Skip to main content
Log in

Problems and possibilities of monocot transformation

  • Review
  • Published:
Biologia Plantarum

Abstract

Biotechnological improvement of monocots is often hampered by the lack of efficient regeneration systems, requisite wound responses and low cell competence. Despite these limitations, the biolistic and Agrobacterium methods have been successfully used to produce several transgenic monocots by adjusting the parameters that govern efficient delivery and integration of transgene(s) into plant genome. It is now possible to transform even difficult monocots using tailor-made gene constructs and promoters, suitable A. tumefaciens strains and a proper understanding of the entire process. This success has been reviewed in the present article and a special emphasis was laid on the measures that were taken in overcoming the difficulties that arise due to the differential responses of monocots and dicots. This information is necessary for biotechnological improvement of still newer monocotyledonous plants that have been hitherto difficult to transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FISH:

fluorescence in situ hybridization

NLS:

nuclear localization signal

NSE:

nuclear signal E1

PEG:

polyethylene glycol

vir:

virulence

References

  • Abumhadi, N., Kamenarova, K., Todorovska, E., Dimov, G., Takumi, S., Nakamura, C., Anzai, H., Atanassov, A.: Effects of three promoters in barley transformation by particle bombardment of mature and immature embryos. — Biotechnol. Biotechnol. Equip. 19: 63–69, 2005.

    Google Scholar 

  • Aguado Santacruz, G.A., Rascón Cruz, Q., Cabrera Ponce, J.L., Martínez Hernández, A., Olalde Portugal, V., Herrera Estrella, L.: Transgenic plants of blue grama grass, Bouteloua gracilis (H.B.K.) Lag. ex Steud., from microprojectile bombardment of highly chlorophyllous embryogenic cells. — Plant Cell Rep. 104: 763–771, 2002.

    CAS  Google Scholar 

  • Aldemita, R.R, Hodges, T.K.: Agrobacterium tumefaciens-mediated transformation of japonica and indica rice varieties. — Planta 199: 612–617, 1996.

    Article  CAS  Google Scholar 

  • Alt-Morbe, J., Kuhlmann, H., Schroder, J.: Differences in induction of Ti plasmid virulence genes virG and virD, and continued control of virD expression by four external factors. — Mol. Plant-Microbe Interact. 2: 301–308, 1989.

    Article  Google Scholar 

  • Aragao, F.J.L., Grossi de Sa, M.F., Davey, M.R., Brasileiro, A.C.M., Faria, J.C., Rech, E.L.: Factors influencing transient gene expression in bean (Phaseolus vulgaris L.) using an electrical particle acceleration device. — Plant Cell Rep. 12: 483–490, 1993.

    Article  CAS  Google Scholar 

  • Arencibia, A.D., Carmona, E.R., Tellez, P., Chan, M.T., Yu, S.M., Trujillo, L.E., Oramas, P.: An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. — Transgenic Res. 7: 1–10, 1998.

    Article  Google Scholar 

  • Armstrong, C.L., Rout, J.R.: A novel Agrobacterium-mediated plant transformation method. — Int. Patent Publ. WOO1/09302 A2. 2001.

  • Ashby, A.M., Watson, M.D., Loake, G.J., Shaw, C.H.: Ti plasmid-specified chemotaxis of Agrobacterium tumefaciens C58C1 toward vir-inducing phenolic compounds and soluble factors from monocotyledonous and dicotyledonous plants. — J. Bacteriol. 170: 4181–4187, 1988.

    CAS  PubMed  Google Scholar 

  • Ashby, A.M., Watson, M.D., Shaw, C.H.: A Ti-plasmid determined function is responsible for chemotaxis towards the plant wound product acetosyringone. — FEMS Microbiol. Lett. 41: 189–192, 1987.

    Article  CAS  Google Scholar 

  • Assem, S.K., El-Itriby, H.A., Hussein Ebtissam, H.A., Saad, M.E., Madkour, M.A.: Comparison of the efficiency of some novel maize promoters in monocot and dicot plants. — Arab. J. Biotechnol. 5: 57–66, 2002.

    Google Scholar 

  • Aulinger, E., Peter, S.O., Schmid, J.E., Stamp, P.: Gametic embryos of maize as a target for biolistic transformation: comparison to immature zygotic embryos. — Plant Cell Rep. 21: 585–591, 2003.

    CAS  PubMed  Google Scholar 

  • Azhakanandam, K., McCabe, M.S., Power, J.B., Lowe, K.C., Cocking, E.C., Davey, M.R.: T-DNA transfer, integration, expression and inheritance in rice: effects of plant genotype and Agrobacterium super-virulence. — J. Plant Physiol. 157: 429–439, 2000.

    CAS  Google Scholar 

  • Back, A., Jung, S.: The lack of plastidal transit sequence cannot override the targeting capacity of Bradyrhizobium japonicum 5-aminolevulinic acid synthase in transgenic rice. — Biol. Plant. 54: 279–284, 2010.

    Article  CAS  Google Scholar 

  • Baron, C., Zambryski, P.C.: The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? — Annu. Rev. Genet. 29: 107–129, 1995.

    Article  CAS  PubMed  Google Scholar 

  • Barton, K.A., Binns, A.N., Matzke, A.J.M., Chilton, M.D.: Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA and transmission of T-DNA to R1 progeny. — Cell 32: 1033–1043, 1983.

    Article  CAS  PubMed  Google Scholar 

  • Becker, D., Brettschneider, R., Lörz, H.: Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. — Plant J. 5: 299–307, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Bekkaoui, F., Datla, R.S.S., Pilon, M., Tautonts, T.E., Crosby, W.L., Dunstan, D.I.: The effects of promoter on transient expression in conifer cell lines. — Theor. appl. Genet. 79: 353–359, 1990.

    Article  CAS  Google Scholar 

  • Binns, A.N.: Agrobacterium mediated gene delivery and the biology of host range limitations. — Physiol. Plant. 79: 135–139, 1990.

    Article  CAS  Google Scholar 

  • Binns, A.N., Thomashow, M.F.: Cell biology of Agrobacterium infection and transformation of plants. — Annu. Rev. Microbiol. 42: 575–606, 1988.

    Article  CAS  Google Scholar 

  • Birch, R.G.: Plant transformation: problems and strategies for practical application. — Annu. Rev. Plant Physiol. Plant mol. Biol. 48: 297–326, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Birch, R.G., Franks, T.: Development and optimisation of microprojectile systems for plant genetic transformation. — Aust. J. Plant Physiol. 18: 453–470, 1991.

    Article  CAS  Google Scholar 

  • Bottinger, P., Steinmetz, A., Scheider, O., Pickardt, T.: Agrobacterium mediated transformation of Vicia faba. — Mol. Breed. 8: 243–254, 2001.

    Article  CAS  Google Scholar 

  • Boulton, M.I., Steinkellner, H., Donson, J., Markham, P.G., King, D.I., Davies, J.W.: Mutational analysis of the virionsense genes of maize streak virus. — J. gen. Virol. 70: 2309–2323, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Bower, R., Birch, R.G.: Transgenic sugarcane plants via microprojectile bombardment. — Plant J. 2: 409–416, 1992.

    Article  CAS  Google Scholar 

  • Braun, A.C.: Conditioning of the host cell as a factor in the transformation process in crown gall. — Growth 16: 65–74, 1952.

    CAS  PubMed  Google Scholar 

  • Brencic, A., Angert, E.R., Winans, S.C.: Unwounded plants elicit Agrobacterium vir gene induction and T-DNA transfer: transformed plant cells produce opines yet are tumor free. — Mol. Microbiol. 57: 1522–1531, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Bussingler, M., Hurst, J., Flavell, R.: DNA methylation and regulation of globin gene expression. — Cell 34: 197–206, 1983.

    Article  Google Scholar 

  • Bytebier, B., Deboeck, F., Greve, H.D., Van Montagu, M., Hernalsteens, J.P.: T-DNA organization in tumor cultures and transgenic plants of monocotyledon Asparagus officinalis. — Proc. nat. Acad. Sci. USA 84: 5345–5349, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Callis, J., Fromm, M., Walbot, V.: Introns increase gene expression in cultured maize cells. — Genes Dev. 1: 1183–1200, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Cao, J., Duan, X., McElroy, D., Wu, R.: Regeneration of herbicide resistant transgenic rice plants following microprojectile-mediated transformation of suspension culture cells. — Plant Cell Rep. 11: 586–591, 1992.

    Article  CAS  Google Scholar 

  • Carpita, N.C.: Structure and biogenesis of the cell walls of grasses. — Annu. Rev. Plant Physiol. Plant mol. Biol. 47: 445–476, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Carrer, H., Hockenberry, T.N., Svab, V., Maliga, P.: Kanamycin resistance as a selectable marker for plastid transformation in tobacco. — Mol. gen. Genet. 241: 49–56, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Cassells, A.C., Curry, R.F.: Oxidative stress and physiological, epigenetic and genetic variability in plant tissue culture: implications for micropropagators and genetic engineers. — Plant Cell Tissue Organ Cult. 64: 145–157, 2001.

    Article  CAS  Google Scholar 

  • Chan, M.T., Chang, H.H., Ho, S.L., Tong, W.F., Yu, S.M.: Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. — Plant mol. Biol. 22: 491–506, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Chan, M.T., Lee, T.M., Chan, H.H.: Transformation of indica rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. — Plant Cell Physiol. 33: 577–583, 1992.

    CAS  Google Scholar 

  • Chen, D.F., Dale, P.J.: A comparison of methods for delivering DNA to wheat: the application of wheat dwarf virus DNA to seeds with exposed apical meristems. — Transgenic Res. 1: 93–100, 1992.

    Article  CAS  Google Scholar 

  • Chen, W.H., Davey, M.R., Power, J.B., Cocking, E.C.: Sugarcane protoplasts: factors affecting division and plant regeneration. — Plant Cell Rep. 7: 344–347, 1988.

    Article  CAS  Google Scholar 

  • Cheng, M., Fry, J.E., Pang, S., Zhou, H., Hironaka, C.M., Duncan, D.R., Conner, T.W., Wan, Y.: Genetic transformation of wheat mediated by Agrobacterium tumefaciens. — Plant Physiol. 115: 971–980, 1997.

    CAS  PubMed  Google Scholar 

  • Cheng, M., Hu, T.C., Layton, J., Liu, C.N., Fry, J.E.: Dessication of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat. — In Vitro cell. dev. Biol. Plant 39: 595–604, 2003.

    Article  CAS  Google Scholar 

  • Cheng, M.I., Jarret, R.L.I., Li, Z.I., Xing, A.I., Demski, J.W.: Production of fertile transgenic peanut (Arachis hypogea L.) plants using Agrobacterium tumefaciens. — Plant Cell Rep. 15: 653–657, 1996.

    Article  CAS  Google Scholar 

  • Chibbar, R.N., Kartha, K.K., Datla, R.S.S., Leung, N., Caswell, K., Mallard, C.S., Steinhauer, L.: The effect of different promoter-sequences on transient expression of gus reporter gene in cultured barley (Hordeum vulgare L.) cells. — Plant Cell Rep. 12: 506–509, 1993.

    Article  CAS  Google Scholar 

  • Cho, M.J., Choi, H.W., Lemaux, P.G.: Transformed T0 orchardgrass (Dactylis glomerata L.) plants produced from highly regenerative tissues derived from mature seeds. — Plant Cell Rep. 20: 318–324, 2001.

    Article  CAS  Google Scholar 

  • Cho, M.J., Ha, C.D., Lemaux, P.G.: Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues. — Plant Cell Rep. 19: 1084–1089, 2000.

    Article  CAS  Google Scholar 

  • Cho, M.J., Jiang, W., Lemaux, P.G.: Transformation of recalcitrant barley cultivars through improvement of regenerability and decreased albinism. — Plant Sci. 138: 229–244, 1998.

    Article  CAS  Google Scholar 

  • Cho, M.J., Jiang, W., Lemaux, P.G.: High-frequency transformation of oat via microprojectile bombardment of seed derived highly regenerative cultures. — Plant Sci. 148: 917, 1999.

    Article  Google Scholar 

  • Christou, P.: Genetic engineering of crop legumes and cereals: current status and recent advances. — Agro-food-industry Hi-Tech March/April: 17–27, 1994.

  • Christou, P., Ford, T.L., Kofron, M.: Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. — Biotechnology 9: 957–962, 1991.

    Article  Google Scholar 

  • Christou, P., Platt, S.G., Ackerman, M.C.: Opine synthesis in wild type plant tissue. — Plant Physiol. 82: 218–221, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Citovsky, V., Warnick, D., Zambryski, P.: Nuclear import of Agrobacterium VirD2 and VirE2 proteins in maize and tobacco. — Proc. nat. Acad. Sci. USA 91: 3210–3214, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Dalton, S.J., Bettany, A.J.E., Timms, E., Morris, P.: Cotransformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. — Plant Cell Rep. 18: 721–726, 1999.

    Article  CAS  Google Scholar 

  • Datta, S.K., Peterhans, A., Datta, K., Potrykus, I.: Genetically engineered fertile indica-rice recovered from protoplasts. — Biotechnology 14: 315–319, 1990.

    Google Scholar 

  • De Cleene, M., De Ley, J.: The host range of crown gall. — Bot. Rev. 42: 389–466, 1976.

    Article  Google Scholar 

  • Delbreil, B., Guerche, P., Jullien, M.: Agrobacterium mediated transformation of Asparagus officinalis L. long term embryogenic callus and regeneration of transgenic plants. — Plant Cell Rep. 12: 129–132, 1993.

    Article  CAS  Google Scholar 

  • D’Halluin, K., Bonne, E., Bossut, M., De Beuckeleer, M., Leemans, J.: Transgenic maize plants by tissue electroporation. — Plant Cell 4: 1495–1505, 1992.

    Article  PubMed  Google Scholar 

  • Dierk, S.: Resistance response physiology and signal transduction. — Curr. Biol. 1: 305–310, 1998.

    Google Scholar 

  • Domisse, E.M., Leuing, D.W.M., Shaw, M., Conner, A.J.: Onion is a monocotyledonous host for Agrobacterium. — Plant Sci. 69: 249–257, 1990.

    Article  Google Scholar 

  • Dong, J., Kharb, P., Teng, W., Hall, T.C.: Characterization of rice transformed via an Agrobacterium-mediated inflorescence transformation. — Mol. Breed. 7: 187–194, 2001.

    Article  CAS  Google Scholar 

  • Dong, J., Teng, W., Buchholz, W.G., Hall, T.C.: Agrobacterium-mediated transformation of Javanica rice. — Mol. Breed. 2: 267–276, 1996.

    Article  CAS  Google Scholar 

  • Dong, J.Z., McHughen, A.: Patterns of transformation intensity on flax hypocotyls inoculated with Agrobacterium tumefaciens. — Plant Cell Rep. 10: 555–560, 1991.

    Article  CAS  Google Scholar 

  • Dong, S., Qu, R.: High efficiency transformation of tall fescue with Agrobacterium tumefaciens. — Plant Sci. 168: 1453–1458, 2005.

    Article  CAS  Google Scholar 

  • Dong, S., Shew, H.D., Tredway, L.P., Lu, J., Sivamani, E., Miller, E.S., Qu, R.: Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases. — Transgenic Res. 17: 47–57, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Douglas, C., Halperin, W., Gordon, M., Nester, E.: Specific attachment of Agrobacterium tumefaciens to bamboo cells in suspension cultures. — J. Bacteriol. 161: 764–766, 1985.

    CAS  PubMed  Google Scholar 

  • Draper, J., Mackenzie, A., Davey, M.R., Freeman, J.P.: Attachment of Agrobacterium tumefaciens to mechanically isolated Asparagus cells. — Plant Sci. Lett. 29: 227–236, 1983.

    Article  Google Scholar 

  • Enriquez Obregon, G.A., Prieto Samsonov, D.L., De la Riva, G.A., Perez, M.I., Selman Housein, G., Vazquz Padron, R.I.: Agrobacterium mediated japonica rice transformation a procedure assisted by an anti-necrotic treatment. — Plant Cell Tissue Organ Cult. 59: 159–168l, 1999.

    Article  CAS  Google Scholar 

  • Enriquez Obregon, G.A., Vazquez Padron, R.I., Prieto Samsonov, D.L., De la Riva, G.A., Selman-Housein, G.: Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium-mediated transformation. — Planta 206: 20–27, 1998.

    Article  CAS  Google Scholar 

  • Enriquez Obregon, G.A., Vazquez Padron, R.I., Prieto Samsonov, D.L., Perez, M., Selman-Housein, G.: Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. — Biotechnol. Aplicada 14: 169–174, 1997.

    CAS  Google Scholar 

  • Finer, J.J., McMullen, M.D.: Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. — In Vitro cell. dev. Biol. Plant 27: 175–182, 1991.

    Article  Google Scholar 

  • Frame, B.R., Drayton, P.R., Bragnall, S.V., Lewnau, C.J., Bullock, W.P., Wilson, H.M., Dunwell, J.M., Thompson, J.A., Wang, K.: Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. — Plant J. 6: 941–948, 1994.

    Article  CAS  Google Scholar 

  • Frame, B.R., Shou, H., Chikwamba, R.K., Zhang, Z.I., Xiang, C.I., Fonger, T.M., Pegg, S.E.K., Li, B., Nettleton, D.S., Pei, D., Wang, K.: Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. — Plant Physiol. 129: 13–22, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Franks, T., Birch, R.G.: Gene transfer into intact sugarcane cells using microprojectile bombardment. — Aust. J. Plant Physiol. 18: 471–480, 1991.

    Article  CAS  Google Scholar 

  • Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J., Klien, T.M.: Inheritance and expression of chimeric genes in the progeny of maize plants. — Biotechnology 8: 833–839, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Gao, F., Chen, J.-M., Xiong, A.-S., Peng, R.-H., Liu, J.-G., Cai, B., Yao, Q.-H.: Isolation and chatacterization of a novel AP2/EREBP-type treanscription factor OsAP211 in Oryza sativa. — Biol. Plant. 53: 643–649, 2009.

    Article  CAS  Google Scholar 

  • Gordan Kamm, W.J., Spencer, M.T., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brien, J.V., Chambers, S.A., Adams, W.R., Jr, Willets, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P., Lemaux, P.G.: Transformation of maize cells and regeneration of fertile transgenic plants. — Plant Cell 2: 603–618, 1990.

    Article  Google Scholar 

  • Gould, J., Devey, M., Hasegawa, O., Ulian, E.C., Paterson, G., Smith, R.H.: Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot tip. — Plant Physiol. 95: 426–434, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Graves, A.E., Goldman, S.L.: The transformation of Zea mays seedlings with Agrobacterium tumefaciens. — Plant mol. Biol. 7: 43–50, 1986.

    Article  CAS  Google Scholar 

  • Graves, A.C.F., Goldman, S.L.: Agrobacterium tumefaciensmediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA encoded genes. — J. Bacteriol. 169: 1745–1746, 1987.

    CAS  PubMed  Google Scholar 

  • Graves, A.E., Goldman, S.L., Banks, S.W., Graves, A.C.F.: Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp. and Triticum aestivum. — J. Bacteriol. 170: 2395–2400, 1988.

    CAS  PubMed  Google Scholar 

  • Grimsley, N.H.: Agroinfection. — Physiol. Plant. 79: 147–153, 1990.

    Article  CAS  Google Scholar 

  • Grimsley, N., Hohn, B., Ramos, C., Kado, C., Rogowsky, P.: DNA transfer from Agrobacterium to Zea mays or Brassica by agroinfection is dependent on bacterial virulence functions. — Mol. gen. Genet. 217: 309–316, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Grimsley, N.H., Ramos, C., Hein, T., Hohn, B.: ’Agroinfection’ an alternative route for viral infection of plants by using the Ti plasmid. — Proc. nat. Acad. Sci. USA 83: 3282–3286, 1986.

    Article  CAS  PubMed  Google Scholar 

  • Grimsley, N.H., Ramos, C., Hein, T., Hohn, B.: Meristematic tissues of maize plants are most susceptible to Agroinfection with maize streak virus. — Biotechnology 6: 185–189, 1988.

    Article  Google Scholar 

  • Guo, G.Q., Maiwald, F., Lorenzen, P., Steinbiss, H.H.: Factors influencing T-DNA transfer into wheat and barley cells by Agrobacterium tumefaciens. — Cereal Res. Commun. 26: 15–22, 1998.

    Google Scholar 

  • Hansen, G., Das, A., Chilton, M.D.: Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. — Proc. nat. Acad. Sci. USA 91: 7603–7607, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Hansen, G., Shillito, R.D., Chilton, M.D.: T-strand integration in maize protoplasts after codelivery of a T-DNA substrate and virulence genes. — Proc. nat. Acad. Sci. USA 94: 11726–11730, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Hashizume, F., Tsuchiya, T., Ugaki, M., Niwa, Y., Tachibana, N., Kowyama, Y.: Efficient Agrobacterium mediated transformation and the usefulness of a synthetic GFP reporter gene in leading varieties of japonica rice. — Plant Biotechnol. 16: 397–401, 1999.

    CAS  Google Scholar 

  • Hayashimoto, A., Li, Z., Murai, N.: A polyethylene glycolmediated protoplast transformation system for production of fertile transgenic rice plants. — Plant Physiol. 93: 857–863, 1990.

    Article  CAS  PubMed  Google Scholar 

  • He, D.G., Mouradov, A., Yang, Y.M., Mouradova, E., Scott, K.J.: Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. — Plant Cell Rep. 14: 192–196, 1994.

    Article  CAS  Google Scholar 

  • Heath, J.D., Boulton, M.I., Raineri, D.M., Doty, S.L., Mushegian, A.R., Charles, T.C., Davies, J.W., Nester, E.W.: Discrete regions of the sensor protein Ira determine the strain-specific ability of Agrobacterium to infect maize. — Mol. Plant-Microbe Interact. 10: 221–227, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Hernalsteens, J.P., Thia Toong, L., Schell, J., Van Montagu, M.: An Agrobacterium transformed cell culture from the monocot Asparagus officinalis. — EMBO J. 13: 3039–3041, 1984.

    Google Scholar 

  • Hiei, Y., Komari, T., Kubo, T.: Transformation of rice mediated by Agrobacterium tumefaciens. — Plant mol. Biol. 35: 205–218, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Hiei, Y., Ohta, S., Komari, T., Kumashiro, T.: Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. — Plant J. 6: 271–281, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Hooykaas, P.J.J.: Transformation of plant cells via Agrobacterium. — Plant mol. Biol. 13: 327–336, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Hooykaas van Slogteren, G.M.S., Hooykaas, P.J.J., Schilperoort, R.A.: Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. — Nature 311: 763–764, 1984.

    Article  CAS  Google Scholar 

  • Ishida, Y., Satio, H., Ohta, S., Hiei, Y., Komari, T., Kumashiro, T.: High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. — Nature Biotechnol. 14: 745–750, 1996.

    Article  CAS  Google Scholar 

  • Jin, S., Komari, T., Gordon, M.P., Nester, E.W.: Genes responsible for the supervirulence phenotype of Agrobacterium tumefaciens A281. — J. Bacteriol. 169: 4417–4425, 1987.

    CAS  PubMed  Google Scholar 

  • Kaeppler, H.F., Somers, D.A., Rines, H.W., Cockburn, A.F.: Silicon-carbide fiber-mediated stable transformation of plant cells. — Theor. appl. Genet. 84: 560–566, 1992.

    Article  Google Scholar 

  • Kahl, G.: Molecular biology of wound healing: the conditioning phenomenon. — In: Kahl, G., Schell, J. (ed.): Molecular Biology of Plant Tumors. Pp. 211–268. Academic Press, New York 1982.

    Google Scholar 

  • Karami, O., Esna-Ashari, M., Karimi Kurdistani, G., Aghavaisi, B.: Agrobacterium-mediated genetic transformation of plants: the role of host. — Biol. Plant. 53: 201–212, 2009.

    Article  CAS  Google Scholar 

  • Kartha, K.K., Chibbar, R.N., Georges, F., Leung, N., Caswell, K., Kendall, E., Qureshi, J.: Transient expression of chloramphenicol acetlytransferase (CAT) gene in barley cell cultures and immature embryos through microprojectile bombardment. — Plant Cell Rep. 8: 429–432, 1989.

    Article  CAS  Google Scholar 

  • Khrustaleva, L.I., Kik, C.: Localization of single-copy T-DNA insertion in transgenic shallots (Allium cepa) by using ultrasensitive FISH with tyramide signal amplification. — Plant J. 25: 699–707, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Kieliszewski, M.J., Leykam, J.F., Lamport Derek, T.A.: Structure of the threonine-rich extensin from Zea mays. — Plant Physiol. 92: 316–326, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.K., Lemaux, P.G., Buchanan, B.B., Cho, M.J.: Reduction of genotype limitation in wheat (Triticum aestivum L.) transformation. — J. Soc. in Vitro Biol. 35: 43A, 1999.

    Google Scholar 

  • Kim, S.R., Lee, J., Jun, S.H., Park, S., Kang, H.G., Kwon, S., An, G.: Transgene structures in T-DNA-inserted rice plants. — Plant mol. Biol. 52: 761–773, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Klein, T.M., Gradziel, T., Fromm, M.E., Sanford, J.C.: Factors influencing gene delivery into Zea mays cells by high velocity microprojectiles. — Biotechnology 6: 559–563, 1988.

    Article  CAS  Google Scholar 

  • Klein, T.M., Kornstein, L., Fromm, M.E.: Genetic transformation of maize cells by particle bombardment and the influence of methylation on foreign-gene expression. — In: Gustafson, J.P. (ed.): Gene Manipulation in Plant Improvement II. Pp. 265–288. Plenum Press, New York 1990.

    Google Scholar 

  • Klein, T.M., Roth, B.A., Fromm, M.E.: Regulation of anthocyanin biosynthetic genes introduced into intact maize tissues by microprojectiles. — Proc. nat. Acad. Sci. USA 86: 6681–6685, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Komari, T.: Transformation of callus cultures of nine plant species mediated by Agrobacterium. — Plant Sci. 60: 223–229, 1989.

    Article  CAS  Google Scholar 

  • Koncz, C., Németh, K., Redei, G.P., Scell, J.: — In: Paszkowski, J. (ed.): Homologous Recombination and Gene Silencing in Plants. Pp. 167–189. Kluwer Academic Publishers, Dordrecht 1994.

    Google Scholar 

  • Kondo, T., Hasegawa, H., Suzuki, M.: Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium mediated gene transfer. — Plant Cell Rep. 19: 989–993, 2000.

    Article  CAS  Google Scholar 

  • Kumar, N., Pandey, S., Bhattacharya, A., Ahuja, P.S.: Do leaf surface characteristics affect Agrobacterium infection in tea [Camellia sinensis (L.) O Kuntze]? — J. Biosci. 29: 309–317, 2004.

    Article  PubMed  Google Scholar 

  • Kumlehn, J., Serazetdinora, L., Hensel, G., Becker, D., Loerz, H.: Genetic transformation of barley (Hordeum vulgare L.) via infection of androgenetic pollen culture with Agrobacterium tumefaciens. — Plant Biotechnol. J. 4: 251–258, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Kumria, R., Waie, B., Rajam, M.V.: Plant regeneration from transformed embryogenic callus of elite indica rice via Agrobacterium. — Plant Cell Tissue Organ Cult. 67: 63–71, 2001.

    Article  CAS  Google Scholar 

  • Last, D.I., Brettell, R.I.S., Chamberlain, D.A., Chaudhury, A.M., Larkin, P.J., Marsh, E.L, Peacock, W.J., Dennis, E.S.: pEmu: an improved promoter for gene expression in cereal cells. — Theor. appl. Genet. 81: 581–588, 1991.

    Article  CAS  Google Scholar 

  • Li, L., Qu, R., De Kochko, A., Fauquet, C., Beachy, R.N.: An improved rice transformation system using the biolistic method. — Plant Cell Rep. 12: 250–255, 1993.

    Article  Google Scholar 

  • Li, X.Q., Liu, C.N., Ritchie, S.T., Peng, J., Gelvin, S.B., Hodges, T.K.: Factors influencing Agrobacterium-mediated transient expression of gusA in rice. — Plant mol. Biol. 20: 1037–1048, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Lippincott, B.B., Lippincott, J.A.: Bacterial attachment to a specific wound site as an essential stage in tumor initiation by Agrobacterium tumefaciens. — J. Bacteriol. 97: 620–628, 1969.

    CAS  PubMed  Google Scholar 

  • Lippincott, B.B., Whatley, M.H., Lippincott, J.A.: Tumor induction by Agrobacterium involves attachment of the bacterium to a site on the host plant cell wall. — Plant Physiol. 59: 388–390, 1977.

    Article  CAS  PubMed  Google Scholar 

  • Lippincott, J.A., Lippincott, B.B.: Cell walls of crown-gall tumors and embryonic plant tissues lack Agrobacterium attachment sites. — Science 199: 1075–1077, 1978.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Nester, E.W.: Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. — Proc. nat. Acad. Sci. USA 103: 4658–4662, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lonsdale, D., Onde, S., Cumming, A.: Transient expression of exogenous DNA in intact, viable wheat embryos following particle bombardment. — J. exp. Bot. 41: 1161–1165, 1990.

    Article  CAS  Google Scholar 

  • Lucca, P., Ye, X., Potrykus, I.: Effective selection and regeneration of transgenic rice plants with mannose as selective agent. — Mol. Breed. 7: 43–49, 2001.

    Article  CAS  Google Scholar 

  • Luehrsen, K.R., Walbot, V.: Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. — Mol. gen. Genet. 225: 81–93, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Mahalakshmi, A., Khurana, P.: Agrobacterium mediated cereal transformation: a critical appraisal. — Indian J. exp. Biol. 35: 416–426, 1997.

    Google Scholar 

  • Mahmood, T., Jan, A., Komatsu, S.: Proteomic analysis of bacterial blight defence signaling pathway using transgenic rice overexpressing thaumatin-like protein. — Biol. Plant. 53: 285–293, 2009.

    Article  CAS  Google Scholar 

  • Maresh, J., Zhang, J., Lynn, D.G.: The innate immunity of maize and the dynamic chemical strategies regulating two component signal transduction in Agrobacterium tumefaciens. — ACS Chem. Biol. 1: 165–175, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Trujillo, M., Cabrera-Ponce, J.L., Herrera-Estrella, L.: Improvement of rice transformation using bombardment of scutellum-derived calli. — Plant mol. Biol. Rep. 21: 429–437, 2003.

    Article  CAS  Google Scholar 

  • Matzke, M.A., Matzke, A.J.M.: Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. — Plant mol. Biol. 16: 821–830, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Matzke, M.A., Primig, M., Trnovsky, J., Matzke, A.J.M.: Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. — EMBO J. 8: 643–649, 1989.

    CAS  PubMed  Google Scholar 

  • Messens, E., Dekeyser, R., Stachel, S.E.: A non-transformable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. — Proc. nat. Acad. Sci. USA 87: 4368–4372, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Mohanty, A., Sharma, N.P., Tyagi, A.K.: Agrobacteriummediated high frequency transformation of an elite indica rice variety Pusa Basmati1 and transmission of the transgene to R2 progeny. — Plant Sci. 147: 127–137, 1999.

    Article  CAS  Google Scholar 

  • Mooney, P.A., Goodwin, P.B.: Adherence of Agrobacterium tumefaciens to the cells of immature wheat embryos. — Plant Cell Tissue Organ Cult. 25: 199–208, 1991.

    Google Scholar 

  • Narasimhulu, S.B., Deng, X.B., Sarria, R., Gelvin, S.B.: Early transcription of Agrobacterium T-DNA genes in tobacco and maize. — Plant Cell 8: 873–886, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Naureby, B., Billing, K., Wyndaele, R.: Influence of the antibiotic timentin on plant regeneration compared to carbenicillin and cefotaxime in concentration suitable for elimination of Agrobacterium tumefaciens. — Plant Sci. 123: 169–177, 1997.

    Article  Google Scholar 

  • Neuhaus, G., Spangenberg, G., Mittelsten Scheid, O., Schweiger, H.G.: Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. — Theor. appl. Genet. 75: 30–36, 1987.

    Article  Google Scholar 

  • O’Kennedy, M.M., Burger, J.T., Berger, D.K.: Transformation of elite white maize using the particle inflow gun and detailed analysis of a low-copy integration event. — Plant Cell Rep. 20: 721–730, 2001.

    Article  CAS  Google Scholar 

  • Oard, J.H.: Physical methods for the transformation of plant cells. — Biotechnol. Adv. 9: 1–11, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Oh, S.J., Jeong, J.S., Kim, E.H., Yi, N.R., Yi, S.I., Jang, I.C., Kim, Y.S., Suh, S.C., Nahm, B.H., Kim, J.K.: Matrix attachment region from the chicken lysozyme locus reduces variability in transgene expression and confers copy number-dependence in transgenic rice plants. — Plant Cell Rep. 24: 145–154, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Olhoft, P.M., Flagel, L.E., Donovan, C.M., Somers, D.A.: Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. — Planta 216: 723–735, 2003.

    CAS  PubMed  Google Scholar 

  • Olhoft, P.M., Somers, D.A.: L-cysteine increases Agrobacterium mediated T-DNA delivery into soybean cotyledonary-node cells. — Plant Cell Rep. 20: 706–711, 2001.

    Article  CAS  Google Scholar 

  • Park, S.H., Pinson, S.R.M., Smith, R.H.: T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. — Plant mol. Biol. 32: 1135–1148, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Perl, A., Kless, H., Blumenthal, A., Galili, G., Galun, E.: Improvement of plant regeneration and GUS expression in scutellar wheat calli by optimization of culture conditions and DNA-microprojectile delivery procedures. — Mol. gen. Genet. 235: 279–284, 1992.

    Article  CAS  PubMed  Google Scholar 

  • Petolino, J.F., Hopkins, N.L., Kosegi, B.D., Skokut, M.: Genetic transformation and hybridization: Whiskermediated transformation of embryogenic callus of maize. — Plant Cell Rep. 19: 781–786, 2000.

    Article  CAS  Google Scholar 

  • Philipp, J., Rajbir, S.S., Aquad Arabi, M.E.L., Daniel, B., Sangwan-Norreel, B.S.: Influence of phenolic compounds on Agrobacterium vir gene induction and onion gene transfer. — Phytochemistry 40: 1623–1628, 1995.

    Article  Google Scholar 

  • Pinghua, C., Rukai, C.: Optimizing genetic transformation of sugarcane calluses via PDS-1000/He. — J. Fujian Agr. Forest. Univ. 33: 355–358, 2004.

    Google Scholar 

  • Popelka, J.C., Xu, J., Altpeter, F.: Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly markerfree transgenic rye. — Transgenic Res. 12: 587–596, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Potrykus, I.: Gene transfer to cereals: an assessment. — Biotechnology 8: 535–542, 1990.

    Article  CAS  Google Scholar 

  • Potrykus, I.: Gene transfer to plants: assessment of published approaches and results. — Annu. Rev. Plant Physiol. Plant mol. Biol. 42: 205–225, 1991.

    Article  CAS  Google Scholar 

  • Potrykus, I., Saul, M.W., Petruska, J., Paszkowski, J., Shillito, R.D.: Direct gene transfer to cells of a graminaceous monocot. — Mol. gen. Genet. 199: 183–188, 1985.

    Article  CAS  Google Scholar 

  • Prinsen, E., Bytebier, B., Hernalsteens, J.P., De Greef, J., Onckelen, V.H.: Functional expression of Agrobacterium tumefaciens T-DNA onc genes in Asparagus crown tissues. — Plant Cell Physiol. 31: 69–75, 1990.

    CAS  Google Scholar 

  • Raineri, D.M., Bottino, P., Gordon, M.P., Nester, E.W.: Agrobacterium-mediated transformation of rice (Oryza sativa L.). — Biotechnology 8: 33–38, 1990.

    Article  CAS  Google Scholar 

  • Raineri, D.M., Boulton, M.I., Davies, J.W., Nester, E.W.: VirA, the plant-signal receptor, is responsible for the Ti plasmidspecific transfer of DNA to maize by Agrobacterium. — Proc. nat. Acad. Sci. USA 90: 3549–3553, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Rancé, I., Tian, W., Mathews, H., de Kochko, A., Beachy, R.N., Fauquet, C.M.: Partial desiccation of mature embryoderived calli, a simple treatment that dramatically enhances the regeneration ability of indica rice. — Plant Cell Rep. 13: 647–651, 1994.

    Article  Google Scholar 

  • Rashid, H., Yokoi, S., Toriyama, K., Hinata, K.: Transgenic plant production mediated by Agrobacterium in indica rice. — Plant Cell Rep. 15: 727–730, 1996.

    Article  CAS  Google Scholar 

  • Reggiardo, M.I., Arana, J.L., Orsaria, L.M., Permingeat, H.R., Spitteler, M.A., Vallejos, R.H.: Transient transformation of maize tissues by microparticle bombardment. — Plant Sci. 75: 237–243, 1991.

    Article  CAS  Google Scholar 

  • Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D., Detmer, J.J.: Genetically transformed maize plants from protoplasts. — Science 240: 204–207, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Ritchie, S.W., Lyznik, L.A., McGee, J.D., Hodges, T.K.: The influence of differing promoter constructions on stable GUS expression on maize tissue. — Plant Physiol. 93(Suppl.): 46, 1990.

    Google Scholar 

  • Sahi, S.V., Chilton, M.D., Chiiton, W.S.: Corn metabolites affect growth and virulence of Agrobacterium tumefaciens. — Proc. nat. Acad. Sci. USA 87: 3879–3883, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Salas, M.C., Park, S.H., Srivatanakul, M., Smith, R.H.: Temperature influence on stable T-DNA integration in plant cells. — Plant Cell Rep. 20: 701–705, 2001.

    Article  CAS  Google Scholar 

  • Schafer, W., Gorz, A., Kahl, G.: T-DNA integration and expression in a monocot crop plant after induction of Agrobacterium. — Nature 327: 529–532, 1987.

    Article  Google Scholar 

  • Shah, J.M., Veluthambi, K.: DIANTHIN, a negative selection marker in tobacco, is non-toxic in transgenic rice and confers sheat blight resistance. — Biol. Plant. 54: 443–450, 2010.

    Article  CAS  Google Scholar 

  • Shahzad, A., Ahmad, N., Rather, M.A., Husain, M.K., Anis, M.: Improved shoot regeneration system through leaf derived callus and nodule culture of Sansevieria cylindrica. — Biol. Plant. 53: 745–749, 2009.

    Article  CAS  Google Scholar 

  • Shaw, C.H., Ashby, A.M., Brown, A., Royal, C., Loake, G.J., Shaw, C.H.: virA and G are the Ti-plasmid functions required for chemotaxis of Agrobacterium tumefaciens toward acetosyringone. — Mol. Microbiol. 2: 413–418, 1988.

    Article  CAS  PubMed  Google Scholar 

  • Shen, W.H., Escudero, J., Schlappi, M., Ramos, C., Hohn, B., Koukolikova-Nicola, Z.: T-DNA transfer to maize cells: histochemical investigation of β-glucuronidase activity in maize tissues. — Proc. nat. Acad. Sci. USA 90: 1488–1492, 1993.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, J., Citovsky, V.: Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. — Plant Cell 8: 1699–1710, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Shimamoto, K., Terada, R., Izawa, T., Fujimoto, H.: Fertile transgenic rice plants regenerated from transformed protoplasts. — Nature 338: 274–276, 1989.

    Article  CAS  Google Scholar 

  • Shimoda, N., Toyoda-Yamamoto, A., Nagamine, J., Usami, S., Katayama, M., Sakagami, Y., Machida, Y.: Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signals molecules and monosaccharides. — Proc. nat. Acad. Sci. USA 87: 684–688, 1990.

    Article  Google Scholar 

  • Simpson, G.G., Filipowcz, W.: Splicing of pre-cursors to mRNA in higher plants: mechanism, regulation and subnuclear organization of the spliceosomal machinery. — Plant mol. Biol. 32: 1–41, 1996.

    Article  CAS  PubMed  Google Scholar 

  • Sivamani, E., Shen, P., Opalka, N., Beachy, R.N., Fauquet, C.M.: Selection of large quantities of embryogenic calli from indica rice seeds for production of fertile transgenic plants using the biolistic method. — Plant Cell Rep. 15: 322–327, 1996.

    Article  CAS  Google Scholar 

  • Smith, R.H., Hood, E.E.: Review and interpretation: Agrobacterium tumefaciens transformation of monocotyledons. — Crop Sci. 35: 301–309, 1995.

    Article  Google Scholar 

  • Smith, R.L., Grando, M.F., Li, Y.Y., Seib, J.C., Shatters, R.G.: Transformation of bahiagrass (Paspalum notatum Flugge). — Plant Cell Rep. 20: 1017–1021, 2002.

    Article  CAS  Google Scholar 

  • Songstad, D.D., Halaka, F.G., DeBoer, D.L., Armstrong, C.L., Hinchee, M.A.W., Ford-Santino, C.G., Brown, S.M., Fromm, M.E., Horsch, R.B.: Transient expression of GUS and anthocyanin constructs in intact maize immature embryos following electroporation. — Plant Cell Tissue Organ Cult. 33: 195–201, 1993.

    Article  CAS  Google Scholar 

  • Spangenberg, G., Wang, Z.Y., Wu, X.L., Nagel, J., Iglesias, V.A., Potrykus, I.: Transgenic tall fescue (Festuca arundinacea) and red fescue (F. rubra) plants from microprojectile bombardment of embryogenic suspension cells. — J. Plant Physiol. 145: 693–701, 1995a.

    CAS  Google Scholar 

  • Spangenberg, G., Wang, Z.Y., Wu, X.L., Nagel, J., Potrykus, I.: Transgenic perennial ryegrass (Lolium perenne) plants from microprojectile bombardment of embryogenic suspension cells. — Plant Sci. 108: 209–217, 1995b.

    Article  CAS  Google Scholar 

  • Suzuki, S., Supaibulwatana, K., Mii, M., Nakano, M.: Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox spp. orientalis (Leighton) via Agrobacterium-mediated transformation of embryogenic calli. — Plant Sci. 161: 89–97, 2001.

    Article  CAS  Google Scholar 

  • Svab, Z., Hajdukiewicz, P., Maliga, P.: Stable transformation of plastids in higher plants. — Proc. nat. Acad. Sci. USA 87: 8526–8530, 1990.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, M.G., Vasil, I.K.: Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum americanum L. R.Br.) embryos following microprojectile bombardment. — Plant Cell Rep. 10: 120–125, 1991.

    Article  CAS  Google Scholar 

  • Tian, W., Rancé, I., Sivamani, E., Fauquet, C.M., Beachy, R.N.: Improvement of plant regeneration frequency in vitro in indica rice. — Acta genet. sin. 21: 215–221, 1994.

    CAS  Google Scholar 

  • Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S., Brettell, R.: Agrobacterium tumefaciens mediated barley transformation. — Plant J. 11: 1369–1376, 1997.

    Article  CAS  Google Scholar 

  • Toriyama, K., Arimoto, Y., Uchimiya, H., Hinata, K.: Transgenic rice plants after direct gene transfer into protoplasts. — Biotechnology 6: 1072–1074, 1988.

    Article  CAS  Google Scholar 

  • Turk, S.C., Melchers, L.S., Den Dulk-Ras, H., Regensburg-Tuink, A.J., Hooykaas, P.J.: Environmental conditions differentially affect vir gene induction in different Agrobacterium strains: role of the VirA sensor protein. — Plant mol. Biol. 16: 1051–1059, 1991.

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya, N.M., Surin, B., Ramm, K., Gaudron, J., Schunman, P.H.D., Taylor, W., Waterhouse, P.M., Wang, M.B.: Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. — Aust. J. Plant Physiol. 27: 201–210, 2000.

    CAS  Google Scholar 

  • Urushibara, S., Tozawa, Y., Kawagishi-Kobayashi, M., Wakasa, K.: Efficient transformation of suspension-cultured rice cells mediated by Agrobacterium tumefaciens. — Breed. Sci. 5: 33–38, 2001.

    Article  Google Scholar 

  • Usami, S., Monikawa, S., Takebe, I., Machida, Y.: Absence in monocotyledonous plants of the diffusible plant factors inducing T-DNA circularization and vir gene expression in Agrobacterium. — Mol. gen. Genet. 209: 221–226, 1987.

    Article  CAS  PubMed  Google Scholar 

  • Usami, S., Okamoto, S., Takebe, I., Machida, Y.: Factor inducing Agrobacterium tumefaciens vir gene expression is present in monocotyledonous plants. — Proc. nat. Acad. Sci. USA 85: 5536–5540, 1988.

    Article  Google Scholar 

  • Uze, M., Potrykus, I., Saute, C.: Factors influencing T-DNA transfer from Agrobacterium to pre-cultured immature wheat embryos (Triticum aestivum L.). — Cereal Res. Commun. 28: 17–23, 2000.

    CAS  Google Scholar 

  • Uze, M., Wunn, J., Punoti-Kaerlas, J., Potrykus, I., Sautter, C.: Plasmolysis of precultured immature embryos improves Agrobacterium mediated gene transfer to rice (Oryza sativa L.). — Plant Sci. 130: 87–95, 1997.

    Article  CAS  Google Scholar 

  • Vain, P., Harvey, A., Worland, B., Ross, S., Snape, J.W., Lonsdale, D.: The effect of additional virulence genes on transformation efficiency, transgene integration and expression in rice plants using the pGreen/pSoup dual binary vector system. — Transgenic Res. 13: 593–603, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Vain, P., McMullen, M.D., Finer, J.J.: Osmotic treatment enhances particle bombardment-mediated transient and stable transformation of maize. — Plant Cell Rep. 12: 84–88, 1993.

    Article  Google Scholar 

  • Valdez, M., Cabrera Ponce, J.L., Sudhakar, D., Herrera Estrella, L., Christou, P.: Transgenic Central America, West African and Asian elite rice varieties resulting from particle bombardment of foreign DNA into mature seed-derived explants utilizing three different bombardment devices. — Ann. Bot. 82: 795–801, 1998.

    Article  Google Scholar 

  • Vasil, V., Castillo, A.M., Fromm, M.E., Vasil, I.K.: Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. — Biotechnology 10: 667–674, 1992.

    Article  CAS  Google Scholar 

  • Vernade, D., Herrera-Estrella, A., Wang, K., Van Montagu, M.: Glycine betaine allows enhanced induction of the Agrobacterium tumefaciens vir genes by acetosyringone at low pH. — J. Bacteriol. 170: 5822–5829, 1988.

    CAS  PubMed  Google Scholar 

  • Vijaychandra, K., Palanichelvam, K., Veluthambi, K.: Rice scutellum induces Agrobacterium tumefaciens vir genes and T-strand generation. — Plant mol. Biol. 29: 125–133, 1995.

    Article  Google Scholar 

  • Wang, G.L., Fang, H.J.: [Plant Genetic Engineering: Principle and Technique]. — Beijing Science Press, Beijing 1998. [In Chinese]

    Google Scholar 

  • Wang, M.B., Abbott, D.C., Upadhyaya, N.M., Jacobsen, J.V., Waterhouse, P.M.: Agrobacterium tumefaciens-mediated transformation of an elite Australian barley cultivar with virus resistance and reporter genes. — Aust. J. Plant Physiol. 28: 149–156, 2001.

    Google Scholar 

  • Wang, M.B., Upadhyaya, N.M., Brettell, R.I.S., Waterhouse, P.M.: Intron mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. — J. Genet. Breed. 51: 325–334, 1997.

    CAS  Google Scholar 

  • Wei, L.I., Guangqin, G.U.O., Guochang, Z.: Agrobacteriummediated transformation: state of the art and future prospect. — Chin. sci. Bull. 45: 1537–1546, 2000.

    Article  Google Scholar 

  • Weir, B., Gu, X., Wang, M.B., Upadhyaya, N., Elliott, A.R., Brettell, R.I.S.: Agrobacterium tumefaciens mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker. — Aust. J. Plant Physiol. 28: 807–818, 2001.

    CAS  Google Scholar 

  • Woolston, C.J., Barker, R., Gunn, H., Boulton, M.I., Mullineaux, P.M.: Agroinfection and nucleotide sequence of cloned wheat dwarf virus DNA. — Plant mol. Biol. 11: 35–43, 1988.

    Article  CAS  Google Scholar 

  • Wright, M., Dawson, J., Dunder, E., Suttie, J., Reed, J., Kramer, C., Chang, Y., Novitzky, R., Wang, H., Artim Moore, L.: Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. — Plant Cell Rep. 20: 429–436, 2001.

    Article  CAS  Google Scholar 

  • Wu, H., Doherty, A., Jones, H.D.: Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat (Triticum turgidum L. var. durum) using additional virulence genes. — Transgenic Res. 17: 425–436, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Xing, S.C., Li, F., Guo, Q.F., Liu, D.R., Zhao, X.X., Wang, W.: The involvement of an expansin gene TaEXPB23 from wheat in regulating plant cell growth. — Biol. Plant. 53: 429–434, 2009.

    Article  CAS  Google Scholar 

  • Xu, X., Li, B.: Fertile transgenic Indica rice plants obtained by electroporation of the seed embryo cells. — Plant Cell Rep. 13: 237–242, 1994.

    Article  CAS  Google Scholar 

  • Xu, Y., Jia, J.F., Zheng, G.C.: Phenolic compounds can promote efficient transformation of plants by Agrobacterium. — Chin. sci. Bull. 34: 1902, 1989.

    CAS  Google Scholar 

  • Yaxin, G., Norton, T., Wang, Z.Y.: Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacteriummediated transformation. — Plant Cell Rep. 25: 792–798, 2006.

    Article  CAS  Google Scholar 

  • Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P., Potrykus, I.: Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. — Science 287: 303–305, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Yin, Z., Wang, G.L.: Evidence of multiple complex patterns of T-DNA integration into the rice genome. — Theor. appl. Genet. 100: 461–470, 2000.

    Article  CAS  Google Scholar 

  • Zakharchenko, N.S., Kalyaeva, M.A., Bur’yanov, Ya.I.: Induction of agrobacterial T-DNA processing by exudates of monocotyledonous plants. — Russ. J. Plant Physiol. 46: 239–247, 1999.

    CAS  Google Scholar 

  • Zhang, H.M., Yang, H., Rech, E.L., Golds, T.J., Davis, A.S., Mulligan, B.J., Cocking, E.C., Davey, M.R.: Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. — Plant Cell Rep. 7: 379–384, 1988.

    CAS  Google Scholar 

  • Zhang, J., Boone, L., Kocz, R., Zhang, C., Binns, A.N., Lynn, D.G.: At the maize/Agrobacterium interface: natural factors limiting host transformation. — Chem. Biol. 7: 611–621, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, S., Cho, M.J., Koprek, T., Yun, R., Bregitzer, P., Lemaux, P.G.: Genetic transformation of commercial cultivars of oat (Avena sativa L.) and barley (Hordeum vulgare L.) using in vitro shoot meristematic cultures derived from germinated seedlings. — Plant Cell Rep. 18: 959–966, 1999.

    Article  CAS  Google Scholar 

  • Zhang, S.: Efficient plant regeneration from indica (group 1) rice protoplasts of one advanced breeding line and three varieties. — Plant Cell Rep. 15: 68–71, 1995.

    Article  CAS  Google Scholar 

  • Zhang, S., Warkentin, D., Sun, B., Zhong, H., Sticklen, M.: Variation in the inheritance of expression among subclones for unselected (uidA) and selected (bar) transgenes in maize (Zea mays L.). — Theor. appl. Genet. 92: 752–761, 1996.

    Article  CAS  Google Scholar 

  • Zhang, W., Subbarao, S., Addae, P., Shen, A., Armstrong, C., Peschke, V., Gilbertson, L.: Cre/lox mediated gene excision in transgenic maize (Zea mays L.) plants. — Theor. appl. Genet. 107: 1157–1168, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Wu, R.: Efficient regeneration of transgenic plants from rice protoplasts and correctly regulated expression of the foreign gene in the plants. — Theor. appl. Genet. 76: 835–840, 1988.

    Article  Google Scholar 

  • Zhao, Z.Y., Cai, T., Tagliani, L., Miller, M., Wang, N., Pang, H., Rudert, M., Schroeder, S., Hondred, D., Seltzer, J., Pierce, D.: Agrobacterium mediated sorghum transformation. — Plant mol. Biol. 44: 789–798, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Z.Y., Gu, W., Cai, T., Tagliani, L., Hondred, D., Bond, D., Schroeder, S., Rudert, M., Pierce, D.: High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. — Mol. Breed. 8: 323–333, 2001.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CSIR and the director, IHBT for providing the requisite facilities for carrying out this work. Priyanka Sood also acknowledges the Council of Scientific and Industrial Research (CSIR), India for providing financial assistance in the form of Senior Research Fellowship. IHBT Publication number: 0745.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, P., Bhattacharya, A. & Sood, A. Problems and possibilities of monocot transformation. Biol Plant 55, 1–15 (2011). https://doi.org/10.1007/s10535-011-0001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-011-0001-2

Additional key words

Navigation