Skip to main content
Log in

The investigation of optimal bombardment parameters for transient and stable transgene expression in Sorghum

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

This report outlines the development of optimized particle inflow gun (PIG) parameters for producing transgenic sorghum (Sorghum bicolor (L.) Moench). Both transient and stable expression were examined when determining these parameters. The uidA reporter gene (GUS) encoding β-glucuronidase was used in transient experiments and the green fluorescent protein (GFP) used to monitor stable expression. Initially, optimization was conducted using leaf segments, as the generation of sorghum callus in sufficiently large quantities is time-consuming. Following leaf optimization, experiments were conducted using callus, identifying a high similarity between the two tissue types (r s=0.83). High levels of GUS expression were observed in both leaf and callus material when most distant from the DNA expulsion point, and using a pressure greater than 1800 kPa. A higher level of expression was also observed when the aperture of the helium inlet valve was constricted. Using the optimized conditions (pressure of 2200 kPa, distance to target tissue of 15 cm from the expulsion point, and the aperture of the helium inlet valve at one full turn), three promoters (Ubiquitin, Actinl and CaMV 35S) were evaluated over a 72-h period using GUS as the reporter gene. A significantly higher number of GUS foci were counted with the Ubiquitin construct over this period, compared to the Actinl and CaMV 35S constructs. Stable callus sectors (on 2 mg 1−1 bialaphos) with GFP expression were visualized for as long as 6 wk post-bombardment. Using this optimized protocol, several plants were regenerated after having been bombarded with the pAHC20 construct (containing the bar gene), with molecular evidence confirming integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bower, R.; Birch, R. G. Transgenic sugarcane plants via microprojectile bombardment. Plant J. 2:409–416; 1992.

    Article  CAS  Google Scholar 

  • Bower, R.; Elliott, A. R.; Potier, B. A. M.; Birch, R. G. High-efficiency, microprojectile-mediated contransformation of sugarcane, using visible or selectable markers. Mol. Breed. 2:239–249; 1996.

    Article  CAS  Google Scholar 

  • Casas, A. M.; Kononowicz, A. K.; Haan, T. G.; Zhang, L. Y.; Tomes, D. T.; Bressan, R. A.; Hasegawa, P. M. Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell. Dev. Biol. Plant 33:92–100; 1997.

    Google Scholar 

  • Casas, A. M.; Kononowicz, A. K.; Zehr, U. B.; Tomes, D. T.; Axtell, J. D.; Butler, L. G.; Bressan, R. A.; Hasegawa, P. M., Transgenic sorghum plants via microprojectile bombardment. Proc. Natl Acad. Sci. USA 90:11212–11216; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, W. L.; Niwa, Y.; Zeng, W.; Hirano, T.; Kobayashi, H.; Sheen, J. Engineered GFP as a vital reporter in plants. Curr. Biol. 6:325–330; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury, M. K. U.; Parveez, G. K. A.; Saleh, N. M. Evaluation of five promoters for use in transformation of oil palm (Elaeis guineensis Jacq.). Plant Cell Rep. 16:277–281; 1997.

    CAS  Google Scholar 

  • Christensen, A. H.; Quail, P. H. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5:213–218; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P.; Ford, T. L.; Kofron, M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957–962; 1991.

    Article  Google Scholar 

  • Cornejo, M. J.; Luth, D.; Blankenship, K. M.; Anderson, O. D.; Blechl, A. E. Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol. Biol. 23:567–581; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Daniell, H. Transformation and foreign gene expression in plants mediated by microprojectile bombardment. In: Tuan, R. S. ed. Methods in molecular biology: recombinant gene expression protocols. New Jersey, Humana Press; 1997:463–489.

    Chapter  Google Scholar 

  • De Block, M.; Botterman, J.; Vandewiele, M.; Dockx, J.; Thoen, C.; Gossele, V.; Movva, N. R.; Thompson, C.; Van Montagu, M.; Leemans, J. Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J. 6:2513–2518; 1987.

    PubMed  Google Scholar 

  • Dennehey, B. K.; Peterson, W. L.; Ford-Santino, C.; Pajeau, M.; Armstrong, C. L. Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tiss. Organ. Cult. 36:1–7; 1994.

    Article  CAS  Google Scholar 

  • Ellis, J. G.; Llewellyn, D. J.; Dennis, E. S.; Peacock, W. J. Maize Adh1 promoter sequences control anaerobic regulation: addition of upstream promoter elements from constitutive genes is necessary for expression in tobacco. EMBO J. 6:11–16; 1987.

    PubMed  CAS  Google Scholar 

  • Finer, J. J.; Vain, P.; Jones, M. W.; McMullen, M. D. Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep. 11:323–328; 1992.

    Article  CAS  Google Scholar 

  • Franks, T.; Birch, R. G. Gene transfer into intact sugarcane cells using microprojectile bombardment. Aust. J. Plant Physiol. 18:471–480; 1991.

    Article  CAS  Google Scholar 

  • Gamborg, O. L.; Miller, R. A.; Ojina, K., Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50:151–158; 1968.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm, W. J.; Spencer, T. M.; Mangano, M. L.; Adams, T. R.; Daines, R. J.; Start, W. G.; O'Brien, J. V.; Chambers, S. A.; Adams, W. R. J.; Willetts, N. G.; Rice, T. B.; Mackey, C. J.; Krueger, R. W.; Kausch, A. P.; Lemaux, P. G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603–618; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Haseloff, J.; Amos, B. GFP in plants, TIG 11:328–329; 1995.

    PubMed  CAS  Google Scholar 

  • Haseloff, J.; Siemering, K. R.; Prasher, D. C.; Hodge, S. Removal of a cruptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl Acad. Sci. USA 94:2122–2127; 1997.

    Article  PubMed  CAS  Google Scholar 

  • He, D. G.; Mouradov, A.; Yang, Y. M.; Mouradova, E.; Scott, K. J. Transformation of wheat (Triticum aestivum L.) through electroporation of protoplasts. Plant Cell Rep. 14:192–196; 1994.

    Article  CAS  Google Scholar 

  • Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271–282; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Hill, M.; Launis, K.; Bowman, C.; McPherson, K.; Dawson, J.; Watkins, J.; Koziel, M.; Wright, M. S. Biolistic introduction of a synthetic Bt gene into elite maize. Euphytica 85:119–123; 1995.

    Article  CAS  Google Scholar 

  • Jefferson, R. A.; Kavanagh, T. A.; Bevan, M. W. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6:3901–3908; 1987.

    PubMed  CAS  Google Scholar 

  • Kikkert, J. R. The Biolistic® PDS-1000/He device. Plant Cell Tiss. Organ. Cult. 33:221–226; 1993.

    Article  CAS  Google Scholar 

  • Knutzon, D. S.; Thompson, G. A.; Radke, S. E.; Johnson, W. B.; Knauf, V. C.; Kridl, J. C. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl Acad. Sci. USA 89:2624–2628; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Köhler, R. H.; Cao, J.; Zipfel, W. R.; Webb, W. W.; Hanson, M. R. Exchange of protein molecules through connection between higher plant plastids. Science 276:2039–2042; 1997a.

    Article  PubMed  Google Scholar 

  • Köhler, R. H.; Zipfel, W. R.; Webb, W. W.; Hanson, M. R. The green fluorescent protein as a marker to visualise plant mitochondria in vivo. Plant J. 11:613–621; 1997b.

    Article  PubMed  Google Scholar 

  • Kononowicz, A. K.; Casas, A. M.; Tomes, D. T.; Bressan, R. A.; Hasegawa, P.M. New vistas are opened for sorghum improvement by genetic transformation. Afr. Crop Sci. J. 3:171–180; 1995.

    Google Scholar 

  • Koziel, M.; Beland, G.; Bowman, C.; Carozzi, N.; Crenshaw, B.; Crossland, L.; Dawson, J.; Desai, N.; Hill, M.; Kadwell, S.; Launis, K.: Lewis, K.; Maddox, D.; McPherson, K.; Meghji, M.; Merlin, E.; Rhodes, R.; Warren, G.; Wright, M.; Evola, S. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200; 1993.

    Article  CAS  Google Scholar 

  • Last, D. I.; Brettell, R. I. S.; Chamberlain, D. A.; Chaudhury, A. M.; Larkin, P. J.; Marsh, E. L.; Peacock, W. J.; Dennis, E. S. pEmu: an improved promoter for gene expression in cereal cells. Theor. Appl. Genet. 18:581–588; 1991.

    Google Scholar 

  • Lomonossof, G. P. Pathogen-derived resistance to plant viruses. Annu. Rev. Phytopath. 33:323–343; 1995.

    Article  Google Scholar 

  • McElroy, D.; Blowers, A. D.; Jenes, B.; Wu, R. Construction of expression vectors based on the rice actin 1 (Actl) 5′ region for use in monocot transformation. Mol. Gen. Genet. 231:150–160; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Meeusen, R. L.; Warren, G. Insect control with genetically engineered crops. Annu. Rev. Entomol. 34:373–381; 1989.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–479; 1962.

    Article  CAS  Google Scholar 

  • Odell, J. T.; Nagy, F.; Chua, N-H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Rathus, C.; Godwin, I. D. Transgenic sorghum (Sorghum bicolor). In: Bajaj, Y. P. S., ed. Transgenic crops I—biotechnology in agriculture and forestry, vol. 46, Berlin: Springer-Verlag; 1999; 76–83.

    Google Scholar 

  • Ritala, A.; Aspegren, K.; Kurten, U.; Salmenkallio-Marttila, M.; Mannonen, L.; Hannus, R.; Kauppinen, V.; Teeri, T. H.; Enari, T. M. Fertile transgenic barley by particle bombardment of immature embryos. Plant Mol. Biol. 24:317–325; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, S. O.; Bendich, A. J. Extraction of DNA from milligram amounts of fresh, herbarium and mummified plant tissues. Plant Mol. Biol. 5:69–76; 1985.

    Article  CAS  Google Scholar 

  • Ross, A. H.; Manners, J. M.; Birch, R. C. Embryogenic callus production, plant regeneration and transient gene expression following particle bombardment in the pasture grass, Cenchrus ciliaris. Aust. J. Bot. 43:192–199; 1995.

    Article  Google Scholar 

  • Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular cloning, a laboratory manual. 2nd edn. New York Cold Spring Harbor Laboratory Press; 1989.

    Google Scholar 

  • Schenk, P. M.; Elliot, A. R.; Manners, J. M. Assessment of transient gene expression in plant tissues using the green fluorescent protein as a reference. Plant Mol. Biol. Rep. 16:313–322; 1998.

    Article  CAS  Google Scholar 

  • Vain, P.; Keen, N.; Murillo, J.; Rathus, C.; Nemes, C.; Finer, J. J. Development of the Particle Inflow Gun. Plant Cell Tiss. Organ. Cult. 33:237–246; 1993.

    Article  CAS  Google Scholar 

  • Vasil, V.; Castillo, A. M.; Fromm, M. E.; Vasil, I. K. Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10:667–674; 1992.

    Article  CAS  Google Scholar 

  • Wan, Y.; Lemaux, P. G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104:37–48; 1994.

    PubMed  CAS  Google Scholar 

  • Zhu, H.; Muthukrishnan, S.; Krishnaveni, S.; Wilde, G.; Jeoung, J-M.; Liang, G. H. Biolistic transformation of sorghum using a rice chitinase gene. J. Genet. Breed. 52:243–252; 1998.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian D. Godwin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Able, J.A., Rathus, C. & Godwin, I.D. The investigation of optimal bombardment parameters for transient and stable transgene expression in Sorghum. In Vitro Cell.Dev.Biol.-Plant 37, 341–348 (2001). https://doi.org/10.1007/s11627-001-0061-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-001-0061-7

Key words

Navigation