Skip to main content

Somaclonal Variation and Methods Used for Its Detection

  • Chapter
  • First Online:
Propagation and Genetic Manipulation of Plants

Abstract

During plant tissue culture, the genetic stability of in vitro plantlets is often compromised and the underlying factors include the plant species or varieties involved, mode of regeneration used, genotype and ploidy level, composition of the growth medium, duration of the callus phase, and total time in culture. During tissue culture, conversion of the explant into in vitro tissue in fact imposes stress to the plant cells, which undergo a genomic shock and require restructuring of their genomes. An array of morphological, biochemical, and molecular methods has been used to assess somaclonal variation in different plant species and variable efficiency has been observed. The array of methods including molecular markers used for ensuring genetic stability of regenerated cultures in different plants is reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdellatif MF, Hegazy AE, Aboshama HM, Emara HA, El-Shahed AA (2012) Morphological and molecular characterization of somaclonal variations in tissue culture-derived banana plants. J Genet Eng Biotechnol 10:47–53

    Article  Google Scholar 

  • Abreu IS, Carvalho CR, Clarindo WR (2014) Massal induction of Carica papaya L. ‘golden’ somatic embryos and somaclone screening by flow cytometry and cytogenetic analysis. Cytologia 79:475–484

    Article  Google Scholar 

  • Adkins SW, Kunanuvatchaidach R, Godwin ID (1995) Somaclonal variation in rice: drought tolerance and other agronomic characters. Aust J Bot 43:201–209

    Article  Google Scholar 

  • Afrasiab H, Iqbal J (2012) Biochemical and molecular characterization of somaclonal variants and induced mutants of potato (Solanum tuberosum L.) CV. Desiree. Pak J Bot 44:1503–1508

    Google Scholar 

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27:617–631

    Article  CAS  PubMed  Google Scholar 

  • Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11:563–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amberger LA, Shoemaker RC, Palmer RG (1992) Inheritance of two independent isozyme variants in soybean plants derived from tissue culture. Theor Appl Genet 84(5–6):600–607

    Article  CAS  PubMed  Google Scholar 

  • Arihara A, Kita T, Igarashi S, Goto M, Irikura Y (1995) White baron: a non-browning somaclonal variant of Danshakuimo (Irish cobbler). Am J Potato Res 72:701–705

    Article  Google Scholar 

  • Arun B, Joshi AK, Chand R, Singh BD (2003) Wheat somaclonal variants showing earliness, improved spot blotch resistance and higher yield. Euphytica 132:235–241

    Article  Google Scholar 

  • Asif MJ, Othman RY (2005) Characterization of fusarium wilt-resistant and fusarium wilt-susceptible somaclones of banana cultivar rastali (Musa AAB) by random amplified polymorphic DNA and retrotransposon markers. Plant Mol Biol Report 23:241–249

    Article  Google Scholar 

  • Baer G, Yemets A, Stadnichuk N, Rakhmetov D, Blume Y (2007) Somaclonal variability as a source for creation of new varieties of finger millet (Eleusine coracana (L.) Gaertn.). Cytol Genet 41:204–208

    Article  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Bara Anek M, Cechova J, Kovacs T, Eichmeier A, Wang S, Raddova J et al (2016) Use of combined MSAP and NGS techniques to identify differentially methylated regions in Somaclones: a case study of two stable somatic wheat mutants. PLoS One 11(10):e0165749

    Article  CAS  Google Scholar 

  • Bartoszewski G, Havey MJ, Ziółkowska A, Długosz M, Malepszy S (2007) The selection of mosaic (MSC) phenotype after passage of cucumber (Cucumis sativus L.) through cell culture—a method to obtain plant mitochondrial mutants. J Appl Genet 1:1–9

    Article  Google Scholar 

  • Berenyi M, Gichuki ST, Schmidt J, Burg K (2002) Ty1-copia retrotransposon-based S-SAP (sequence-specific amplified polymorphism) for genetic analysis of sweet potato. Theor Appl Genet 105:862–869

    Article  CAS  PubMed  Google Scholar 

  • Bhatia R, Singh KP, Jhang T, Sharma TR (2009) Assessment of clonal fidelity of micropropagated gerbera plants by ISSR markers. Sci Hortic 119:208–211

    Article  CAS  Google Scholar 

  • Biswas MK, Dutt M, Roy UK, Islam R, Hossain M (2009) Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits. Sci Hortic 122:409–416

    Article  CAS  Google Scholar 

  • Bobadilla Landey R, Cenci A, Georget F, Bertrand B et al (2013) High genetic and epigenetic stability in Coffea arabica plants derived from embryogenic suspensions and secondary embryogenesis as revealed by AFLP, MSAP and the phenotypic variation rate. PLoS One 8(2):e56372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brar DS, Jain SM (1998) Somaclonal variation: mechanism and application in crop improvement. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 15–37

    Chapter  Google Scholar 

  • Brown PTH, Göbel E, Lörz H (1991) RFLP analysis of Zea-mays callus cultures and their regenerated plants. Theor Appl Genet 81:227–232

    Article  CAS  PubMed  Google Scholar 

  • Campbell BC, LeMare S, Piperidis G, Godwin ID (2011) IRAP, a retrotransposon- based marker system for the detection of somaclonal variation in barley. Mol Breed 27:193–206

    Article  Google Scholar 

  • Carini F, De Pasquale F (2003) Micropropagation of Citrus. In: Mohan S, Ishii K (eds) Micropropagation of wood tree and fruits, vol 75. Kluwer Academic Publishers, London, pp 589–619

    Chapter  Google Scholar 

  • Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  PubMed  Google Scholar 

  • Carvalho A, Guedes Pinto H, Martins Lopes P, Lima Brito J (2010) Genetic variability of old Portuguese bread wheat cultivars assayed by IRAP and REMAP markers. Ann Appl Biol 156:337–345

    Article  CAS  Google Scholar 

  • Cassells AC, Curry RF (2001) Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. Plant Cell Tissue Org Cult 64:145–157

    Article  CAS  Google Scholar 

  • Chawla HS (2000) Introduction to plant biotechnology. Science Publishers, Inc., Enfield

    Google Scholar 

  • Chen WH, Chen TM, Fu YM, Hsieh RM, Chen WS (1998) Studies on somaclonal variation in Phalaenopsis. Plant Cell Rep 18:7–13

    Google Scholar 

  • Cloutier S, Landry B (1994) Molecular markers applied to plant tissue culture. In Vitro Cell Dev Biol Plant 30:32–39

    Article  Google Scholar 

  • Coggins LW, O’Prey M (1989) DNA tertiary structures formed in vitro by misaligned hybridization of multiple tandem repeat sequences. Nucleic Acids Res 17:7417–7426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amato F (1985) Cytogenetics of plant cells and tissue cultures and their regenerates. Plant Sci 3:73–112

    Google Scholar 

  • Damasco OP, Godwin ID, Smith MK, Adkins SW (1996) Gibberellic acid detection of dwarf off-types in micropropagated Cavendish bananas. Aust J Exp Agric 36:237–341

    Article  Google Scholar 

  • Dey T, Saha S, Ghosh PD (2015) Somaclonal variation among somatic embryo derived plants- evaluation of agronomically important somaclones and detection of genetic changes by RAPD in Cymbopogon winterianus. S Afr J Bot 96:112–121

    Article  Google Scholar 

  • Dorffling K, Melz G (1997) Improvement of frost tolerance in winter wheat by in vitro selection of proline over producing mutants. Acta Agronom Hungar 45:295–299

    CAS  Google Scholar 

  • Duncan RR (1996) Tissue culture induced variation and crop improvement. In: Donald LS (ed) Advances in agronomy, vol 58. Academic Press, Waltham, pp 201–240

    Google Scholar 

  • Edallo S, Zucchinali C, Perenzin M, Salamini F (1981) Chromosomal variation and frequency of spontaneous mutation associated with in vitro culture and plant regeneration in maize. Maydica 26:39–56

    Google Scholar 

  • Evans DA, Sharp WR (1983) Single gene mutations in tomato plants regenerated from tissue culture. Science 221:949–951

    Article  CAS  PubMed  Google Scholar 

  • Francischini JHMB, Kemper EL, Costa JB, Manechini JRV, Pinto LR (2017) DNA methylation in sugarcane somaclonal variants assessed through methylation- sensitive amplified polymorphism. Genet Mol Res 16(2):gmr16029585

    Article  CAS  Google Scholar 

  • Gao X, Yang D, Cao D, Ao M, Sui X, Wang Q et al (2010) In vitro micropropagation of Freesia hybrida and the assessment of genetic and epigenetic stability in regenerated plantlets. J Plant Growth Regul 29:257–267

    Article  CAS  Google Scholar 

  • Giorgetti L, Castiglione M, Turrini A, Ronchi V, Geri C (2011) Cytogenetic and histological approach for early detection of “mantled” somaclonal variants of oil palm regenerated by somatic embryogenesis: first results on the characterization of regeneration system. Caryologia 64:223–234

    Article  Google Scholar 

  • Gonzalez AI, Saiz A, Acedo A, Ruiz ML et al (2013) Analysis of genomic DNA methylation patterns in regenerated and control plants of rye (Secale cereale L.). Plant Growth Regul 70:227–236

    Article  CAS  Google Scholar 

  • Graebe J (2003) Gibberellin biosynthesis and control. Annu Rev Plant Physiol Plant Mol Biol 38:419–465

    Article  Google Scholar 

  • Guo D, Zhang H, Luo Z (2006) Genetic relationships of Diospyros kaki Thunb. And related species revealed by IRAP and REMAP analysis. Plant Sci 170:528–533

    Article  CAS  Google Scholar 

  • Gupta PK (1998) Chromosomal basis of somaclonal variation in plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 149–168

    Chapter  Google Scholar 

  • Halušková J, Čellárová E (1997) RFLP analysis of Hypericum perforatum L. somaclones and their progenies. Euphytica 2:229–235

    Article  Google Scholar 

  • Hang A, Bregitzer P (1993) Chromosomal variations in immature embryo-derived calli from six barley cultivars. J Hered 84:105–108

    Article  Google Scholar 

  • Hao YI, Deng XX (2002) Occurrence of chromosomal variations and plant regeneration from long-term-cultured citrus callus. In Vitro Cell Dev Biol Plant 38:472–476

    Article  Google Scholar 

  • Hautea DM, Molina GC, Balatero CH, Coronado NB, Perez EB, Alvarez MTH, Canama AO, Akuba RH, Quilloy RB, Frankie RB, Caspillo CS (2004) Analysis of induced mutants of Philippine bananas with molecular markers. In: Jain SM, Swennen R (eds) Banana improvement: cellular, molecular biology, and induced mutations. Science Publishers, Inc., Enfield, pp 45–58

    Google Scholar 

  • He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21:442–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirochika H (1993) Activation of tobacco retrotransposons during tissue culture. EMBO J 12:2521–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10:478–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollister JD, Gaut BS (2009) Epigenetic silencing of transposable elements: a trade-off between reduced transposition and deleterious effects on neighboring gene expression. Genome Res 19:1419–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhang K, Shen Y, Huang Z, Li M, Tang D, Gu M, Cheng Z (2009a) Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice. Genomics 93:274–281

    Article  CAS  PubMed  Google Scholar 

  • Huang WJ, Ning GG, Liu GF, Bao MZ (2009b) Determination of genetic stability of long-term micropropagated plantlets of Platanus acerifolia using ISSR markers. Biol Plant 53:159–163

    Article  Google Scholar 

  • Isah T (2015) Adjustments to in vitro culture conditions and associated anomalies in plants. Acta Biol Cracov Ser Bot 57:9–28

    Google Scholar 

  • Islam MA, Kloppstech K, Jacobsen HJ (2004) Efficient procedure for in vitro microrhizome induction in Curcuma longa L. (Zingiberaceae)–a medicinal plant of tropical Asia. Plant Tiss Culture 14:123–134

    Google Scholar 

  • Jaligot E, Beulé T, Rival, A (2002) Methylation-sensitive RFLPs: characterisation of two oil palm markers showing somaclonal variation-sensitive associated polymorphism. Theor Appl Genet 104:1263–1269

    Google Scholar 

  • Jiang C, Mithani A, Gan X, Belfield EJ, Klingler JP et al (2011) Regenerant Arabidopsis lineages display a distinct genome-wide spectrum of mutations conferring variant phenotypes. Curr Biol 21:1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Mushke R, Zhu H, Tu L, Lin Z, Zhang Y, Zhnag S (2008) Detection of somaclonal variation of cotton (Gossypium hirsutum) using cytogenetics, flow cytometry and molecular markers. Plant Cell Rep 27:1303–1316

    Article  CAS  PubMed  Google Scholar 

  • Kaeppler SM, Phillips RL (1993) DNA methylation and tissue culture-induced DNA methylation variation in plants. In Vitro Cell Dev Biol Plant 29:125–130

    Article  Google Scholar 

  • Kaeppler SM, Phillips RL, Olhoft P (1998) Molecular basis of heritable tissue culture-induced variation in plants. In: Jain SM et al (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, Netherlands, pp 465–484

    Chapter  Google Scholar 

  • Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Schulman AH (2006) IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc 1:2478–2484

    Article  CAS  PubMed  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    Article  CAS  Google Scholar 

  • Karp A (1994) Origins, causes and uses of variation in plant tissue cultures. In: Vasil IK, Thorpe TA (eds) Plant cell and tissue culture. Kluwer Academic Publishers, Dordrecht, pp 139–152

    Chapter  Google Scholar 

  • Khai TH, Lang NT (2005) Using SSR marker to identify allele variation of Somaclonal mutants in indica rice. Omon Rice 13:121–125

    Google Scholar 

  • Kitimu SR, Taylor J, March TJ, Tairo F, Wilkinson MJ, Rodríguez-López CM (2015) Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in DNA methylation. Front Plant Sci 6:590

    Article  PubMed Central  PubMed  Google Scholar 

  • Kunert K, Baaziz M, Cullis C (2003) Techniques for determination of true-to-type date palm (Phoenix dactylifera L.) plants: a literature review. Emirat J Agricult Sci 15:1–16

    Google Scholar 

  • Labra M, Imazio S, Grassi F, Rossoni M, Sala F (2004) Vine-1 retrotransposon-based sequence-specific amplified polymorphism for Vitis vinifera L. genotyping. Plant Breed 123:180–185

    Article  CAS  Google Scholar 

  • Larkin PJ (1998) In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 3–13

    Chapter  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation a new source of variability from cell cultures for crop improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Leva AR, Petruccelli R, Rinaldi LMR (2012) Somaclonal variation in tissue culture: a case study with olive. In: Recent advances in plant in vitro culture. IntechOpen, London, pp 123–150

    Chapter  Google Scholar 

  • Levall MW, Bengtsson K, Nilsson NO, Hjerdin A, Halldén C (1994) Molecular characterization of UV-treated sugar beet somaclones using RFLP markers. Physiol Plant 90:216–220

    Article  CAS  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–222

    CAS  PubMed  Google Scholar 

  • Li X, Yu X, Wang N, Feng Q, Dong Z, Liu L, Shen J, Liu B (2007) Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) link). Plant Cell Tissue Org Cult 90:153–168

    Article  Google Scholar 

  • Li H, Zhao X, Dai H et al (2012) Tissue culture responsive micro RNAs in strawberry. Plant Mol Biol Report 30:1047

    Article  CAS  Google Scholar 

  • Linacero R, Rueda J, Esquivel E, Bellido A, Domingo A, Vazquez A (2011) Genetic and epigenetic relationship in rye, Secale cereal L, somaclonal variation within somatic embryo-derived plants. In Vitro Cell Dev Biol Plant 47:618–628

    Article  Google Scholar 

  • Lippman ZB, Grendel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • Lisch D (2009) Epigenetic regulation of transposable elements in plants. Annu Rev Plant Biol 60:43–66

    Article  CAS  PubMed  Google Scholar 

  • Lizamore DK (2013) A Study of endogenous transposon activity in Grapevine (Vitis vinifera L.). PhD thesis. Lincoln University, Christchurch, New Zealand

    Google Scholar 

  • Lorz H, Scowcroft W (1983) Variability among plants and their progeny regenerated from protoplasts of Su/su heterozygotes of Nicotiana tabacum. Theor Appl Genet 66:67–75

    Article  CAS  PubMed  Google Scholar 

  • Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marum L, Rocheta M, Maroco J, Oliveira MM, Miguel C (2009) Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster). Plant Cell Rep 28:673–682

    Article  CAS  PubMed  Google Scholar 

  • Matthes M, Singh R, Karp A (2001) Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes. Theor Appl Genet 102:971–979

    Article  CAS  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  CAS  PubMed  Google Scholar 

  • Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725

    Article  CAS  PubMed  Google Scholar 

  • Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H et al (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53:256–264

    Article  CAS  PubMed  Google Scholar 

  • Mohanty S, Panda MK, Sahoo S, Nayak S (2011) Micropropagation of Zingiber rubens and assessment of genetic stability through RAPD and ISSR. Biol Plant 55:16–20

    Article  Google Scholar 

  • Muhammad AJ, Othman RY (2005) Characterization of Fusarium wilt-resistant and Fusarium wilt-susceptible somaclones of banana cultivar rastali (Musa AAB) by random amplified polymorphic DNA and retrotransposon markers. Plant Mol Biol Report 23:241–249

    Article  CAS  Google Scholar 

  • Mujib A, Banerjee S, Dev Ghosh P (2007) Callus induction, somatic embryogenesis and chromosomal instability in tissue culture-raised hippeastrum (Hippeastrum hybridum cv. United Nations). Propagat Ornament Plant 7:169–174

    Google Scholar 

  • Müller E, Brown PTH, Hartke S, Lörz H (1990) RFLP-analysis of rice plants regenerated from tissue cultures. In: Nijkamp HJJ et al (eds) Progress in plant cellular and molecular biology. Kluwer Academic Publication, Dordrecht, pp 153–156

    Chapter  Google Scholar 

  • Neelakandan A, Wang K (2012) Recent progress in the understanding of tissue culture-induced genome level changes in plants and potential applications. Plant Cell Rep 31:597–620

    Article  CAS  PubMed  Google Scholar 

  • Ngezahayo F, Dong Y, Liu B (2007) Somaclonal variation at the nucleotide sequence level in rice (Oryza sativa L.) as revealed by RAPD and ISSR markers and by pairwise sequence analysis. J Appl Genet 48:329–336

    Article  PubMed  Google Scholar 

  • Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24:2678–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nookaraju A, Agrawal D (2012) Genetic homogeneity of in vitro raised plants of grapevine cv. Crimson Seedless revealed by ISSR and microsatellite markers South African. J Bot 78:302–306

    CAS  Google Scholar 

  • Orzechowska M, Stepien K, Kaminska T, Siwinska D (2013) Chromosome variations in regenerants of Arabidopsis thaliana derived from 2-and 6-week-old callus detected using flow cytometry and FISH analysis. Plant Cell Tissue Org Cult 112:263–273

    Article  CAS  Google Scholar 

  • Osipova ES, Kokaeva ZG, Troitskij AV, Dolgikh YI, Shamina ZB, Gotimskij SA (2001) RAPD analysis of maize somaclones. Genetika-Moskva 37:91–96

    CAS  Google Scholar 

  • Peschke VM, Phillips RL (1991) Activation of the maize transposable element Suppressor-mutator (Spm) in tissue culture. Theor Appl Genet 81:90–97

    Article  CAS  PubMed  Google Scholar 

  • Phinney BO (1985) Gibberellin A1 dwarfism and shoot elongation in higher plants. Biol Plant 27:172–179

    Article  CAS  Google Scholar 

  • Pinto G, Loureiro J, Lopes T, Santos C (2004) Analysis of the genetic stability of Eucalyptus globulus Labill somatic embryos by flow cytometry. Theor Appl Genet 109:580–587

    Article  CAS  PubMed  Google Scholar 

  • Polanco C, Ruiz ML (2002) AFLP analysis of somaclonal variation in Arabidopsis thaliana regenerated plants. Plant Sci 162:817–824

    Article  CAS  Google Scholar 

  • Pontaroli AC, Camadro EL (2005) Somaclonal variation in Asparagus officinalis plants regenerated by organogenesis from long term callus cultures. Genet Mol Biol 28:423–430

    Article  Google Scholar 

  • Rajora OP, Rahman MH (2003) Microsatellite DNA and RAPD fingerprinting, identification and genetic relationships of hybrid poplar (Populus x canadensis) cultivars. Theor Appl Genet 106:470–477

    Article  CAS  PubMed  Google Scholar 

  • Rakocevic A, Mondy S, Tirichine L, Cosson V, Brocard L, Iantcheva A et al (2009) MERE1, a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture. Plant Physiol 151:1250–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rastogi J, Siddhant PB, Sharma BL (2015) Somaclonal variation: a new dimension for sugarcane improvement. GERF Bullet Biosci 6:5–10

    Google Scholar 

  • Ray T, Dutta I, Saha P, Das S, Roy SC (2006) Genetic stability of three economically important micropropagated banana (Musa spp.) cultivars of lower Indo-Gangetic plains, as assessed by RAPD and ISSR markers. Plant Cell Tissue Org Cult 85:211–214

    Article  CAS  Google Scholar 

  • Rodrigues PHV, Tulmann Neto A, Cassieri Neto P, Mendes BMJ (1998) Influence of the number of subcultures on somoclonal variation in micropropagated Nanico (Musa spp., AAA group). Acta Hortic 490:469–473

    Google Scholar 

  • Rodriguez-Eneiquez J, Dickinson HG, Grant-Downton RT (2011) MicroRNA misregulation: an overlooked factor generating somaclonal variation. Trends Plant Sci 16:242–248

    Article  CAS  Google Scholar 

  • Rosales-Serna R, Hernandez-Delgado S, Gonzalez-Paz M, Acosta-Gallegos A, Mayek-Perez N (2005) Genetic relationships and diversity revealed by AFLP markers in Mexican common bean bred cultivars. Crop Sci 45:1951–1957

    Article  CAS  Google Scholar 

  • Sabot F, Picault N, El-Baidouri M, Llauro C, Chaparro C et al (2011) Transpositional landscape of the rice genome revealed by paired-end mapping of high-throughput re-sequencing data. Plant J 66:241–246

    Article  CAS  PubMed  Google Scholar 

  • Saker M, Bekheet S, Taha HS, Moursy HA (2000) Detection of somaclonal variation in tissue culture-derived date palm plants using isozyme analysis and RAPD fingerprints. Biol Plant 43:347–351

    Article  CAS  Google Scholar 

  • Salman RM, Al Jibouri AAM, Al Quadhy WK, Omar MS (1988) Isozyme and chromosomal analyses of tissue culture derived date palms. Date Palm J 6:401–411

    Google Scholar 

  • Sanchez-Teyer LF, Quiroz-Figueroa F, Loyola-Vargas V, Infante D (2003) Culture-induced variation in plants of Coffea arabica cv. Caturra rojo, regenerated by direct and indirect somatic embryogenesis. Mol Biotechnol 23:107–115

    Article  CAS  PubMed  Google Scholar 

  • Sandoval J, Kerbellec F, Côte F, Doumas P (1995) Distribution of endogenous gibberellins in dwarf and giant off-types banana (Musa AAA, cv. Grand Nain) plants from in vitro propagation. Plant Growth Regul 17:219–224

    Article  CAS  Google Scholar 

  • Sato M, Kawabe T, Hosokawa M, Tatsuzawam F, Doi M (2011) Tissue culture induced flower-color changes in Saintpaulia caused by excision of the transposon inserted in the flavonoid 39, 59 hydroxylase (F3959H) promoter. Plant Cell Rep 30:929–939

    Article  CAS  PubMed  Google Scholar 

  • Schellenbaum P, Mohler V, Wenzel G, Walter B (2008) Variation in DNA methylation patterns of grapevine somaclones (Vitis vinifera L.). BMC Plant Biol 8:78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slazak B, Sliwinska E, Saługa M, Ronikier M, Bujak J, Słomka A, Goransson E, Kuta E (2015) Micropropagation of Viola uliginosa (Violaceae) for endangered species conservation and for somaclonal variation-enhanced cyclotide biosynthesis. Plant Cell Tissue Org Cult 120:179–190

    Article  CAS  Google Scholar 

  • Smulders M, de Klerk G (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  • Smýkal P, Valledor L, Rodriguez R, Griga M (2007) Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.). Plant Cell Rep 26:1985–1998

    Article  PubMed  CAS  Google Scholar 

  • Soniya EV, Banerjee NS, Das MR (2001) Genetic analysis of somaclonal variation among callus-derived plants of tomato. Curr Sci 80:1213–1215

    CAS  Google Scholar 

  • Su YH, Liu YB, Zhou C, Li XM, Zhang XS (2015) The microRNA167 controls somatic embryogenesis in Arabidopsis through regulating its target genes ARF6 and ARF8. Plant Cell Tissue Org Cult 124:405–417

    Article  CAS  Google Scholar 

  • Tam SM, Mhiri C, Vogelaar A, Kerkveld M, Pearce SR, Grandbastien MA (2005) Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor Appl Genet 110:819–831

    Article  CAS  PubMed  Google Scholar 

  • Tang CY (2005) Somaclonal variation a tool for improvement of Cavendish banana cultivars. Acta Hortic 692:61–65

    Article  Google Scholar 

  • Tawar PN, Sawant RA, Dalvi SG, Nikam AA, Tawar PG, Devarumath RM (2008) An assessment of somaclonal variation in micropropagated plants of sugarcane by RAPD markers. Sugar Technol 10:124–127

    Article  CAS  Google Scholar 

  • Taylor PWJ, Geijskes JR, Ko HL, Fraser TA, Henry RJ, Birch RG (1995) Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theor Appl Genet 90:1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Thieme R, Griess H (2005) Somaclonal variation in tuber traits of potato. Potato Res 48:153–165

    Article  Google Scholar 

  • Thomas J, Vijayan D, Joshi SD, Lopez SJ, Kumar RR (2006) Genetic integrity of somaclonal variants in tea [Camellia sinensis (L.) O Kuntze] as revealed by inter simple sequence repeats. J Biotechnol 132:149–154

    Article  CAS  Google Scholar 

  • Trujillo I, Garcia E (1996) Strategies for obtaining somaclonal variants resistant to yellow Sigatoka (Mycosphaerella musicola). Infomusa 5:212–213

    Google Scholar 

  • Us-Camas R, Rivera-Solis G, Duarte-Ake F, Dela Pena C (2014) In vitro culture: An epigenetic challenge for plants. Plant Cell Tissue Org Cult 118:187–201

    Article  CAS  Google Scholar 

  • Vijayan K, Chatterjee SN (2003) ISSR profiling of Indian cultivars of mulberry (Morus spp.) and its relevance to breeding programs. Euphytica 131:53–63

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Wang F, Zhai H, Liu Q (2007) Production of a useful mutant by chronic irradiation in sweet-potato. Sci Hortic 111:173–178

    Article  CAS  Google Scholar 

  • Waugh R, McLean K, Flavell A, Pearce S, Kumar A, Thomas B, Powell W (1997) Genetic distribution of bare 1-like retrotransposable elements in the barley genome revealed bysequence-specific amplification polymorphisms (S-SAP). Mol Gen Genet 253:687–694

    Article  CAS  PubMed  Google Scholar 

  • Wondyifraw T, Wannakrairoj S (2004) Micropropagation of Krawan (Amomum krervanh Pierre ex Gagnep). Sci Asia 30:9–15

    Article  Google Scholar 

  • Yaish MW, Peng M, Rothstein SJ (2014) Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP). Methods Mol Biol 1062:285–298

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Tabei Y, Kamada H, Kayano T, Takaiwa F (1999) Detection of somaclonal variation in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep 18:520–526

    Article  CAS  Google Scholar 

  • Zaid A, Al Kaabi H (2003) Plant-off types in tissue culture-derived date palm (Phoenix dactylifera L.). Emirat J Agricult Sci 15:17–35

    Google Scholar 

  • Zhang M, Wang H, Dong Z, Qi B, Xu K, Liu B (2010) Tissue culture induced variation at simple sequence repeats in sorghum (Sorghum bicolor L.) is genotype-dependent and associated with down-regulated expression of a mismatch repair gene, MLH3. Plant Cell Rep 29:51–59

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Wang Z, Wang N, Gao Y, Liu Y, Wu Y et al (2014) Tissue culture-induced heritable genomic variation in rice, and their phenotypic implications. PLoS One 9:e96879

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang C, Cao L, Rong L, An Z, Zhou W, Ma J, Shen WH, Zhu Y, Dong A (2015a) The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability maintenance and in plant development. Plant J 82:655–668

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Dong W, Huang L, Song A, Wang H, Fang W, Chen F, Teng N (2015b) Identification of microRNAs and their targets associated with embryo abortion during Chrysanthemum cross breeding via high-throughput sequencing. PLoS One 10:e0124371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Ranghoo-Sanmukhiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranghoo-Sanmukhiya, V.M. (2021). Somaclonal Variation and Methods Used for Its Detection. In: Siddique, I. (eds) Propagation and Genetic Manipulation of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-15-7736-9_1

Download citation

Publish with us

Policies and ethics