  PubMed  Google Scholar 

  • Li Q, Chen XM, Wang MN, Jing JX (2010) Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theor Appl Genet 122:189–197

    Google Scholar 

  • Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Loegering WQ (1975) An allele for low reaction to Puccinia graminis tritici in Chinese Spring wheat. Phytopathology 65:925

    Article  Google Scholar 

  • Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123:143–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Luig NH (1983) A survey of virulence genes in wheat stem rust, Puccinia graminis f. sp. tritici. Paul Parey, Berlin, 212 p

    Google Scholar 

  • Luig NH, McIntosh RA (1968) Location and linkage of genes on wheat chromosome 2D. Can J Genet Cytol 10(1):99–105. https://doi.org/10.1139/g68-013

    Article  Google Scholar 

  • Luo PG, Ren ZL, Zhang HQ, Zhang HY (2005) Identification, chromosome location, and diagnostic markers for a new gene (YrCN19) for resistance to wheat stripe rust. Phytopathology 95:1266–1270

    Article  CAS  PubMed  Google Scholar 

  • Luo PG, Ren ZL, Zhang HQ (2006) Diagnostic detection and genetic analysis of wheat stripe rust resistant gene YrCN19. J Mol Cell Biol 39:217–222

    CAS  Google Scholar 

  • Ma J, Zhou R, Dong Y, Wang L, Wang X, Jia J (2001) Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica 120:219–226

    Article  CAS  Google Scholar 

  • Macer RCF (1966) The formal and monosomic genetic analysis of stripe rust (Puccinia striiformis) resistance in wheat. In: MacKey J (ed) Proceedings of the 2nd international wheat genetics symposium, Hereditas Supplement, vol 2, pp 127–142

    Google Scholar 

  • Mago R, Spielmeyer W, Lawrence GJ, Lagudah ES, Ellis JG, Pryor A (2002) Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet 104:1317–1324

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, McIntosh RA, Pryor AJ, Ellis JG (2005) High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor Appl Genet 112:41–50

    Article  CAS  PubMed  Google Scholar 

  • Manske GGB, Behl RK, Vlek PLG (1996) The effect of total root length and arbuscular mycorrhizal fungi on the nutrient and water efficiency in summer wheat. In: Crop productivity and sustainability—shaping the future: abstracts of the 2nd international crop science congress, New Delhi, India, vol I, p 105 Media, Dordrecht, pp 255–283

    Google Scholar 

  • Marais GF, McCallum B, Snyman JE, Pretorius ZA, Marais AS (2005a) Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed 124:538–541

    Article  CAS  Google Scholar 

  • Marais GF, Pretorius ZA, Wellings CR, McCallum B, Marais AS (2005b) Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–123

    Article  CAS  Google Scholar 

  • Marais F, Marais A, McCallum B, Pretorius Z (2009) Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci 49:871–879

    Article  CAS  Google Scholar 

  • Marais GF, McCallum B, Marais AS (2006) Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 149:373–380

    Article  Google Scholar 

  • Marais GF, McCallum B, Marais AS (2008) Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrina. Plant Breed 127(4):340–345. https://doi.org/10.1111/j.1439-0523.2008.01513.x

    Article  Google Scholar 

  • Marais GF, Badenhorst PE, Eksteen A, Pretorius ZA (2010) Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica 171:15–22

    Article  CAS  Google Scholar 

  • Marasas C, Smale M, Singh RP (2004) The economic impact in developing countries of leaf rust resistance breeding in CIMMYT-related spring bread wheat. Economics program paper 04–01. CIMMYT, Mexico

    Google Scholar 

  • McCallum BD, Hiebert CW, Cloutier S, Bakkeren G, Rosa SB, Humphreys DG, Marais GF, McCartney CA, Panwar V, Rampitsch C, Saville BJ, Wang X (2016) A review of wheat leaf rust research and the development of resistant cultivars in Canada. Can J Plant Pathol 38:1–18

    Article  CAS  Google Scholar 

  • McDonald DB, McIntosh RA, Wellings CR, Singh RP, Nelson JC (2004) Cytogenetical studies in wheat XIX. Location and linkage studies on gene Yr27 for resistance to stripe (yellow) rust. Euphytica 136:239–248

    Article  CAS  Google Scholar 

  • McFadden ES (1930) A successful transfer of emmer characters to vulgare wheat. J Am Soc Agron 22:1020–1034

    Article  Google Scholar 

  • McIntosh RA (1978) Cytogenetical studies in wheat. X. Monosomic analysis and linkage studies involving genes for resistance to Puccinia graminis f. sp. tritici in cultivar Kota. Heredity 41:71–82

    Article  Google Scholar 

  • McIntosh RA (1981) A gene for stem rust resistance in non-homoeologous chromosomes of hexaploid wheat progenitors. In: Carr DJ (ed) Proceedings XIII international botanical congress, Sydney, Australia, p 274

    Google Scholar 

  • McIntosh RA (1988) Catalogue of gene symbols for wheat. In: Miller TE, Koebner RMD (eds) Proceedings of the 7th international wheat genetics symposium IPSR, Cambridge, UK, vol 2, pp 1225–1323

    Google Scholar 

  • McIntosh RA, Dyck PL (1975) Cytological studies in wheat VII. Gene Lr23 for reaction to Puccinia recondita in Gabo and related cultivars. Aust J Biol Sci 28:201–211

    Article  Google Scholar 

  • McIntosh RA, Gyarfas J (1971) Triticum timopheevii as a source of resistance to wheat stem rust. Z Pflanzenzuchtung 66:240–248

    Google Scholar 

  • McIntosh RA, Lagudah ES (2000) Cytogenetical studies in wheat XVIII. Gene Yr24 for resistance to stripe rust. Plant Breed 119:81–83

    Article  CAS  Google Scholar 

  • McIntosh RA, Luig NH (1973) Recombination between genes for reaction to Puccinia graminis at or near the Sr9 locus. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium, Columbia, Missouri, pp 425–532

    Google Scholar 

  • McIntosh RA, Dyck PL, Green GJ (1974) Inheritance of reaction to stem rust and leaf rust in the wheat cultivar Etoile de Choisy. Can J Genet Cytol 16:571–577

    Article  Google Scholar 

  • McIntosh RA, Dyck PL, Green GJ (1976) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Aust J Agric Res 28:37–45

    Article  Google Scholar 

  • McIntosh RA, Miller TE, Chapman V (1982) Cytogenetical studies in wheat. XII.Lr28 for resistance to Puccinia recondite and Sr34 for resistance to P. graminis tritici. ZPflanzenzuchtg 89:295–306

    Google Scholar 

  • McIntosh RA, Dyck PL, The TT, Cusick JE, Milne DL (1984) Cytogenetical studies in wheat XIII. Sr35-a third gene from Triticum monococcum for resistance to Puccinia graminis tritici. Z Pflanzenzuchtung 92:1–14

    Google Scholar 

  • McIntosh RA, Friebe B, Jiang J, The D, Gill BS (1995a) Cytogenetical studies in wheat XVI. Chromosome location of a new gene for resistance to leaf rust in a Japanese wheat-rye translocation line. Euphytica 82:141–147. https://doi.org/10.1007/BF00027060

    Article  Google Scholar 

  • McIntosh RA, Wellings RC, Park R (1995b) Wheat rusts an atlas of resistance genes CSIRO East Melbourne, 200 p

    Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers J, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat: 2013 supplement. KOMUGI–Integrated Wheat Science Database. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/2013/GeneCatalogueIntroduction.pdf. Accessed 25 Apr 2016

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2016) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp. Accessed Dec 2016

  • Mettin D, Bluthner WD, Schlegel G (1973) Additional evidence on spontaneous 1B/1R wheat rye substitutions and translocations. In: Sears ER, Sears LMS (eds) Proceedings of the 4th international wheat genetics symposium, Columbia, Missouri, pp 179–184

    Google Scholar 

  • Middleton CP, Senerchia N, Stein N, Akhunov ED, Keller B, Wicker T, Kilian B (2014) Sequencing of chloroplast genomes from wheat, barley, rye and their relatives provides a detailed insight into the evolution of the Triticeae tribe. PLoS One 9:e85761

    Article  PubMed  PubMed Central  Google Scholar 

  • Molnár-Láng M, Molnár I, Szakács E, Linc G, BedÅ‘ Z (2014) Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, Springer Science + Business Media, Dordrecht, pp 255–283. https://doi.org/10.1007/978-94-007-7572-5

    Chapter  Google Scholar 

  • Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang RR, Xu S, Chen P, Mahmood T (2013) Genetic diversity for wheat improvement as a conduit to food security. In: Advances in agronomy, vol 122. Academic, pp 179–257

    Google Scholar 

  • Nirmala J, Chao S, Olivera P, Babiker EM, Abeyo B, Tadesse Z, Pumphrey MO (2016) Markers linked to wheat stem rust resistance gene Sr11 effective to Puccinia graminis f sp tritici race TKTTF. Phytopathology 106(11):1352–1358. https://doi.org/10.1094/phyto-04-16-0165-r

    Article  CAS  PubMed  Google Scholar 

  • Niu YC, Li SM, Li WF, Wu LR, Xu SC (2004) Molecular markers assisted selection for the stripe rust (Puccinia striiformis tritici) resistance genes Yr8 and Yr10 in wheat breeding. In: Plant protection towards the 21st century-proceedings of the XVth international plant protection congress, Beijing, China

    Google Scholar 

  • Nsabiyera V, Bariana HS, Qureshi N, Wong D, Forrest KL, Hayden MJ, Bansal UK (2018) Characterisation and molecular mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet 131:1459–1467. https://doi.org/10.1007/s00122-018-3090-x

    Article  CAS  PubMed  Google Scholar 

  • Nsabiyera V, Baranwal D, Qureshi N, Kay P, Forrest K, Valárik M, Bansal UK (2020) Fine mapping of Lr49 using 90K SNP Chip array and flow-sorted chromosome sequencing in wheat. Front Plant Sci 10:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43

    Article  Google Scholar 

  • Oliver MJ (2014) Why we need GMO crops in agriculture. Mol Med 111:493–507

    Google Scholar 

  • Olivera Firpo P, Newcomb M, Flath K, Sommerfeldt-Impe N, Szabo L, Carter M, Luster D, Jin Y (2017) Characterization of Puccinia graminis f sp tritici isolates derived from an unusual wheat stem rust outbreak in Germany in 2013. Plant Pathol 66:1258–1266. https://doi.org/10.1111/ppa12674

    Article  Google Scholar 

  • Pakeerathan K, Bariana H, Qureshi N, Wong D, Hayden M, Bansal U (2019) Identification of a new source of stripe rust resistance Yr82 in wheat. Theor Appl Genet 132(11):3169–3176. https://doi.org/10.1007/s00122-019-03416-y

    Article  CAS  PubMed  Google Scholar 

  • Parlevliet JE (1993) Wheat is durable resistance a general outline. In: Jacobs T, Parlevliet JE (eds) Durability of disease resistance. Kluwer Academic Publishers, Dordrecht, pp 23–29

    Chapter  Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal bacterial and viral pathogens; present situation. Euphytica 124:147–156

    Article  CAS  Google Scholar 

  • Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31in Puccinia graminis f. sp. tritici in Uganda. Plant Dis 84(2):203

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Bariana H, Forrest K, Hayden M, Keller B, Wicker T, Bansal U (2017) Fine mapping of the chromosome 5B region carrying closely linked rust resistance genes Yr47 and Lr52 in wheat. Theor Appl Genet 130(3):495–504

    Article  CAS  PubMed  Google Scholar 

  • Qureshi N, Bariana H, Kumran VV, Muruga S, Forrest KL, Hayden MJ, Bansal U (2018) A new leaf rust resistance gene Lr79 mapped in chromosome 3BL from the durum wheat landrace Aus26582. Theor Appl Genet 131(5):1091–1098

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich SV (1998) Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica 100:323–340

    Article  Google Scholar 

  • Rajaram S (2001) Prospects and promise of wheat breeding in the 21st century. Euphytica 119:3–15

    Article  Google Scholar 

  • Randhawa M, Bansal U, Valarik M, Klocova B, Dolezel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene Yr51 in chromosome 4AL of wheat. Theor Appl Genet 127:317–324

    Article  CAS  PubMed  Google Scholar 

  • Randhawa M, Bariana H, Mago R, Bansal U (2015) Mapping of a new stripe rust resistance locus Yr57 on chromosome 3BS of wheat. Mol Breed 35:1–8

    Article  CAS  Google Scholar 

  • Raupp WJ, Singh S, Brown-Guedira GL, Gill BS (2001) Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet 102:347–352

    Article  CAS  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT, Mexico, p 81

    Google Scholar 

  • Riley R, Chapman V, Johnson R (1968a) Introduction of yellow rust resistance of Aegilops comosa into wheat by genetically induced homoeologous recombination. Nature 217:383–384

    Article  Google Scholar 

  • Riley R, Chapman V, Johnson R (1968b) The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet Res Cambridge 12:199–219

    Article  Google Scholar 

  • Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144

    Article  Google Scholar 

  • Saini RG, Kaur M, Singh B, Sharma S, Nanda GS, Nayar SK, Gupta AK, Nagarajan S (2002) Genes Lr48 and Lr49 for hypersensitive adult plant leaf rust resistance in wheat (Triticum aestivum L.). Euphytica 124:365–370

    Article  CAS  Google Scholar 

  • Sears ER (1956) The transfer of leaf-rust resistance from Aegilops umbellulata to wheat. Broohaven Symp Biol 9:1–22

    Google Scholar 

  • Sears ER (1973) Agropyron-wheat transfers induced by homoeologous pairing. In: Sears ER, Sears LMS (eds) Proceedings of the Fourth international wheat genetics symposium. Agricultural Research Station, University of Missouri, Columbia Missouri, USA, pp 191–199

    Google Scholar 

  • Sears ER, Loegering WQ, Rodenhiser HA (1957) Identification of chromosomes carrying genes for stem rust resistance in four varieties of wheat. Agron J 49:208–212

    Article  Google Scholar 

  • Sebesta EE, Wood EA (1978) Transfer of greenbug resistance from rye to wheat with X-rays. Agron Abstr ASA, Madison W.I., pp 61–62

    Google Scholar 

  • Sebesta EE, Wood EA Jr, Porter DR, Webster JA, Smith EL (1995) Registration of Amigo wheat germplasm resistant to greenbug. Crop Sci 35:293. https://doi.org/10.2135/cropsci1995.0011183X003500010074x

    Article  Google Scholar 

  • Sharma D, Knott DR (1966) The transfer of leaf-rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol 8:137–143

    Article  Google Scholar 

  • Sharma S, Louwers JM, Karki CB, Snijders CHA (1995) Postulation of resistance genes to yellow rust in wild emmer wheat derivatives and advanced wheat lines from Nepal. Euphytica 81:271–277

    Article  Google Scholar 

  • Shiferaw B, Smale M, Braun H, Duveiller E, Reynolds M, Muricho G (2013) Crops that feed the world 10 past success and future chalenges to the role played by wheat in global food security. Food Sec 5:291–317

    Article  Google Scholar 

  • Singh RP, McIntosh RA (1984) Complementary genes for resistance to Puccinia recondita tritici in Triticum aestivum I. Genetic and linkage studies. Can J Genet Cytol 26:723–735

    Article  Google Scholar 

  • Singh RP, McIntosh RA (1986) Genetics of resistance to Puccinia graminis tritici and Puccinia recondita tritici in Kenya Plume wheat. Euphytica 35:245–256

    Article  Google Scholar 

  • Singh RP, Mujeeb-Kazi A, Huerta-Espino J (1998) Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopatholgy 88:890–894

    Article  CAS  Google Scholar 

  • Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    Article  CAS  Google Scholar 

  • Singh RP, Huerto-Espino J, William M (2001a) Slow rusting gene based resistance to leaf and yellow rusts in wheat: genetics and breeding at CIMMYT. In: Proceedings of the 10th assembly of the wheat breeding Society of Australia Inc. Wheat Breeding Society of Australia Inc., Mildura, pp 103–108

    Google Scholar 

  • Singh D, Park RF, Bariana HS, McIntosh RA (2001b) Cytogenetic studies in wheat XIX. Chromosome location and linkage studies of a gene for leaf rust resistance in the Australian cultivar ‘Harrier’. Plant Breed 120:7–12

    Article  CAS  Google Scholar 

  • Singh RP, William HM, Huerta-Espino J, Crosby M (2003) Identification and mapping of gene Yr31 for resistance to stripe rust in Triticum aestivum cultivar Pastor. In: Pogna NE, Romano M, Pogna EA, Galterio (eds) Proceedings 10th international wheat genetics symposium, Rome, Italy, pp 411–413

    Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Herrera-Foessel SA, Ward RW (2008) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49:465–481

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Hodson DP, Jin Y, Lagudah ES, Ayliffe MA, Bhavani S, Rouse MN, Pretorius ZA, Szabo LJ, Huerta-Espino J, Basnet BR (2015) Emergence and spread of new races of wheat stem rust fungus: continued threat to food security and prospects of genetic control. Phytopathology 105:872–884

    Article  PubMed  Google Scholar 

  • Singla J, Lüthi L, Wicker T, Bansal U, Krattinger SG, Keller B (2017) Characterization of Lr75: a partial broad-spectrum leaf rust resistance gene in wheat. Theor Appl Genet 130(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Smith GS (1957) Inheritance of stem rust reaction in tetraploid wheat hybrids I. Allelic genes in Mindum durum and Vernal emmer. Agron J 49:134–137

    Article  Google Scholar 

  • Smith PH, Koebner RMD, Boyd LA (2002) The development of a STS marker linked to a yellow rust resistance derived from the wheat cultivar Moro. Theor Appl Genet 104:1278–1282

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Hadfield J, Hart NJ, Koebner RMD, Boyd LA (2007) STS markers for the yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome 50:259–265

    Article  CAS  PubMed  Google Scholar 

  • Soliman AS, Heyne EG, Johnston CO (1964) Genetic analysis of leaf rust resistance in eight differential varieties of wheat. Crop Sci 4:246–248

    Article  Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  CAS  PubMed  Google Scholar 

  • Sui XX, Wang MN, Chen XM (2009) Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology 99:1209–1215

    Article  CAS  PubMed  Google Scholar 

  • Thach T, Ali S, de Vallavieille-Pope C, Justesen AF, Hovmøller MS (2016) Worldwide population structure of the wheat rust fungus Puccinia striiformis in the past. Fungal Genet Biol 87:1–8

    Article  CAS  PubMed  Google Scholar 

  • The TT (1973) Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nat New Biol 241:256

    Article  CAS  PubMed  Google Scholar 

  • Tomar SMS, Singh SK, Sivasamy M, Vinod (2014) Wheat rusts in India: resistance breeding and gene deployment—a review. Indian J Genet 74(2):129–156

    Article  CAS  Google Scholar 

  • Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Article  CAS  PubMed  Google Scholar 

  • Vanderplank JE (1968) Disease resistance in plants. Academic, New York (No. SB731. V36 1968)

    Google Scholar 

  • VanderPlank JE (1975) Horizontal resistance: six suggested projects in relation to blast disease of rice. In: Horizontal resistant to blast disease in rice, CIAT series, CE-9. Cali, Colombia, pp 21–26

    Google Scholar 

  • Villareal RL, Toro ED, Mujeeb-Kazi A, Rajaram S (1995) The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breed 114:497–500

    Article  Google Scholar 

  • Walter S, Ali S, Kemen E, Nazari K, Bahri BA, Enjalbert J, Hansen JG, Brown JK, Sicheritz-Pontén T, Jones J, de Vallavieille-Pope C (2016) Molecular markers for tracking the origin and worldwide distribution of invasive strains of Puccinia striiformis. Ecol Evol 9:2790–2804

    Article  Google Scholar 

  • Wang C, Hu S, Gardner C, Lübberstedt T (2017) Emerging avenues for utilization of exotic germplasm. Trends Plant Sci 22(7):624–637

    Article  CAS  PubMed  Google Scholar 

  • Watson IA, Luig NH (1963) The classification of Puccinia graminis var. tritici in relation to breeding resistant varieties. Proc Linnean Soc NSW 88:235–258

    Google Scholar 

  • Watson IA, Luig NH (1966) Sr15-a new gene for use in the classification of Puccinia graminis var. tritici. Euphytica 15:239–250

    Google Scholar 

  • Weng DX, Xu SC, Lin RM, Wan AM, Li JP, Wu LR (2005) Microsatellite marker linked with stripe rust resistant gene Yr9 in wheat. Acta Genet Sin 32:937–941

    CAS  PubMed  Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Ortiz Islas S, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159

    Article  CAS  PubMed  Google Scholar 

  • Worland AJ, Law CN (1986) Genetic-analysis of chromosome 2D of wheat. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. Z Pflanzenzuchtung 96:331–345

    Google Scholar 

  • Yan GP, Chen XM, Line RF, Wellings CR (2003) Resistance gene-analog polymorphism markers co-segregating with the Yr5 gene for resistance to wheat stripe rust. Theor Appl Genet 106:636–643

    Article  CAS  PubMed  Google Scholar 

  • Yao ZJ, Lin RM, Xu SC, Li ZF, Wan AM, Ma ZY (2006) The molecular tagging of yellow rust resistance gene Yr7 in wheat transferred from differential host Lee using microsatellite markers. Sci Agric Sin 39:1148–1152

    Google Scholar 

  • Yildirim A, Karadag Y, Sakin MA, Gokmen S, Kandemir N, Akkaya MS, Yildirim F (2004) Transfer of stripe rust resistance gene Yr26 to Turkish wheats using microsatellite markers. Cereal Res Commun 32:25–30

    Article  CAS  Google Scholar 

  • Yu G, Zhang Q, Friesen TL, Rouse MN, Jin Y, Zhong S, Xu SS (2015) Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. Theor Appl Genet 128(3):431–443

    Article  CAS  PubMed  Google Scholar 

  • Zahravi M, Bariana HS, Shariflou MR, Balakrishna PV, Banks PM, Ghannadha MR (2003) Bulk segregant analysis of stripe rust resistance in wheat (Triticum aestivum) using microsatellite markers. In: Pogna NE, Romano M, Pogna EA, Galterio (eds) Proceedings 10th international wheat genetics symposium, Rome, Italy, pp 861–863

    Google Scholar 

  • Zeller FJ (1973) 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears ER, Sears LMS (eds) Proceedings of the fourth international wheat genetics symposium. Agricultural Experiment Station, University of Missouri: Columbia, Missouri, USA, pp 209–221

    Google Scholar 

  • Zeller FJ, Fuchs E (1983) Cytologie und Krankheitsresistenz einer 1A/1R unmehrerer 1B/1RWeizen-Roggen-Translokationsorten. Z Pflanzenzuchtg 90:285–296

    Google Scholar 

  • Zhang R, Singh RP, Lillemo M, He X, Randhawa MS, Huerta-Espino J, Singh PK, Li Z, Lan C (2018) Two main stripe rust resistance genes identified in synthetic-derived wheat line Soru#1. Phytopathology. https://doi.org/10.1094/phyto-04-18-0141-r

  • Zhao J, Meinan W, Xianming C, Zhensheng K (2016) Role of alternate hosts in epidemiology and pathogen variation of cereal rusts. Annu Rev Phytopathol 54:207–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Kamboj, D., Srivastava, P., Mishra, C.N., Singh, G., Singh, G.P. (2022). Broadening Genetic Base of Wheat for Improving Rust Resistance. In: Kashyap, P.L., et al. New Horizons in Wheat and Barley Research . Springer, Singapore. https://doi.org/10.1007/978-981-16-4449-8_17

Download citation

Publish with us

Policies and ethics