Skip to main content
Log in

Genetic transformation of Sorghum bicolor

  • Review Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Great millet (Sorghum bicolor (L.) Moench) is cultivated across the world for food and fodder. It is typically grown in semiarid regions that are not suitable for cultivation of other major cereals. Sexual incompatibility and shortage of available genes in germplasm to combat biotic and abiotic stresses resulted in marginalized yields of this crop. Genetic modification of sorghum with agronomically useful genes can address this problem. Here, we tried to review and summarize the key aspects of sorghum transformation work being carried out so far by various research groups across the world. The approaches used and the obstacles in generating transgenic sorghum are also pointed out and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Able JA, Rathus C and Godwin ID (2001). The investigation of optimal bombardment parameters for transient and stable transgene expression in sorghum. In Vitro Cell Dev. Biol. Plant 37: 341–348

    Article  CAS  Google Scholar 

  • Able JA, Rathus C, Carroll BJ and Godwin ID (2004). Enhancing transgene expression levels in sorghum: Current status and future goals. In: Sorghum Tissue Culture and Transformation, (Eds. Seetharama, N. and Godwin, I.D), Oxford Publishers, New Delhi, India, pp. 85–96

    Google Scholar 

  • Balakrishna D, Paramesh H, Dashvantha Reddy V and Seetharama N (2007). Development of transgenic sorghum for improved salinity tolerance. Publications during 2006-07, Miscellaneous, Extension Posters. http://www.sorghum.res.in/miscellaneous.php

  • Balakrishna D, Venkatesh Bhat, Padmaja PG and Seetharama N (2007). Agrobacterium-mediated genetic transformation of sorghum (Sorghum bicolor (L.) Moench) using Bt gene constructs. Publications during 2006-07, Miscellaneous, Extension Posters. http://www.sorghum.res.in/miscellaneous.php

  • Battraw M and Hall TC (1991). Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phosphotransferase II and b-glucuronidase genes. Theor. Appl. Genet. 82: 161–168

    Article  CAS  Google Scholar 

  • Birch RG and Bower R (1994). Principles of gene transfer using particle bombardment. In: Particle Bombardment Technology for Gene Transfer, (Eds. Yang, NS. and Christou, P.), Oxford University Press, New York, pp. 3–37

    Google Scholar 

  • Bowen B (1993). Markers of plant gene transfer. In: Transgenic Plants (Eds. King, S. and Wu, R.) Academic press, NY, pp. 89–123

    Google Scholar 

  • Breitler JC, Cordero MJ, Royer M, Meynard D, San Segundo B and Guiderdoni E (2001). The −689/+197 region of the maize protease inhibitor gene directs high level, wound-inducible expression of the cry1B gene which protects transgenic rice plants from stem borer attack. Mol. Breeding 7: 259–274

    Article  CAS  Google Scholar 

  • Carvalho CHS, Zehr UB, Gunaratna N, Anderson JM, Kononowicz HH, Hodges TK, and Axtell JD (2004). Agrobacterium-mediated transformation of sorghum: factors that affect transformation efficiency. Genet. Mol. Biol. 27: 259–269

    CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Haan TG, Zhang L, Tomes DT, Bressan RA and Hasegawa PM (1997). Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell Dev. Biol. Plant. 33: 92–100

    Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA and Hasegawa PM (1993). Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. USA. 90: 11212–11216

    Article  CAS  PubMed  Google Scholar 

  • Christianson ML (1985). Competence, determination and clonal analysis in plant development. In Somatic embryogenesis-Proceedings of a San Miniato workshop” (Eds. Terzi M and Sung ZP), IPRA, Roam. pp.146–151.

    Google Scholar 

  • Christou P (1995). Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85: 13–27

    Article  Google Scholar 

  • Devi P, Zhong H and Sticklen M (2004). Production of Transgenic sorghum plants with related HVA1 gene. In: Sorghum Tissue Culture and Transformation, (Eds. Seetharama, N. and Godwin, I.D), Oxford Publishers, New Delhi, India, pp. 75–79

    Google Scholar 

  • Emani C, Sunilkumar G and Rathore KS (2002). Transgene silencing and reactivation in sorghum. Plant Sci. 162: 181–192

    Article  CAS  Google Scholar 

  • FAO 2004. http://www.fao.org/statistics/yearbook/vol_1_1/pdf/b06.pdf

  • Gao Z, Jayaraj J, Muthukrishnan S, Claflin L and Liang GH (2005a). Efficient genetic transformation of Sorghum using a visual screening marker. Genome 48(2): 321–33

    CAS  PubMed  Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S and Liang GH (2005b). Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol. J. 3(6): 591–599

    Article  CAS  PubMed  Google Scholar 

  • Girijashankar V (2005). Effect of promoters on Bt transgene expression in sorghum (Sorghum bicolor Moench). Ph.D Biotechnology thesis, Dept of Biotechnology, Jawaharlal Nehru Technological University, Hyderabad, AP, India.

    Google Scholar 

  • Girijashankar V, KK Sharma, P Balakrishna and N Seetharama (2007). Direct somatic embryogenesis and organogenesis pathway of plant regeneration can seldom occur simultaneously within the same explant of sorghum. Electronic Journal of SAT Agriculture Research, 3(1): Article 3, Biotechnology and Crop improvement: Sorghum, Millets and Other Cereals.

  • Girijashankar V, Sharma HC, Kiran K Sharma, Swathisree V, Sivarama Prasad L, Bhat BV, Monique Royer, Blanca San Secundo, Lakshmi Narasu M, Altosaar I and Seetharama N (2005). Development of transgenic sorghum for insect resistance against the spotted stem borer (Chilo partellus). Plant Cell Reports 24(9): 513–522

    Article  CAS  PubMed  Google Scholar 

  • Gray SJ, Zhang S, Rathus C, Lemaux PG and Godwin ID (2004). Development of sorghum transformation: Organogenic regeneration and gene transfer methods. In: Sorghum Tissue Culture and Transformation, (Eds. Seetharama, N. and Godwin, I.D), Oxford Publishers, New Delhi, India, pp 35–43

    Google Scholar 

  • Gurel S, Gurel E, Kaur R, Wong J, Meng L, Tan HQ and Lemaux PG (2009). Efficient, reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos. Plant Cell Rep. 28(3): 429–444

    Article  CAS  PubMed  Google Scholar 

  • Hagio T, Blowers AD and Earle ED (1991). Stable transformation of sorghum cell cultures after bombardment with DNA coated microprojectiles. Plant Cell Rep. 10: 260–264.

    Article  CAS  Google Scholar 

  • Harlan JR and De Wet JMJ (1972). A simplified classification of cultivated sorghums. Crop Sci. 12: 172–176

    Article  Google Scholar 

  • Harshavardhan D, Rani TS, Ugalanathan K and Seetharama N (2002). An improved protocol for regeneration of Sorghum bicolor from isolated shoot apices. Plant Biotech. 19(3): 163–171

    CAS  Google Scholar 

  • Harshavardhan D, Shantha B, Rani, TS, Ugalanathan K, Madhulety TY, Laxminarayana C and Seetharama N (2003). Simple and economical assay systems for evaluation of phosphinothricin resistant transgenics of sorghum, Sorghum bicolor. (L.) Moench., and pearl millet, Pennisetum glaucum (L.) R. Br. Indian J. Exp. Biol. 41: 141–148

    CAS  PubMed  Google Scholar 

  • Hill Ambroz KL and Weeks JT (2001). Comparison of constitutive promoters for sorghum transformation. Cer. Res. Comm. 29: 17–24

    CAS  Google Scholar 

  • Howe A, Sato S, Dweikat I, Fromm M and Clemente T (2006). Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep. 25(8): 784–791

    Article  CAS  PubMed  Google Scholar 

  • Iyer LM, Kumpatla, SP, Chandrasekharan MB and Hall TC (2000). Transgene silencing in monocotyledons. Plant Mol. Biol. 43: 323–346

    Article  CAS  PubMed  Google Scholar 

  • Jeoung JM, Krishnaveni S, Jayaraj J, Trick S, Muthukrishnan S and Liang GH (2004). Agrobacterium-mediated transformation of grain sorghum. In: Sorghum Tissue Culture and Transformation, (Eds. Seetharama, N. and Godwin, I.D), Oxford Publishers, New Delhi, India, pp 57–64

    Google Scholar 

  • Jeoung MJ, Krishnaveni S, Muthukrishnan S, Trick HN and Liang GH (2002). Optimization of sorghum transformation parameters using genes for green fluorescent protein and β-glucuronidase as visual markers. Hereditas 137:20–28

    Article  CAS  PubMed  Google Scholar 

  • Kononowicz AK, Casas AM, Tomes DT, Bresan RA and Hasegawa PM (1995). New vistas are opened for sorghum improvement by genetic transformation. African Crop Sci. J. 3: 171–180

    Google Scholar 

  • Krishnaveni S, Jeoung, JM, Mutukrishnan S and Liang GH (2004). Biolistic transformation of sorghum and influence of a transgenic chitinase gene: In: Sorghum Tissue Culture and Transformation, (Eds. Seetharama, N. and Godwin, I.D), Oxford Publishers, New Delhi, India, pp 65–74

    Google Scholar 

  • Kumpatla SP, Teng W, Buchholz WG and Hall TC (1997). Epigenetic transcriptional silencing and 5-azacytidine-mediated reactivation of a complex transgene in rice. Plant Physiol. 115: 361–373

    Article  CAS  PubMed  Google Scholar 

  • Lowe K, Bowen B, Hoerster G, Ross M, Bond D, Pierce D and Gordon Kamm B (1995). Germline transformationof maize following manipulation of chimeric shoot meristems. Biotechnology 13: 677–682

    Article  CAS  Google Scholar 

  • Lu Lu, Xingrong Wu, Xiaoyan Yin, Jonathan Morrand, Xinlu Chen, William R Folk and Zhanyuan J Zhang (2009). Development of marker-free transgenic sorghum [Sorghum bicolor (L.) Moench] using standard binary vectors with bar as a selectable marker. Plant Cell Tissue and Organ Culture DOI 10.1007/s11240-009-9580-4

  • Lusardi MC, Neuhaus Url G, Potrykus I and Neuha G (1994). An approach towards genetically engineered cell fate mapping in maize using the Lc gene as a visible marker: transactavitation capacity of Lc vectors in differentiated maize cells and microinjection of Lc vectors into somatic embryos and shoot apical meristems. The Plant J. 5: 571–582

    Article  CAS  Google Scholar 

  • Macabe DE and Christou P (1993). Direct DNA transfer using electric discharge particle acceleration (ACCELL technology). Plant Cell Tiss. Org. Cult. 33: 227–236

    Article  Google Scholar 

  • Nguyen TV, Thu TT, Claeys M and Angenon G (2007). Agrobacterium-mediated transformation of sorghum using an improved in vitro regeneration system. Plant Cell Tiss Organ Cult. 91: 155–164

    Article  CAS  Google Scholar 

  • Nwanze KF, Seetharama N, Sharma HC and Stenhouse JW (1995). Biotechnology in pest management improving resistance in sorghum to insect pests. African Crop Sci. J. 3: 209–215

    Google Scholar 

  • Ou Lee T, Turgeon R and Wu R (1986). Expression of a foreign gene linked to either a plant-virus or a Drosophila promoter, after electroporation of protoplasts of rice, wheat and sorghum. Proc. Natl. Acad. Sci. USA. 83: 6815–6819

    Article  CAS  PubMed  Google Scholar 

  • Rathore KS, Chowdhury VK and Hodges TK (1993). Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts. Plant Mol. Biol. 21: 871–884

    Article  CAS  PubMed  Google Scholar 

  • Rathus C and Godwin ID (2000). Transgenic sorghum (Sorghum bicolor) In: Biotechnology in Agriculture and Forestry. Transgenic crops- I (Ed. Y.P.S Bajaj). Springer-Verlag. 46: 76–83

  • Rathus C, Adkins AL, Henry RJ, Adkins SW and Godwin ID (1996). Progress towards transgenic sorghum. In: Proceedings of the Third Australian Sorghum Conference, (Eds Foale MA, Henzell RG, Kneipp JF), Tamworth, Feb. 20–22, 1996. Occasional publication, No. 93. Australian Institute of Agricultural Science, Melbourne, pp. 409–414

  • Sanford JC, Smith FD and Russel JA (1993). Optimizing the biolistic process for different biological applications. Meth. Enzymol. 217: 483–509

    Article  CAS  PubMed  Google Scholar 

  • Seetharama N, Mythili PK, Rani TS, Harshavardhan D, Ranjani A and Sharma HC (2003). Tissue culture and alien gene transfer in sorghum. In: Plant genetic engineering: Improvement of food crops (Eds. Jaiwal PK, Singh R), vol-2, Sci Tech Publishing LLC, USA. pp. 235–265

    Google Scholar 

  • Stewart RN and Derman H (1970). Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Amer. J. Bot. 61: 54–67

    Article  Google Scholar 

  • Tadesse Y and Jacobs M (2004). Nutritional quality improvement of sorghum through genetic transformation. In: Sorghum Tissue Culture and Transformation, (Eds. Seetharama, N. and Godwin, I.D), Oxford Publishers, New Delhi, India, pp 81–84

    Google Scholar 

  • Tadesse Y, Sagi L, Swennen R and Jacobs M (2003). Optimization of transformation conditions and production of transgenic sorghum (Sorghum bicolor) via microparticle bombardment. Plant Cell Tissue and Organ Culture 75: 1–18

    Article  CAS  Google Scholar 

  • Tian HC and Marcotrigiano M (1994). Cell-layer interactions influence the number and position of lateral shoot mirestem in Nocotiana. Dev. Biol. 162(2): 579–589

    Article  CAS  PubMed  Google Scholar 

  • Visarada KBRS, Saikishore N, Balakrishna SD and Rao SV (2003). Transient gus expression studies in sorghum to develop a simple protocol for Agrobacterium-mediated genetic transformation. J. Genetics and Breeding 57: 147–154

    CAS  Google Scholar 

  • Visarada KBRS, Padmaja PG, Saikishore N, Pashupatinath E, Kanti Meena, Rao SV and Seetharama N (2007). Genetic transformation of sorghum for resistance to Stemborer. Poster presented at Agriculture Science Congress, Coimbatore, Feb 2007. http://www.sorghum.res.in/paperspresented.php

  • Wang W, Wang J, Yang C, Li Y, Liu L and Xu J (2007). Pollen-mediated transformation of Sorghum bicolor plants. Biotechnol Appl Biochem. 48(2): 79–83

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Cai T, Taglini L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J and Pierce D (2000). Agrobacterium-mediated sorghum transformation. Plant Mol. Biol. 44: 78–798

    Article  Google Scholar 

  • Zhu H, Muthukrishnan S, Krishnaveni S, Wilde G, Jeoung JM and Liang GH (1998). Biolistic transformation of sorghum using a rice chitinase gene. J Genet. Breed. 52: 243–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Girijashankar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Girijashankar, V., Swathisree, V. Genetic transformation of Sorghum bicolor . Physiol Mol Biol Plants 15, 287–302 (2009). https://doi.org/10.1007/s12298-009-0033-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-009-0033-7

Keywords

Navigation