Skip to main content

Advances in Genetic Transformation

  • Chapter
Sorghum Molecular Breeding

Abstract

Transgenic sorghum has trailed behind other cereals in progress due to tissue culture limitations, lack of model genotypes, low regeneration, and lack of sustainability of regeneration through sub-cultures. Particle bombardment and Agrobacterium-mediated methods are frequently preferred methods for production of transgenic sorghum. Immature embryos and shoot apical meristems are the most suited as target material for genetic transformation. Transformation efficiency is improved through tailored in vitro protocols in desirable genotypes. Many agronomically important traits were introduced in sorghum genotypes to improve quality of grain and forage and to increase resistance to biotic and abiotic stresses. Despite several improvements in transgenic technology and its application for sorghum crop improvement, so far there are no reports on the release and cultivation of transgenic sorghum. Deployment of innovative genetic modification technologies that can keep away from GMO classification and biosafety concerns in sorghum can benefit the producers and consumers of sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Able JA, Rathus C, Godwin ID (2001) The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev Biol Plant 37:341–348

    Article  CAS  Google Scholar 

  • Amali P, Kingsley SJ, Ignacimuthu S (2014) Enhanced plant regeneration involving somatic embryogenesis from shoot tip explants of Sorghum bicolor (L. Moench). Asian J Plant Sci Res 4(3):26–34

    Google Scholar 

  • Balakrishna D, Vinod R, Vijaya I, Padmaja PG, Venkatesh Bhat B, Patil JV (2013) Agrobacterium-mediated genetic transformation of sorghum [Sorghum bicolor (L.) Moench] using synthetic CRY1B gene. In: Proceedings of the global consultation on Millets promotion for health and nutritional security, Directorate of Sorghum Research, Hyderabad, 18–20 December 2013, pp 284

    Google Scholar 

  • Basu A, Maiti MK, Kar S, Sen SK, Pandey B (2007) Transgenic sweet sorghum with altered lignin composition and process of preparation thereof. Nagarjuna Private Limited, Hyderabad, India. Patent no. WO/2008/102241

    Google Scholar 

  • Battraw M, Hall TC (1991) Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and b-glucuronidase genes. Theor Appl Genet 82:161–168

    Article  CAS  PubMed  Google Scholar 

  • Bhaskaran S, Smith RH, Paliwal S, Schertz KF (1987) Somaclonal variation from Sorghum bicolor (L.) Moench. cell culture. Plant Cell Tiss Org Cult 9:189–196

    Article  Google Scholar 

  • Brandão RL, Carneiro NP, de Oliveira AC, Coelho GTCP, Carneiro AA (2012) Genetic transformation of immature sorghum inflorescence via microprojectile bombardment. In: Yelda Ozden Çiftçi (ed) Transgenic plants – advances and limitations, PhD., In Tech, China

    Google Scholar 

  • Cai T, Butler L (1990) Plant regeneration from embryogenic callus initiated from immature inflorescences of several high-tannin sorghums. Plant Cell Tiss Org Cult 20:101–110

    Article  Google Scholar 

  • Cai T, Daly B, Butler L (1987) Callus induction and plant regeneration from shoot portions of mature embryos of high tannin sorghum. Plant Cell Tiss Org Cult 9:245–252

    Article  Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N, Anderson J, Kononowicz HH, Hodges TK, Axtell JD (2004) Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet Mol Biol 27:259–269

    Article  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci U S A 90:11212–11216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Casas AM, Kononowicz AK, Haan TG, Zhang L, Tomes DT, Bressan RA, Hasegawa PM (1997) Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev Biol Plant 33:92–100

    Article  Google Scholar 

  • Cheng M, Hu T, Layton J, Liu CN, Fry JE (2003) Desiccation of plant tissues post- Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. In Vitro Cell Dev Biol Plant 39:595–604

    Article  CAS  Google Scholar 

  • Devi P, Zhong H, Sticklen M (2004) Production of Transgenic sorghum plants with related HVA1 gene. In: Seetharama N, Godwin ID (eds) Sorghum tissue culture and transformation. Oxford Publishers, New Delhi, pp 75–79

    Google Scholar 

  • Elkonin LA, Pakhomova NV (2000) Influence of nitrogen and phosphorus on induction embryogenic callus of sorghum. Plant Cell Tiss Org Cult 61:115–123

    Article  Google Scholar 

  • Elkonin LA, Ravin NV, Leshko EV, Volokhina IV, Chumakov MI, Skryabin AG (2009) In planta agrobacterial transformation of sorghum plants. Biotekhnologiya 1:23–30

    Google Scholar 

  • Emani C, Sunilkumar G, Rathore KS (2002) Transgene silencing and reactivation in sorghum. Plant Sci 162:181–192

    Article  CAS  Google Scholar 

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L, Liang GH (2005a) Efficient genetic transformation of sorghum using a visual screening marker. Genome 48:321–333

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005b) Agrobacterium tumefaciens mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3:591–599

    Article  CAS  PubMed  Google Scholar 

  • Gendy C, Sene M, Van Le B, Vidal J, Van Tran TK (1996) Somatic embryogenesis and plant regeneration in Sorghum bicolor (L.) Moench. Plant Cell Rep 15:900–904

    Article  CAS  PubMed  Google Scholar 

  • Girijashankar V, Swathisree V (2009) Genetic transformation of Sorghum bicolor. Physiol Mol Biol Plant 15(4):287–302

    Article  CAS  Google Scholar 

  • Girijashankar V, Sharma HC, Sharma KK et al (2005) Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Rep 24(9):513–522

    Article  CAS  PubMed  Google Scholar 

  • Grootboom AW, O’Kennedy MM, Mkhonza NL, Kunert K, Chakauya E, Chikwamba RK (2008) In vitro culture and plant regeneration of sorghum genotypes using immature zygotic embryos as explant source. Int J Bot 4:450–455

    Article  CAS  Google Scholar 

  • Grootboom AW, Mkhonza NL, O’Kennedy MM, Chakauya E, Kunert K, Chikwamba RK (2010) Biolistic mediated sorghum (Sorghum bicolor L. Moench) transformation via Mannose and Bialaphos based selection systems. Int J Bot 6(2):89–94

    Article  CAS  Google Scholar 

  • Gupta S, Khanna VK, Singh R, Garg GK (2006) Strategies for overcoming genotypic limitations of in vitro regeneration and determination of genetic components of variability of plant regeneration traits in sorghum. Plant Cell Tiss Org Cult 86:379–388

    Article  Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ, Lemaux PG (2009) Efficient reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep 28(3):429–444

    Article  CAS  PubMed  Google Scholar 

  • Hagio T (2002) Adventitious shoot regeneration from immature embryos of sorghum. Plant Cell Tiss Org Cult 68:65–72

    Article  CAS  Google Scholar 

  • Hagio T, Blowers AD, Earle ED (1991) Stable transformation of sorghum cell cultures after bombardment with DNA coated microprojectiles. Plant Cell Rep 10(5):260–264

    Article  CAS  PubMed  Google Scholar 

  • Harshavardhan D, Rani TS, Ugalanathan K, Seetharama N (2002) An improved protocol for regeneration of Sorghum bicolor from isolated shoot apices. Plant Biotechnol 19(3):163–171

    Article  CAS  Google Scholar 

  • Hill-Ambroz KL, Weeks JT (2001) Comparison of constitutive promoters for sorghum transformation. Cereal Res Commun 29:17–24

    CAS  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M, Clemente T (2006) Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep 25(8):784–791

    Article  CAS  PubMed  Google Scholar 

  • Ignacimuthu S, Premkumar A (2014) Development of transgenic Sorghum bicolor (L.) Moench resistant to the Chilo partellus (Swinhoe) through Agrobacterium-mediated transformation. Mol Biol Genet Eng. doi:http://dx.doi.org/10.7243/2053-5767-2-1

  • Indukuri V (2014) Introgression of cry1B gene into sweet sorghum (SSV 84) by marker-assisted backcross breeding. Department of Botany, Andhra University, Waltair

    Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14(6):745–750

    Article  CAS  PubMed  Google Scholar 

  • Jeoung JM, Krishnaveni S, Muthukrishnan S, Trick HN, Liang GH (2002) Optimization of sorghum transformation parameters using genes for green fluorescent protein and beta–glucuronidase as visual markers. Hereditas 137(1):20–28

    Article  CAS  PubMed  Google Scholar 

  • Jogeswar G, Ranadheer D, Anjaiah V, Kavi Kishor PB (2007) High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell Dev Biol Plant 43:159–166

    Article  Google Scholar 

  • Kaeppler HF, Pederson JF (1996) Media effects on phenotype of callus cultures initiated from photoperiod-insensitive, elite inbred sorghum lines. Maydica 41(2):83–89

    Google Scholar 

  • Kaeppler HF, Pederson JF (1997) Evaluation of 41 elite and exotic inbred sorghum genotypes for high quality callus production. Plant Cell Tissue Organ Cult 48:71–75

    Article  Google Scholar 

  • Kononowicz AK, Casas AM, Tomes DT, Bressan RA, Hasegawa PM (1995) New vistas are opened for sorghum improvement by genetic transformation. Afr Crop Sci J 3(2):171–180

    Google Scholar 

  • Kosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation with chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afr J Biotechnol 10:3659–3670

    CAS  Google Scholar 

  • Krishnaveni S, Jeoung JM, Muthukrishnan S, Liang GH (2001) Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot. J Genet Breed 55:151–158

    CAS  Google Scholar 

  • Kumar V, Campbell LM, Rathore KS (2011) Rapid recovery and characterization of transformants following Agrobacterium-mediated T-DNA transfer to sorghum. Plant Cell Tiss Org Cult 104:137–146

    Article  CAS  Google Scholar 

  • Liu G, Godwin ID (2012) Highly efficient sorghum transformation. Plant Cell Rep 31(6):999–1007

    Article  PubMed Central  PubMed  Google Scholar 

  • Lu L, Wu X, Yin X, Morrand J, Chen X, Folk WR, Zhang ZJ (2009) Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tiss Org Cult 99:97–108

    Article  CAS  Google Scholar 

  • Maheswari M, Varalaxmi Y, Vijayalakshmi A, Yadav SK, Sharmila P, Venkateswarlu B, Vanaja M, Saradhi PP (2010) Metabolic engineering using mtlD gene enhances tolerance to water deficit and salinity in sorghum. Biol Plant 54(4):647–652

    Article  CAS  Google Scholar 

  • Mall TK (2010) Evaluation of novel input output traits in sorghum through biotechnology. Dissertation, Agronomy, University of Nebraska-Lincoln, Lincoln, Nebraska

    Google Scholar 

  • Murty UR, Visarada AA, Bharathi M (1990a) Developing tissue culture system for sorghum, Sorghum bicolor (L.) Moench. embryogenic callus induction from elite genotypes. Cereal Res Commun 18(3):257–262

    Google Scholar 

  • Murty UR, Visarada AA, Bharathi M (1990b) Developing tissue culture system for sorghum, Sorghum bicolor (L.) Moench. plant regeneration from embryogenic callus. Cereal Res Commun 18(4):355–358

    Google Scholar 

  • Mythili PK, Seetharama N, Reddy VD (1999) Plant regeneration from embryogenic cell suspension cultures of wild sorghum (Sorghum dimidiatum Stapf.). Plant Cell Rep 18:424–428

    Article  CAS  Google Scholar 

  • Nguyen TV, Thu TT, Claeys M, Angenon G (2007) Agrobacterium-mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. Plant Cell Tiss Org Cult 91:155–164

    Article  CAS  Google Scholar 

  • Oldach KH, Morgenstern A, Rother S, Girgi M, O’Kennedy MM, Lorz H (2001) Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet [Pennisetum glaucum (L.) R. Br.] and Sorghum bicolor (L.) Moench. Plant Cell Rep 20(5):416–421

    Article  CAS  Google Scholar 

  • Pandey AK, Bhat BV, Balakrishna D, Seetharama N (2010) Genetic transformation of sorghum (Sorghum bicolor (L.) Moench.). Int J Biotech Biochem 6(1):45–53

    Google Scholar 

  • Pola S (2011) Leaf discs as a source material for plant tissue culture studies of Sorghum bicolor (L.) Moench. Notulae Scientia Biologicae 3(1):70–78

    Google Scholar 

  • Pola S, Sarada Mani N, Ramana T (2007) Enhanced shoot regeneration in tissue culture studies of Sorghum bicolor. J Agric Technol 3:275–286

    Google Scholar 

  • Pola S, Sarada Mani N, Ramana T (2008) Plant tissue culture studies in Sorghum bicolor: immature embryo explants as the source material. Int J Plant Prod 2:1–14

    Google Scholar 

  • Pola S, Sarada Mani N, Ramana T (2009) Long-term maintenance of callus cultures from immature embryo of Sorghum bicolor. World J Agric Sci 5(4):415–421

    CAS  Google Scholar 

  • Prasad Sant RR (2011) Development of a transformation system for sorghum (Sorghum bicolor L.). Ph.D. thesis, Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Australia

    Google Scholar 

  • Raghuwanshi A, Birch RG (2010) Genetic transformation of sweet sorghum. Plant Cell Rep 29(9):997–1005

    Article  CAS  PubMed  Google Scholar 

  • Raju RK, Nagaraju K, Annapurna A, Srinivas R, Gawali HS, Rao SV, Visarada KBRS (2007) Simple methods to generate ample explant sources for genetic transformation of sorghum. In: Poster presented at 8th agricultural science congress held during 15–17 Feb. 2007 at Tamil Nadu Agricultural University (TNAU), Coimbatore, India

    Google Scholar 

  • Rao AM, Padma Sree K, Kavikishore PB (1995) Enhanced plant regeneration in grain and sweet sorghum by asparagine, praline and cefotaxime. Plant Cell Rep 15:72–75

    Article  CAS  PubMed  Google Scholar 

  • Rathus C, Nguyen T, Able JA, Gray SJ, Godwin ID (2004) Optimizing sorghum transformation technology via somatic embryogenesis. In: Seetharama N, Godwin ID (eds) Sorghum tissue culture, transformation and genetic engineering. ICRISAT and Oxford Publishers, New Delhi

    Google Scholar 

  • Ratnala V (2013) Genetic transformation of sorghum for stem borer resistance using cry1Aa gene via Agrobacterium-mediated approach. Dissertation, Department of Botany, Andhra University, Waltair, India

    Google Scholar 

  • Rose JB, Dunwell JM, Sunderland N (1986) Anther culture of Sorghum bicolor. Plant Cell Tiss Org Cult 6:15–32

    Article  CAS  Google Scholar 

  • Sai Kishore N, Aravinda Lakshmi Y, Pashupatinath E, Ramana Kumari B, Balakrishna D, Rao SV, Seetharama N, Visarada KBRS (2004) A simple system to transgenic sorghum using shoot apical meristem. In: Proceedings of the national symposium biohorizon 2004, 12–13 March, 2004, IIT, Delhi, New Delhi, India

    Google Scholar 

  • Sai Kishore N, Visarada KBRS, Aravinda Lakshmi Y, Pashupatinath E, Rao SV, Seetharama N (2006) In vitro culture methods in sorghum with shoot tip as the explant material. Plant Cell Rep 25(3):174–182

    Article  CAS  PubMed  Google Scholar 

  • Sai Kishore N, Visarada KBRS, Rao SV, Seetharama N (2011) Progress and prospects for Agrobacterium-mediated genetic transformation in sorghum in comparison to other cereals. Transgenic Plant J 5(1):27–34

    Google Scholar 

  • Sairam RV, Seetharama N, Devi PS, Verma A, Murthy UR, Potrykus I (1999) Culture and regeneration of mesophyll derived protoplasts of sorghum (Sorghum bicolor (L.) Moench). Plant Cell Rep 18:972–977

    Article  CAS  Google Scholar 

  • Seetharama N, Sairam RV, Rani TS (2000) Regeneration of sorghum from shoot tip cultures and field performance of the progeny. Plant Cell Tiss Org Cult 61:169–173

    Article  Google Scholar 

  • Smith RH, Bhaskaran S, Schertz K (1983) Sorghum plant regeneration from aluminum selection medium. Plant Cell Rep 2(3):129–132

    Article  CAS  PubMed  Google Scholar 

  • Sood P, Bhattacharya A, Sood A (2011) Problems and possibilities of monocot transformation. Biol Plant 55:1–15

    Article  CAS  Google Scholar 

  • Syamala D, Devi P (2003) Efficient regeneration of sorghum, Sorghum bicolor (L.) Moench, from shoot-tip explant. Indian J Exp Biol 41(12):1482–1486

    CAS  PubMed  Google Scholar 

  • Tadesse Y, Jacobs M (2004) Nutritional quality improvement of sorghum through genetic transformation. In: Seetharama N, Godwin ID (eds) Sorghum tissue culture and transformation. Oxford Publishers, New Delhi, pp 81–84

    Google Scholar 

  • Tadesse Y, Sagi L, Swennen R, Jacobs M (2003) Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microprojectile bombardment. Plant Cell Tiss Org Cult 75:1–18

    Article  CAS  Google Scholar 

  • Urriola J, Rathore KS (2014) Temporal and spatial activities of a rice glutelin promoter in transgenic sorghum. Plant Cell Tiss Org Cult 116:227–234

    Article  CAS  Google Scholar 

  • Visarada KBRS, Sai Kishore N, Balakrishna D, Rao SV (2003) Transient gus expression studies in sorghum to develop a simple protocol for Agrobacterium-mediated genetic transformation. J Genet Breed 57:147–154

    CAS  Google Scholar 

  • Visarada KBRS, Rajani G, Prasad GS, Royer M (2013) Development of transgenic sweet sorghum for tolerance to stem borer. Sorghum Times 9:6

    Google Scholar 

  • Visarada KBRS, Padmaja PG, Sai Kishore N, Pashupatinath E, Royer M, Seetharama N, Patil JV (2014) Production and evaluation of transgenic sorghum for resistance to stem borer. In Vitro Cell Dev Biol Plant 50:176–189

    Article  CAS  Google Scholar 

  • Wang W, Wang J, Yang C, Li Y, Liu L, Xu J (2007) Pollen-mediated transformation of Sorghum bicolor plants. Biotechnol Appl Biochem 48:79–83

    Article  CAS  PubMed  Google Scholar 

  • Wu E, Lenderts B, Glassman K, Berezowska-Kaniewska M, Christensen H, Asmus T, Zhen S, Chu U, Cho MJ, Zhao ZY (2014) Optimized Agrobacterium-mediated sorghum transformation protocol and molecular data of transgenic sorghum plants. In Vitro Cell Dev Biol Plant 50:9–18

    Article  PubMed Central  Google Scholar 

  • Zhang W, Dewey R, Boss W, Phillippy B, Qu R (2013) Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Mol Biol 81:273–286

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZY, Cai T, Tagliani L et al (2000) Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44(6):789–798

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZY, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D (2001) High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8:323–333

    Article  CAS  Google Scholar 

  • Zhao L, Liu S, Song S (2010) Optimization of callus induction and plant regeneration from germinating seeds of sweet sorghum (Sorghum bicolor Moench). Afr J Biotechnol 9(16):2367–2374

    CAS  Google Scholar 

  • Zhong H, Wang W, Sticklen M (1998) In vitro morphogenesis of Sorghum bicolor (L.) Moench: efficient plant regeneration from shoot apices. J Plant Physiol 153(5–6):719–726

    Article  CAS  Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM, Liang GH (1998) Biolistic transformation of sorghum using a rice chitinase gene. J Genet Breed 52(3):243–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. R. S. Visarada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Visarada, K.B.R.S., Sai Kishore, N. (2015). Advances in Genetic Transformation. In: Madhusudhana, R., Rajendrakumar, P., Patil, J. (eds) Sorghum Molecular Breeding. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2422-8_9

Download citation

Publish with us

Policies and ethics