Skip to main content
Log in

Leaf Rust and Stripe Rust Resistance Genes Derived from Aegilops Sharonensis

  • Published:
Euphytica Aims and scope Submit manuscript

Summary

Linked leaf and stripe rust resistance genes introgressed into hexaploid wheat from Aegilops sharonensis provided protection in the seedling stage to a wide range of pathotypes of the two diseases. Monosomic and telosomic analyses showed that the resistance genes occur on wheat chromosome 6A. This result could be confirmed making use of mapped chromosome 6A microsatellite markers. The introgressed chromatin appeared to involve the proximal part of 6AL and the complete 6AS arm and it was thus not possible to deduce the chromosome arm harbouring the resistance genes. The resistance showed non-Mendelian transmission. The genetic background of a heterozygote interacted with the introgressed region to result in either preferential or impaired female transmission. Male transmission appeared to be affected in a different way from female transmission and was exclusive in the genetic background studied. Symbols Lr56 and Yr38 are proposed to designate the respective genes of which line 0352-4 is the appropriate source material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonov, A.I. & G.F. Marais, 1996. Identification of leaf rust resistance genes in Triticum species for transfer to common wheat. S Afr J Plant Soil 13: 55–60.

    Google Scholar 

  • Austin, R.B., C.L. Morgan, M.A. Ford, T.J. Roscoe & T.E. Miller, 1988. Increasing the photosynthetic capacity of wheat by incorporating genes from A genome diploid species. In T.E. Miller & R.M.D. Koebner (eds.), 7th Int Wheat Genetics Symp. Cambridge, England, pp. 203–208.

  • Beidler, J.L., P.R. Hilliard & R.L. Rill, 1982. Ultrasensitive staining of nucleic acids with silver. Anal Biochem 126: 374–380.

    Article  PubMed  CAS  Google Scholar 

  • Bothmer, R., O. Von Seberg & N. Jacobsen, 1992. Genetic resources in Triticeae. Hereditas 116: 141–150.

    Article  Google Scholar 

  • Doyle, J.J. & J.L. Doyle, 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15.

    Google Scholar 

  • Endo, T.R., 1990. Gametocidal chromosomes and their induction of chromosome mutations in wheat. Jpn J Genet 65: 135–152.

    Article  Google Scholar 

  • Groenewald, J.Z., A.S. Marais & G.F. Marais, 2003. Amplified fragment length polymorphism-derived microsatellite sequence linked to the Pch1 and Ep-D1 loci in common wheat. Plant Breeding 122: 83–85.

    Article  CAS  Google Scholar 

  • Kimber, G. & M. Feldman, 1987. Wild wheat – An introduction. Special Report 353, College of Agriculture, University of Missouri-Columbia, USA.

  • Knott, D.R., 1989. The wheat – rusts breeding for resistance. Springer-Verlag, Berlin Heidelberg, Germany.

    Google Scholar 

  • Marais, G.F., Z.A. Pretorius, A. S. Marais & C. R. Wellings, 2003. Transfer of rust resistance genes from Triticum species to common wheat. S Afr J Plant Soil 20: 193– 198.

    CAS  Google Scholar 

  • Marais, G.F., Z.A. Pretorius, C.R. Wellings, B. McCallum & A.S. Marais, 2005a. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143: 115–123.

    Article  CAS  Google Scholar 

  • Marais, G.F., B. McCallum, J.E. Snyman, Z.A. Pretorius & A.S. Marais, 2005b. Leaf rust and stripe rust resistance genes Lr54 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breeding 124: 538–541.

    Article  CAS  Google Scholar 

  • McCallum, B. D. & P. Seto-Goh, 2002. Physiological specialization of wheat leaf rust (Puccinia triticina) in Canada in 1999. Can J Plant Pathol 24: 205–210.

    Article  Google Scholar 

  • McIntosh, R.A., Y. Yamazaki, K.M. Devos, J. Dubcovsky, J. Rogers & R. Appels, 2003. Catalogue of gene symbols. In KOMUGI – Integrated Wheat Science Database. http://shigen.lab.nig.ac.jp/wheat/komugi/top/top.jsp (accessed: June 2005).

  • Morris, R. & E.R. Sears, 1967. The cytogenetics of wheat and its relatives. In K.S. Quisenberry & L.P. Reitz (eds.), Wheat and Wheat Improvement, American Society of Agronomy, pp. 19–87. Madison, Wisconsin, USA.

    Google Scholar 

  • Nevo, E., 1988. Genetic resources of wild emmer wheat revisited: genetic evolution, conservation and utilization. In T.E. Miller & R.M.D. Koebner (eds.), 7th Int Wheat Genetics Symp, Cambridge, England, pp. 121–126.

  • Pienaar, R. de V., 1990. Wheat X Thinopyrum hybrids. In Y.P.S. Bajaj (ed.), Biotechnology in Agriculture and Forestry, vol. 13, Springer-Verlag Berlin Heidelberg, pp. 167–217.

    Google Scholar 

  • Prins, R. & G.F. Marais, 1999. A genetic study of the gametocidal effect of the Lr19 translocation of common wheat. S Afr J Plant Soil 16: 10–14.

    Google Scholar 

  • Raupp, W.J., B.S. Gill, B. Friebe, D.L. Wilson, T.S. Cox & R.G. Sears, 1993. The Wheat Genetics Resource Center: Germplasm conservation, evaluation and utilization. In Z.S. Li & Z.Y. Xin (eds.), Proc 8th Int Wheat Genetics Symp, Beijing, China, pp. 459–465.

  • Somers, D.J., P. Isaac & K. Edwards, 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) Theor Appl Genet 109: 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  • Sourdille, P., S. Singh, T. Cadalen, G.L. Brown-Guedira, G Bay, L. Qi, B.S. Gill, P. Dufour, A. Murigneux & M. Bernard, 2004. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4: 12–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G F. Marais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marais, G.F., McCallum, B. & Marais, A.S. Leaf Rust and Stripe Rust Resistance Genes Derived from Aegilops Sharonensis . Euphytica 149, 373–380 (2006). https://doi.org/10.1007/s10681-006-9092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-006-9092-9

Keywords

Navigation