Skip to main content
Log in

Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences

  • Genetic Transformation/Somatic Cell Genetics
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Transgenic sorghum plants (Sorghum bicolor L. Moench, cv. SRN39) were obtained by microprojectile-mediated DNA delivery (Bio-Rad PDS 1000/He Biolistic Delivery System) to explants derived from immature inflorescences. Explants were precultured on medium supplemented with 2.5 mg/l (11.31 µM) 2,4-D, 0.5 mg/l (2.32 µM) kinetin, and 60 g/l sucrose for 1 to 2 wk prior to bombardment. Bialaphos selectron pressure was imposed 2 wk after bombardment and maintained throughout all the culture stages leading to plant regeneration. More than 2500 explants from 1.5 to 3.0 cm inflorescences were bombarded and subjected to bialaphos selection. Out of more than 190 regenerated plants, 5 were determined to be Ignite resistant. Southern analyses confirmed the likelihood that the 5 herbicide resistant plants derived from two independent transformation events. The phosphinothricin acetyltransferase gene (bar) was inherited by and functionally expressed in T1 progeny. However, no β-glucuronidase (GUS) activity could be detected in T1 plants that contained uidA restriction fragments. Histological analyses indicated that in the absence of bialaphos morphogenesis was primarily via embryogenesis while organogenesis was more predominant in callus maintained with herbicide selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assaad, F. F.; Tucker, K. L.; Signer, E. R. Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol. Biol. 22:1067–1085; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ayres, N. M.; Park, W. D. Genetic transformation of rice. Crit. Rev. Plant Sci. 13:219–239; 1994.

    CAS  Google Scholar 

  • Barcelo, P.; Hagel, C.; Becker, D., et al. Transgenic cereal (tritordeum) plants obtained at high efficiency by microprojectile bombardment of inflorescence tissue. Plant J. 5:583–592; 1994.

    PubMed  CAS  Google Scholar 

  • Becker, D.; Brettschneider, R.; Lorz, H. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J. 5:299–307; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Bhaskaran, S.; Naumann, A. J.; Smith, R. H. Origin of somatic embryos from cultured shoot tips of Sorghum bicolor (L.) Moench. In Vitro Cell. Dev. Biol. 24:947–950; 1988.

    Article  Google Scholar 

  • Bhaskaran, S.; Smith, R. H. Enhanced somatic embryogenesis in Sorghum bicolor from shoot tip culture. In Vitro Cell. Dev. Biol. 24:65–70; 1988.

    Article  Google Scholar 

  • Bhaskaran, S.; Smith, R. H. Control of morphogenesis in sorghum by 2,4-dichlorophenoxyacetic acid and cytokinins. Ann. Bot. 64:217–222; 1989.

    CAS  Google Scholar 

  • Boyes, C. J.; Vasil, I. K. Plant regeneration by somatic embryogenesis from cultured young inflorescences of Sorghum arundinaceum (Desv.) Stapf. var. Sudanese (sudan grass). Plant Sci. Lett. 35:153–157; 1984.

    Article  Google Scholar 

  • Brar, D. S.; Rambold, S.; Gamborg, O., et al. Tissue culture of corn and sorghum. Z. Pflanzenphysiol. 95:377–388; 1979.

    Google Scholar 

  • Brettell, R. I. S.; Wernicke, W.; Thomas, E. Embryogenesis from cultured immature inflorescences of Sorghum bicolor. Protoplasma 104:141–148; 1980.

    Article  Google Scholar 

  • Cai, T.; Butler, L. Plant regeneration from embryogenic callus initiated from immature inflorscences of several high-tannin sorghums. Plant Cell Tissue Organ Cult. 20:101–110; 1990.

    Article  Google Scholar 

  • Casas, A. M.; Kononowicz, A. K.; Breassan, R. A., et al. Cereal transformation through particle bombardment. Plant Breed. Rev. 13:231–260; 1995.

    Google Scholar 

  • Casas, A. M.; Kononowicz, A. K.; Zehr, U. B., et al. Transgenic sorghum plants via microprojectile bombardment. Proc. Natl. Acad. Sci. USA 90:11212–11216; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Christou, P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment. Euphytica 85:13–27; 1995.

    Article  Google Scholar 

  • Christou, P.; Ford, T. L. The impact of selection parameters on the phenotype and genotype of transgenic rice callus and plants. Transgenic Res. 4:44–51; 1995.

    Article  CAS  Google Scholar 

  • Christou, P.; Ford, T. L.; Kofron, M. Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9:957–962; 1991.

    Article  Google Scholar 

  • Dalton, S. J.; Bettany, A. J. E.; Timms, E., et al. The effect of selection pressure on transformation frequency and copy number in transgenic plants of tall fescue (Festuca arundinacea Schreb.). Plant Sci. 108:63–70; 1995.

    Article  CAS  Google Scholar 

  • Dekeyser, R.; Claes, B.; Marichal, M., et al. Evaluation of selectable markers for rice transformation. Plant Physiol. 90:217–223; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta, S. L.; Wood, J.; Hicks, J. B. A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1:19–21; 1983.

    CAS  Google Scholar 

  • Dennehey, B. K.; Petersen, W. L.; Ford-Santino, C., et al. Comparison of selective agents for use with the selectable marker gene bar in maize transformation. Plant Cell Tissue Organ Cult. 36:1–7; 1994.

    Article  CAS  Google Scholar 

  • Finnegan, J.; McElroy, D. Transgene inactivation: plants fight back. Bio/Technology 12:883–888; 1994.

    Article  Google Scholar 

  • George, L.; Eapen, S. Plant regeneration by somatic embryogenesis from immature inflorescence cultures of Sorghum almum. Ann. Bot. 61:589–591; 1988.

    Google Scholar 

  • Hinchee, M. A. W.; Corbin, D. R.; Armstrong, C. L., et al. Plant transformation. In: Vasil, I. K.; Thorpe, T. A., eds. Plant cell and tissue culture. Dordrecht, Netherlands: Kluwer-Academic Publishers; 1994:231–270.

    Google Scholar 

  • Hobbs, S. L. A.; Warkentin, T. D.; DeLong, C. M. O. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol. Biol. 21:17–26; 1993.

    Article  PubMed  CAS  Google Scholar 

  • House, L. R. Sorghum: one of the world’s great cereals. Afr. Crop Sci. J. 3:135–142; 1995.

    Google Scholar 

  • Ingelbrecht, I.; Van Houdt, H.; Van Montagu, M., et al. Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc. Natl. Acad. Sci. USA 91:10502–10506; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, R. Altered gene expression in plants due to trans interactions between homologous genes. TIB 8:340–344; 1990.

    CAS  Google Scholar 

  • Klein, T. M.; Arentzen, R.; Lewis, P. A., et al. Transformation of microbes, plants and animals by particle bombardment. Bio/Technology 10:286–292; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Kononowicz, A. K.; Casas, A. M.; Tomes, D. T., et al. New vistas are opened for sorghum improvement by genetic transformation. Afr. Crop Sci. J. 3:171–180; 1995.

    Google Scholar 

  • Kononowicz, A. K.; Hasegawa, P. M.; Bressan, R. A. Cell cycle duration in tobacco cells adapted to NaCl. Environ. Exp. Bot. 32:1–9; 1992a.

    Article  CAS  Google Scholar 

  • Kononowicz, A. K.; Nelson, D. E.; Singh, N. K., et al. Regulation of the osmotin promoter. Plant Cell 4:513–524; 1992b.

    Article  PubMed  CAS  Google Scholar 

  • Koziel, M. G.; Beland, G. L.; Dowman, C., et al. Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200; 1993.

    Article  CAS  Google Scholar 

  • Krieg, D.; Lascano, R. J. Sorghum. In: Steward, B. A.; Nielsen, D. R., eds. Irrigation of agricultural crops. Agronomy Monograph no. 30. Madison; Wisconsin: American Society of Agronomy CSSA-SSSA; 719–739; 1990.

    Google Scholar 

  • Kumaravadivel, N.; Sree Rangasamy, S. R. Plant regeneration from sorghum anther cultures and field evaluation of progeny. Plant Cell Rep. 13:286–290; 1994.

    Article  CAS  Google Scholar 

  • Li, L.; Qu, R.; De Kochko, A., et al. An improved rice transformation system using the biolistic method. Plant Cell Rep. 12:250–255; 1993.

    Article  Google Scholar 

  • Liu, D.; Raghothama, K. G.; Hasegawa, P. M.; et al. Osmotin overexpression in potato delays development of disease symptoms. Proc. Natl Acad. Sci. USA 91:1888–1892; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Loo, S.; Rine, J. Silencer and domains of generalized repression. Science 264:1768–1771; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari, N.; Rajyalakshmi, K.; Baweja, K., et al. In vitro culture of wheat and genetic transformation—retrospect and prospect. Crit. Rev. Plant Sci. 14:149–178; 1995.

    Google Scholar 

  • Martin, G. B.; Brommonschenkel, S. H.; Chungwongse, J., et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Matzke, M.; Matzke, A. J. M. Genomic imprinting in plants: parental effects and trans-inactivation phenomena. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44:53–76; 1993.

    Article  CAS  Google Scholar 

  • Matzke, M.; Matzke, A. J. M.; Mittelsten Scheid, O. Inactivation of repeated genes—DNA-DNA interaction? In: Paszkowski, J., ed. Homologous recombination in plants. Amsterdam, Netherlands: Kluwer Academic Press; 1994a:271–307.

    Google Scholar 

  • Matzke, A. J. M.; Neuhuber, F.; Park, Y.-D., et al. Homology-dependent gene silencing in transgenic plants: epistatic silencing loci contain multiple copies of methylated transgenes. Mol. & Gen. Genet. 244:219–229; 1994b.

    CAS  Google Scholar 

  • Matzke, M. A.; Primig, M.; Trnovsky, J., et al. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 8:643–649; 1989.

    PubMed  CAS  Google Scholar 

  • Maunder, A. B. Importance of sorghum on a global scale. In: Ejeta, G.; Mertz, E. T.; Rooney, L., et al. eds. Proceedings of the International Conference on Sorghum Nutritional Quality. West Lafayette, IN: Purdue University; 1990:8–16.

    Google Scholar 

  • Merkle, S. A.; Parrott, W. A.; Flinn, B. S. Morphogenic aspects of somatic embryogensis. In: Thorpe, T. A., ed. In vitro embryogenesis in plants. Dordrecht, Netherlands: Kluwer Academic Publishers; 1995:155–203.

    Google Scholar 

  • Morrish, F.; Songstad, D. D.; Armstrong, C. L., et al. Microprojectile bombardment: a method for the production of transgenic cereal crop plants and the functional analysis of genes. In: Hiatt, A., ed. Transgenic plants: fundamentals and application. New York: Marcel Dekker; 1993:133–171.

    Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Nehra, N. S.; Chibbar, R. N.; Leung, N., et al. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant J. 5:285–297; 1994.

    Article  CAS  Google Scholar 

  • Parrott, W. A.; Merkle, S. A.; Williams, E. G. Somatic embryogenesis: potential for use in propagation and gene transfer systems. In: Murray, D. R., ed. Advanced methods in plant breeding and biotechnology. Wallingford, England: CAB Int. Institute of Entomology; 1991:158–200.

    Google Scholar 

  • Perl, A.; Lotan, O.; Abu-Abied, M., et al. Establishment of an Agrobacterium-mediated transformation system for grape (Vitis vinifera L.): the role of antioxidants during grape-Agrobacterium interactions. Nature Biotech. 14:624–628; 1996.

    Article  CAS  Google Scholar 

  • Perlak, F. J.; Stone, T. B.; Muskoff, Y. M., et al. Genetically improved potatoes protected from damage by Colorado potato beetles. Plant Mol. Biol. 22:313–321; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Renckens, S.; De Greve, H.; Van Montagu, M., et al. Petunia plants escape from negative selection against a transgene by silencing the foreign DNA via methylation. Mol. & Gen. Genet. 233:53–64; 1992.

    Article  CAS  Google Scholar 

  • Rout, J. R.; Lucas, W. J. Characterization and manipulation of embryogenic response from in vitro-cultured immature inflorescences in rice (Oryza sativa L.). Planta 198:127–138; 1996.

    Article  CAS  Google Scholar 

  • Sanford, J. C. The biolistic process. TIB 6:299–302; 1988.

    CAS  Google Scholar 

  • Töpfer, R.; Gronenborn, B.; Schafer, S., et al. Expression of engineered wheat dwarf virus in seed-derived embryos. Physiol. Plant. 79:158–162; 1990.

    Article  Google Scholar 

  • Vasil, I. K. Cellular and molecular genetic improvement of cereals. In: Terzi, T., eds. Current issues in plant molecular biology. Dordrecht, Netherlands: Kluwer Academic Publishers; 1995:5–18.

    Google Scholar 

  • Vasil, I. K.: Vasil, V. In vitro culture of cereals and grasses. In: Vasil, I. K.; Thorpe, T. A., eds. Plant cell and tissue culture. Dordrecht, Netherlands: Kluwer Academic Publishers; 1994:293–312.

    Google Scholar 

  • Vasil, V.; Srivastava, V.; Castillo, A. M., et al. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11:1553–1558: 1993.

    Article  Google Scholar 

  • Vaucheret, H. Identification of a general silencer for 19S and 35S promoters in a transgenic tobacco plant: 90 bp of homology in the promoter sequence are sufficient for trans-inactivation. C. R. Acad. Sci. Paris, [III] 316:1471–1483; 1993.

    CAS  Google Scholar 

  • Velten, P. C. Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol. Biol. 17:49–60; 1991.

    Article  PubMed  Google Scholar 

  • Wan, Y.; Lemaux, P. G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104:37–48; 1994.

    PubMed  CAS  Google Scholar 

  • Wassenegger, M.; Heimes, S.; Riedel, L., et al. RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Weeks, J. T.; Anderson, O. D.; Blechl, A. E. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol. 102:1077–1084; 1993.

    PubMed  CAS  Google Scholar 

  • Wernicke, W.; Potrykus, I.; Thomas, E. Morphogenesis from cultured leaf tissue of sorghum bicolor: the morphogenetic pathways. Protoplasma 111:53–62; 1982.

    Article  CAS  Google Scholar 

  • Zimny, J.; Becker, D.; Brettschneider, R., et al. Fertile, transgenic Triticale (× Triticosecale Wittmack). Mol. Breed. 1:155–164; 1995.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casas, A.M., Kononowicz, A.K., Haan, T.G. et al. Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cell.Dev.Biol.-Plant 33, 92–100 (1997). https://doi.org/10.1007/s11627-997-0003-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-997-0003-0

Key words

Navigation