Skip to main content

On the Value of Wild Solanum Species for Improved Crop Disease Resistance: Resistances to Nematodes and Viruses

  • Chapter
  • First Online:
The Wild Solanums Genomes

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

The genus Solanum includes important crop species and numerous wild species. The wild Solanum species are a genetic diversity treasure trove useful for the improvement of crops, with disease resistance being of critical importance. In this chapter, I review the status of research and breeding efforts for improved nematode and virus resistance in Solanum crops, especially potato and tomato. In total, 33 disease resistance genes are described; virtually all originate from wild relatives of potato and tomato. This observation underscores the utility of wild Solanum species and the need to prioritize their conservation through in situ and ex situ approaches. Trends in research well positioned to impact trait discovery in wild Solanum species and introgression into crop species are outlined. Included are the potential to mine genebank collections for novel disease resistance alleles using target DNA sequencing approaches, visualization of deep evolutionary and allele diversification patterns across the Solanaceae, and streamlined gene mapping and cloning methodologies. The potential impacts of Marker Assisted Breeding, genetic transformation, gene-editing, and conversion of cultivated potato to a diploid species are explored. A growing world population and changing global climate that requires crop plants to tolerate increasingly chaotic production environments present the need for urgent investment in the genetic improvement of crops, with crop wild relatives being critical donors of useful traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530

    Article  PubMed  Google Scholar 

  • Andolfo G, Sanseverino W, Rombauts S, Van der Peer Y, Bradeen JM, Carputo D, Frusciante L, Ercolano MR (2013) Overview of tomato candidate pathogen recognition genes reveals important Solanum R locus dynamics. New Phytol 197:223–237

    Article  CAS  PubMed  Google Scholar 

  • Arntzen F, Vinke J, Hoogendoorn J (1992) Inheritance and level of resistance to potato cyst nematodes (Globodera pallida), derived from Solanum tuberosum ssp. andigna CPC 1673. In: Jacobs T, Parlevliet J (eds) Durability of disease resistance. Springer-Science+Business Media, B.V., Wageningen, The Netherlands, p 304

    Google Scholar 

  • Arora S, Steuernagel B, Gaurav K, Chandramohan S, Long Y, Matny O, Johnson R, Enk J, Periyannan S, Singh N, Asyraf Md Hatta M, Athiyannan N, Cheema J, Yu G, Kangara N, Ghosh S, Szabo L, Poland J, Bariana H, Jones J, Bentley A, Ayliffe M, Olson E, Xu S, Steffenson B, Lagudah E, Wulff B (2019) Resistance gene cloning from a wild crop relative by sequence capture and association genetics. Nat Biotech 37:139–143

    Google Scholar 

  • Austin S, Pohlman JD, Brown CR, Mojtahedi H, Santo GS, Douches DS, Helgeson JP (1993) Interspecific somatic hybridization between Solanum tuberosum L. and S. bulbocastanum Dun. as a means of transferring nematode resistance. Am Potato J 70:485–495

    Article  Google Scholar 

  • Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F, Xumerle L, Molin AD, Avanzato C, Ferrarini A, Delledonne M, Sanseverino W, Cigliano RA, Capella-Gutierrez S, Gabaldón T, Frusciante L, Bradeen JM, Carputo D (2015) The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27:954–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker E, Achenbach U, Bakker J, van Vliet J, Peleman J, Segers B, van der Heijden S, van der Linde P, Graveland R, Hutten R, van Eck H, Coppoolse E, Van der Vossen E, Bakker J, Goverse A (2004) A high-resolution map of the H1 locus harbouring resistance to the potato cyst nematode Globodera rostochiensis. Theor Appl Genet 109:146–152

    Article  CAS  PubMed  Google Scholar 

  • Ballvora A, Hesselbach J, Niewohner J, Leister D, Salamini F, Gebhardt C (1995) Marker enrichment and high-resolution map of the segment of potato chromosome VII harbouring the nematode resistance gene Gro1. Mol Gen Genet 249:82–90

    Article  CAS  PubMed  Google Scholar 

  • Barbary A, Djian-Caporalino C, Palloixd A, Castagnone-Sereno P (2015) Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field. Pest Manag Sci 71:1591–1598

    Article  CAS  PubMed  Google Scholar 

  • Barone A, Ritter E, Schachtschabel U, Debener T, Salamini F, Gebhardt C (1990) Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostochiensis. Mol Gen Genet 224:177–182

    Article  CAS  PubMed  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1997) High-resolution genetical and physical mapping of the Rx gene for extreme resistance to potato virus X in tetraploid potato. Theor Appl Genet 95:153–162

    Article  CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendahmane A, Kohm BA, Dedi C, Baulcombe DC (1995) The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato. Plant J 8:933–941

    Article  CAS  PubMed  Google Scholar 

  • Bendahmane A, Querci M, Kanyuka K, Baulcombe DC (2000) Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato. Plant J 21:73–81

    Article  CAS  PubMed  Google Scholar 

  • Bethke P, Halterman D, Jansky S (2017) Are we getting better at using wild potato species in light of new tools? Crop Sci 57:1241–1258

    Article  Google Scholar 

  • Bolger A, Scossa F, Bolger M, Lanz C, Maumus F, Tohge T, Quesneville H, Alseekh S, Sørensen I, Lichtenstein G, Fich E, Conte M, Keller H, Schneeberger K, Schwacke R, Ofner I, Vrebalov J, Xu Y, Osorio S, Aflitos S, Schijlen E, Jiménez-Goméz J, Ryngajllo M, Kimura S, Kumar R, Koenig D, Headland L, Maloof J, Sinha N, van H, RC, Lankhorst R, Mao L, Vogel A, Arsova B, Panstruga R, Fei Z, Rose J, Zamir D, Carrari F, Giovannoni J, Weigel D, Usadel B, Fernie A (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics 46:1034–1038

    Google Scholar 

  • Bradeen JM, Iorizzo M, Mollov DS, Raasch J, Colton Kramer L, Millett BP, Austin-Phillips S, Jiang J, Carputo D (2009) Higher copy numbers of the potato RB transgene correspond to enhanced transcript and late blight resistance levels. Mol Plant Microb Interact 22:437–446

    Article  CAS  Google Scholar 

  • Brigneti G, Garcia Mas J, Baulcombe DC (1997) Molecular mapping of the potato virus Y resistance gene Rysto in potato. Theor Appl Genet 94:198–203

    Article  CAS  Google Scholar 

  • Brommonschenkel SH, Tanksley SD (1997) Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol Gen Genet 256:121–126

    Article  CAS  PubMed  Google Scholar 

  • Brown C, Mojtahedi H, Santo G (1991) Resistance to Columbia root-knot nematode in Solanum spp. and in hybrids of S. hougasii with tetraploid cultivated potato. Am Pot J 68:445–452

    Article  Google Scholar 

  • Brown C, Mojtahedi H, Santo G (1999) Genetic analysis of resistance to meloidogyne chitwoodi introgressed from Solanum hougasii into cultivated potato. J Nematol 31:264–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown CR, Yang CP, Mojtahedi H, Santo GS, Masuelli R (1996) RFLP analysis of resistance to Columbia root-knot nematode derived from Solanum bulbocastanum in a BC2 population. Theor Appl Genet 92:572–576

    Article  CAS  PubMed  Google Scholar 

  • Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RGF, Bai Y, Kormelink R (2014) Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci U S A 111:12942–12947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chague V, Mercier JC, Guenard M, de Courcel A, Vedel F (1996) Identification and mapping on chromosome 9 of RAPD markers linked to Sw-5 in tomato by bulked segregant analysis. Theor Appl Genet 92:1045–1051

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Lewandowska D, Armstrong MR, Baker K, Lim TY, Bayer M, Harrower B, McLean K, Jupe F, Witek K, Lees AK, Jones JD, Bryan GJ, Hein I (2018) Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies. Theor Appl Genet 131:1287–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium PGS (2011) Genome sequence and analysis of the tuber crop potato. Nature advance online publication:189–195

    Google Scholar 

  • Consortium TG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  CAS  Google Scholar 

  • de Oliveirra AS, Boiteux LS, Kormelink R, Rresend RO (2018) The Sw-5 gene cluster: tomato breeding and research toward orthotospovirus disease control. Front Plant Sci 9:1055

    Article  Google Scholar 

  • del Rosario HM, Vidalon L, Montenegro J, Riccio C, Guzman F, Bartolini I, Ghislain M (2018) Molecular and genetic characterization of the Ryadg locus on chromosome XI from Andigena potatoes conferring extreme resistance to potato virus Y. Theor Appl Genet 131:1925–1938

    Article  CAS  Google Scholar 

  • Devran Z, Goknur A, Mesci L (2016) Development of molecular markers for the Mi-1 gene in tomato using the KASP genotyping assay. Hort Environ Biotechnol 57:156–160

    Article  Google Scholar 

  • Dropkin VH (1969) The necrotic reaction of tomatoes and other hosts resistant to Meloidogyne: reversal by temperature. Phytopath 59:1632–1637

    Google Scholar 

  • Dunnett J (1961) Inheritance of resistance to potato root eelworm in a breeding line stemming from Solanum multidissectum Hawes. Report of the Scottish Plant Breeding Station, pp 39–46

    Google Scholar 

  • Ellenby C (1952) Resistance to the Potato Root Eelworm, Heterodera rostochiensis Wollenweber. Nature 170:1016

    Article  CAS  PubMed  Google Scholar 

  • Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11

    Google Scholar 

  • Ellis PR, Maxon Smith JW (1971) Inheritance of resistance to potato cyst-eelworm (Heterodera rostochiensis Woll.) in the genus Lycopersicon. Euphytica 20:93–101

    Article  Google Scholar 

  • Ernst K, Kumar A, Kriseleit D, Kloos DU, Phillips MS, Ganal M (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31:127–136

    Article  CAS  PubMed  Google Scholar 

  • Flis B, Hennig J, Strzelczyk-Zyta D, Gebhardt C, Marczewski W (2005) The Ry-f sto gene from Solanum stoloniferum for extreme resistant to Potato virus Y maps to potato chromosome XII and is diagnosed by PCR marker GP122718 in PVY resistant potato cultivars. Mol Breed 15:95–101

    Article  CAS  Google Scholar 

  • Folkertsma RT, Spassova MI, Prins M, Stevens MR, Hille J, Goldbach RW (1999) Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus. Mol Breed 5:197–207

    Article  CAS  Google Scholar 

  • Fraser R, Loughlin S (1980) Resistance to tobacco mosaic virus in tomato: effects of the Tm-1 gene on virus multiplication. J Gen Virol 48:87–96

    Article  CAS  Google Scholar 

  • Fulladolsa A, Navarro F, Kota R, Severson K, Palta J, Charkowski A (2015) Application of marker assisted selection for Potato Virus Y resistance in the University of Wisconsin potato breeding program. Am J Pot Res 92:444–450

    Article  Google Scholar 

  • Fuller V, Lilley C, Urwin P (2008) Nematode resistance. New Phytol 180:27–44

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Simon R, Brommonschenkel S, Arndt M, Phillips MS, Tanksley SD, Kumar A (1995) Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol Plant Microb Interact 8:886–891

    Article  CAS  Google Scholar 

  • Gebhardt C, Mugniery D, Ritter E, Salamini F, Bonnel E (1993) Identification of RFLP markers closely linked to the H1 gene conferring resistance to Globodera rostochiensis in potato. Theor Appl Genet 85:541–544

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt C, Valkonen JPT (2001) Organization of genes controlling disease resistance in the potato genome. Ann Rev Phytopath 39:79–102

    Article  CAS  Google Scholar 

  • Ghislain M, Byarugaba A, Magembe E, Njoroge A, Rivera C, Roman M, Tovar J, Gamboa S, Forbes G, Krueze J, Barekye A, Kiggundu A (2019) Stacking three late blight resistance genes from wild species directly into African highland potato varieties confers complete field resistance to local blight races. Plant Biotech J 17:1119–1129

    Article  CAS  Google Scholar 

  • Gill U, Scott JW, Shekasteband R, Ogundiwin E, Schuit C, Francis DM, Sim S-C, Smith H, Hutton SF (2019) Ty-6, a major begomovirus resistance gene on chromosome 10, is effective against Tomato yellow leaf curl virus and Tomato mottle virus. Theor Appl Genet 132:1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall T (1980) Resistance at the TM-2 locus in the tomato to tomao mosaic virus. Euphytica 29:189–197

    Article  Google Scholar 

  • Hämäläinen JH, Sorri VA, Watanabe KN, Gebhardt C, Valkonen JPT (1998) Molecular examination of a chromosome region that controls resistance to potato Y and A potyviruses in potato. Theor Appl Genet 96:1036–1043

    Article  Google Scholar 

  • Hämäläinen JH, Watanabe KN, Valkonen JPT, Arihara A, Plaisted RL, Pehu E, Miller L, Slack SA (1997) Mapping and marker-assisted selection for a gene for extreme resistance to potato virus Y. Theor Appl Genet 94:192–197

    Article  Google Scholar 

  • Hameed A, Zaidi S, Shakir S, Mansoor S (2018) Applications of new breeding technologies for potato improvement. Front Plant Sci 9:925

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja AS, Chen H-m, Kuo G, Fang D, Chen J-t (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Amer Soc Hort Sci 125:15–20

    Article  CAS  Google Scholar 

  • Hanssen IM, Lapidot M, Thomma BPHJ (2010) Emerging viral diseases of tomato crops. Mol Plant Microb Interact 5:539–548

    Article  CAS  Google Scholar 

  • Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative Solanum species indigenous to the Old World. DNA Research

    Google Scholar 

  • Hulbert SH, Webb CA, Smith SM, Sun Q (2001) Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39:285–312

    Article  CAS  PubMed  Google Scholar 

  • Hutton SF, Scott JW, Schuster DJ (2012) Recessive resistance to Tomatto yellow leaf curl virus from the tomato cultivar Tyking is located in the same rregion as Ty-5 on chromosome 4. HortSci 47:324–327

    Article  Google Scholar 

  • Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci U S A 104:13833–13838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs JME, van Eck HJ, Horsman K, Arens PFP, Verkerk-Bakker B, Jacobsen E, Pereira A, Stiekema WJ (1996) Mapping of resistance to the potato cyst nematode Globodera rostochiensis from the wild potato species Solarium Vernei. Mol Breed 2:51–60

    Article  CAS  Google Scholar 

  • Jansky S, Charkowski A, Douches D, Gusmini G, Richael C, Bethke P, Spooner D, Novy R, De Jong H, De Jong W, Bamberg J, Thompson A, Bizimungu B, Holm D, Brown C, Haynes K, Sathuvalli V, Veilleux R, Miller CJ, Bradeen J, Jiang J (2016) Reinventing potato as a diploid inbred line-based crop. Crop Sci 56:1412–1422

    Article  CAS  Google Scholar 

  • Janssen G, Norel A, Janssen R, Hoogendoorn J (1997) Dominant and additive resistance to the root-knot nematodes Meloidogyne chitwoodi and M. fallax in Central American Solanum species. Theor Appl Genet 94:692–700

    Article  Google Scholar 

  • Ji Y, Schuster DJ, Scott JW (2007) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284

    Article  CAS  Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruse. In: Czosnek H (ed) Tomato yellow curl virus disease. Springer, Dordrecht, pp 343–362

    Chapter  Google Scholar 

  • Ji Y, Scott JW, Schuster DJ, Maxwell DP (2009) Molecular mapping of Ty-4, a new Tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hort Sci 134:281–288

    Article  Google Scholar 

  • Jia H, Zhang Y, Orbovic V, Xu J, White F, Jones J, Wang N (2017) Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotech J 15:817–823

    Article  CAS  Google Scholar 

  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks D (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucl Acids Res 41:188

    Article  CAS  Google Scholar 

  • Jones J, Zitter T, Momol T, Miller S (2014) Compendium of tomato diseases and pests, 2nd edn. APS Press, St. Paul

    Google Scholar 

  • Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, Zabel P, Williamson V (1998) Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol Gen Genet 257:376–385

    Article  CAS  PubMed  Google Scholar 

  • Kanyuka K, Bendahmane A, Rouppe van der Voort JNAM, Vossen EAGvd, Baulcombe DC (1999) Mapping of intra-locus duplications and introgressed DNA: aids to map-based cloning of genes from complex genomes illustrated by physical analysis of the Rx locus in tetraploid potato. Theor appl genet 98:679–689

    Google Scholar 

  • Kasai K, Morikawa Y, Sorri VA, Valkonen JPT, Gebhardt C, Watanabe KN (2000) Development of SCAR markers to the PVY resistance gene Ry(adg) based on a common feature of plant disease resistance genes. Genome 43:1–8

    Article  CAS  PubMed  Google Scholar 

  • Kil E-J, Kim S, Lee Y-J, Byun H-S, Park J, Seo H, Kim C-S, Shim J-K, Lee J-H, Kim J-K, Lee K-Y, Choi H-S, Lee S (2016) Tomato yllow leaf curl virus (TTYLCV-IL): a seed-transmissible geminivirus in tomatoes. Scienitfic Reports 6:19013

    Article  CAS  Google Scholar 

  • Klein-Lankhorst R, Rietveld P, Machiels B, Verkerk R, Weide R, Gebhardt C, Koornneef M, Zabel P (1991) RFLP markers linked to the root knot nematode resistance gene Mi in tomato. Theor Appl Genet 81:661–667

    Article  CAS  PubMed  Google Scholar 

  • Kreike CM, de Koning JRA, Vinke JH, van Ooijen JW, Gebhardt C, Stiekema WJ (1993) Mapping of loci involved in quantitatively inherited resistance to the potato cyst-nematode Globodera rostochiensis pathotype Ro1. Theor Appl Genet 87:464–470

    Article  CAS  PubMed  Google Scholar 

  • Kreike CM, de Koning JRA, Vinke JH, van Ooijen JW, Stiekema WJ (1994) Quantitatively-inherited resistance to Globodera pallida is dominated by one major locus in Solanum spegazzinii. Theor Appl Genet 88:764–769

    Article  CAS  PubMed  Google Scholar 

  • Lanfermeijer F, Dijkhuis J, Sturre M, de Haan P, Hille J (2003) Cloning and characterization of the durable tomato mosaic virus resistance gene Tm-2(2) from Lycopersicon esculentum. Plant Mol Biol 52:1037–1049

    Article  CAS  PubMed  Google Scholar 

  • Lanfermeijer F, Warmink J, Hille J (2005) The products of the broken Tm-2 and the durable Tm-22 resistance genes from tomato differ in four amino acids. J Exper Bot 56:2925–2933

    Article  CAS  Google Scholar 

  • Lapidot M, Karniel U, Gelbart D, Fogel D, Evenor D, Kutsher Y, Makhbash Z, Nahon S, Shlomo H, Chen L, Reuveni M, Levin I (2015) A novel route controlling begomovirus resistance by the messenger RNA surveillance factor pelota. PLoS Genet 11:e1005538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leister D, Ballvora A, Salamini F, Gebhardt C (1996) A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    Article  CAS  PubMed  Google Scholar 

  • Leisner CP, Hamilton JP, Crisovan E, Manrique-Carpintero NC, Marand AP, Newton L, Pham GM, Jiang J, Douches DS, Jansky SH, Buell CR (2018) Genome sequence of M6, a diploid inbred clone of the high-glycoalkaloid-producing tuber-bearing potato species Solanum chacoense, reveals residual heterozygosity. Plant J 94:562–570

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Viola R, Jung M-H, Koo O-J, Kim S, Kim J-S, Velasco R, Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904

    Article  PubMed  PubMed Central  Google Scholar 

  • Meiyalaghan S, Paget M, Thompson S, Thomson S, Baldwin S, Anderson J, Genet R, Lewthwaite S (2018) High resolution DNA melting markers for identification of H1-linked resistance to potato cyst nematode. Mol Breed 38:79

    Article  CAS  Google Scholar 

  • Meshi T, Motoyoshi F, Adachi A, Watanabe Y, Takamatsu N, Okada Y (1988) Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistancegene, Tm-1. EMBO J 7:1575–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Messeguer R, Ganal M, De Vincente MC, Young ND, Bolkan H, Tanksley SD (1991) High resolution RFLP map around the root knot nematode resistance gene (Mi) in tomato. Theor Appl Genet 82:529–536

    Article  CAS  PubMed  Google Scholar 

  • Milczarek D (2012) A Multiplex PCR method of detecting markers linked to genes conferring resistance to Globodera rostochiensis. Am J Pot Res 89:169–171

    Article  CAS  Google Scholar 

  • Milczarek D, Flis B, Przetakiewicz A (2011) Suitability of molecular markers for selection of potatoes resistant to Globodera spp. Am J Pot Res 88:245–255

    Article  CAS  Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori K, Sakamoto Y, Mukojima N, Tamiya S, Nakao T, Ishii T, Hosaka K (2011) Development of a multiplex PCR method for simultaneous detection of diagnostic DNA markers of five disease and pest resistance genes in potato. Euphytica 180:347–355

    Article  Google Scholar 

  • Motoyoshi F, Oshima N (1977) Expression of genetically controlled resistance to tobacco mosaic virus infection in isolated tomato leaf mesophyll protoplasts. J Gen Virol 34:499–506

    Article  Google Scholar 

  • Nadakuduti S, Buell C, Voytas D, Starker C, Douches D (2018) Genome editing for crop improvement—applications in clonally propagated polyploids with a focus on potato (Solanum tuberosum L.). Front Plant Sci 9:1607

    Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene-free mildew resistant tomato by genome deletion. Sci Rep 7:482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nie X, Lalany F, Dickison V, Wilson D, Singh M, De Koeyer D, Murphy A (2016) Detection of molecular markers linked to Ry genes in potato germplasm for marker-assisted selection for extreme resistance to PVY in AAFC’s potato breeding program. Can J Plant Sci 96:737–742

    Article  CAS  Google Scholar 

  • Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant Microb Interact 16:645–649

    Article  CAS  Google Scholar 

  • Ortega F, Lopez-Vizcon C (2012) Application of molecular Marker-Assisted Selection (MAS) for disease resistance in a practical potato breeding programme. Potato Res 55:1–13

    Article  CAS  Google Scholar 

  • Ottoman RJ, Hane DC, Brown CR, Yilma S, James SR, Mosley AR, Crosslin JM, Vales MI (2009) Validation and implementation of Marker-Assisted Selection (MAS) for PVY resistance (Ryadg gene) in a tetraploid potato breeding program. Am J Pot Res 86:304–314

    Article  Google Scholar 

  • Paal J, Henselewski H, Muth J, Meksem K, Menendez CM, Salamini F, Ballvora A, Gebhardt C (2004) Molecular cloning of the potato Gro1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis, based on a candidate gene approach. Plant J 38:285–297

    Article  CAS  PubMed  Google Scholar 

  • Palukaitis P (2012) Resistance to viruses of potato and their vectors. Plant Pathol J 28:248–258

    Article  Google Scholar 

  • Park J, Yang H, De Jong W, Wang X (2018) An evaluation of two H1-linked markers and their suitability for selecting Globodera rostochiensis resistant potatoes in the New York breeding program. Am J Pot Res 95:170–177

    Article  Google Scholar 

  • Paulson RE, Webster JM (1972) Ultrastructure of the hypersensitive reaction in roots of tomato, Lycopersicon esculentum L., to infection by the root-knot nematode Meloidogyne incognita. Physiol Plant Pathol 2:227–234

    Article  Google Scholar 

  • Perez de Castro A, Miguel Blanca J, Jose Diez M, Nuez Vinals F (2007) Identification of a CAPS marker tightly linked to the tomato yellow leaf curl disease resistance gene Ty-1 in tomato. Eur J Plant Pathol 117:347–356

    Article  Google Scholar 

  • Querci M, Baulcombe DC, Goldbach RW, Salazar LF (1995) Analysis of the resistance-breaking determinant of potato virus X (PVX) strain HB on different potato genotypes expressing extreme resistance to PVX. Phytopathology 85:1003–1010

    Article  Google Scholar 

  • Quirin EA, Mann H, Meyer RS, Traini A, Chiusano ML, Litt A, Bradeen JM (2012) Evolutionary meta-analysis of Solanaceous resistance gene and Solanum resistance gene analog sequences and a practical framework for cross-species comparisons. Mol Plant-Microbe Interact 25:603–612

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan A, Ritland C, Blas Sevillano R, Riseman A (2015) Review of potato molecular markers to enhance trait selection. Am J Potato Res 92:455–472

    Article  CAS  Google Scholar 

  • Razaimi R, Bougouffa S, Morton M, Lightfoot D, Alam I, Essack M, Arold S, Kamau A, Schmockel S, Pailles Y, Shahid M, Michell C, Al-Babili S, Ho Y, Tester M, Bajic V, Negroa S (2018) The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Front Plant Sci 9:1402

    Article  Google Scholar 

  • Reem N, Van Eck J (2019) Application of CRISPR/Cas9-mediated gene editing in tomato. Method Mol Biol 1917:171–182

    Article  CAS  Google Scholar 

  • Ritter E, Debener T, Barone A, Salamini F, Gebhardt C (1991) RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Mol Gen Genet 227:81–85

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci U S A 95:9750–9754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rouppe van der Voort J, Wolters P, Folkertsma R, Hutten R, Pv Z, Vinke H, Kanyuka K, Bendahmane A, Jacobsen E, Janssen R (1997) Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on comigrating AFLP markers. Theor Appl Genet 95:874–880

    Article  CAS  Google Scholar 

  • Rybicki E (2015) A top ten list for economically important plant viruses. Arch Virol 160:17–20

    Article  CAS  PubMed  Google Scholar 

  • Sagredo BD, Mathias MR, Barrrientos CP, Acuna IB, Kalazich JB, Santos Rojas J (2009) Evaluation of scar RYSC3 marker of the Ryadg gene to select resistant genotypes to potato virus Y (PVY) in the INIA potato breeding program. Chilean J Ag Res 69:305–315

    Google Scholar 

  • Sato M, Nishikawa K, Komura K, Hosaka K (2006) Potato virus Y resistance gene, Rychc, mapped to the distal end of potato chromosome 9. Euphytica 149:367–372

    Article  CAS  Google Scholar 

  • Scheben A, Wolter F, Batley J, Puchta H, Edwards D (2017) Towards CRISPR/Cas crops—bringing together genomics and genome editing. New Phytol 216:682–698

    Article  CAS  PubMed  Google Scholar 

  • Scott JW, Hutton SF (2015) Fla. 8638B and Fla. 8624 tomato breeding lines with Begomovirus resistance genes ty-5 plus Ty-6 and Ty-6, respectively. HortSci 50:1405–1407

    Article  CAS  Google Scholar 

  • Smith P (1944) Embryo culture of a tomato species hybrid. Proc Am Soc Hortic Sci 44:413–416

    Google Scholar 

  • Song Y-S, Hepting L, Schweizer G, Hartl L, Wenzel G, Schwarzfischer A (2005) Mapping of extreme resistance to PVY (Rysto) on chromosome XII using anther-culture-derived primary dihaploid potato lines 111:879–887

    Google Scholar 

  • Song Y-S, Schwarzfischer A (2008) Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars. Am J Pot Res 85:159–170

    Article  CAS  Google Scholar 

  • Spassova MI, Prins TW, Folkertsma RT, Klein-Lankhorst RM, Hille J, Goldbach RW, Prins M (2001) The tomato gene Sw5 is a member of the coiled coil, nucleotide binding, leucine-rich repeat class of plant resistance genes and confers resistance to TSWV in tobacco. Mol Breed 7:151–161

    Article  CAS  Google Scholar 

  • Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw-5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456

    Article  CAS  PubMed  Google Scholar 

  • Stevens MR, Scott SJ, Gergerich RC (1992) Inheritance of a gene for resistance to tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill Euphytica 59:9–17

    Google Scholar 

  • Stevenson WR, Loria R, Franc GD, Weingartner DP (2001) Compendium of potato diseases, 2nd edn. APS Press, St. Paul

    Google Scholar 

  • Strachan SM, Armstrong MR, Kauer A, Wright KM, Lim TY, Baker K, Jones J, Bryan G, Blok V, Hein I (2019) Mapping the H2 resistance effective against Globodera pallida pathotype Pa1 in tetraploid potato. Theor Appl Genet (Published on line January 21, 2019)

    Google Scholar 

  • Szajko K, Chrzanowska M, Witek K, Strzelczyk-Zyta D, Gebhardt C, Hennig J, Marczewski W (2008) The novel gene Ny-1 on potato chromosome IX confers hypersensitive resistance to Potato virus Y and is an alternative to Ry genes in potato breeding for PVY resistance. Theor Appl Genet 116:297–303

    Article  CAS  PubMed  Google Scholar 

  • Szajko K, Strzelczyk-Zyta D, Marczewski W (2014) Ny-1 and Ny-2 genes conferring hypersensitive response to potato virus Y (PVY) in cultivated potatoes: mapping and marker-assisted selection validation for PVY resistance in potato breeding. Mol Breed 34:267–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, Vicente MCd, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valkonen JPT (2007) Viruses: economic losses and biotechnological potential. In: Vreugdenhil D, Bradshaw J, Gebhardt C, Govers F, Mackerron DKL, Taylor MA, Ross HA (eds) Potato biology and biotechnology advances and perspective. Elsevier, Oxford, pp 619–641

    Chapter  Google Scholar 

  • van Eck L, Bradeen J (2019) Hunting for novel disease resistance genes: observations and opportunities from the Rosaceae. Acta Hort 1232:125–134

    Google Scholar 

  • Verlaan MG (2013) Characterization of major resistance genes to Tomatto Yellow Leaf Curl Virus. Wageningen University

    Google Scholar 

  • Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 Are allelic and code for DFDGD-Class RNA–dependent RNA polymerases. PLoS Genet 9:e1003399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verlaan MG, Szinay D, Hutton SF, De Jong H, Kormelink R, Visser RGF, Scott JW, Bai Y (2011) Chromosomal rearrangements between tomato and Solanum chilense hamper mapping and breeding of the TYLCV resistance gene Ty-1. Plant J 68:1093–1103

    Article  CAS  PubMed  Google Scholar 

  • Vossen EAGvd, Rouppe van der Voort JNAM, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC, Bakker J, Stiekema WJ, Klein Lankhorst RM (2000) Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant j 23:567–576

    Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotech 32:947–951

    Article  CAS  Google Scholar 

  • Weber H, Pfitzner A (1998) Tm-22 resistance in tomato requires recognition of the carboxy terminus of the movement protein of tomato mosaic virus. Mol Plant Microb Interact 11:498–503

    Article  CAS  Google Scholar 

  • Williamson VM (1998) Root-knot nematodie resistance genes in tomato and their potential for future use. Ann Rev Phytopath 36:277–293

    Article  CAS  Google Scholar 

  • Williamson VM, Ho JY, Wu FF, Miller N, Kaloshian I (1994) A PCR-based marker tightly linked to the nematode resistance gene, Mi in tomato. Theor Appl Genet 87:757–763

    Article  CAS  PubMed  Google Scholar 

  • Witek K, Jupe F, Witek A, Baker D, Clark M, Jones J (2016) Accelerated cloning of a potato late blight-resistance gene using RenSeq and SMRT sequencing. Nat Biotech 34:656–660

    Article  CAS  Google Scholar 

  • Yamafuji R, Watanabe Y, Meshi T, Okada Y (1991) Replication of TMV-L and Lta1 RNAs and their recombinants in TMV-resistant Tm-1 tomato protoplasts. Virology 183:99–105

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi H, Ohnishi J, Saito A, Ohyama A, Nunome T, Miyatake K (2018) An NB-LRR gene, TYNBS1, is responsible for resistance mediated by the Ty-2 Begomovirus resistance locus of tomato. Theor Appl Genet 131:1345–1362

    Article  CAS  PubMed  Google Scholar 

  • Yan Z, Perez de Castro A, Diez M, Hutton SF, Visser R, Wolters A-M, Bai Y, Li J (2018) Resistance to tomato yellow leaf curl virus in tomato germplasm. Front Plant Sci 9:1198

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Caro M, Hutton SF, Scott JW, Guo Y, Wang X, Rashid M, Szinay D, de Jong H, Visser R, Bai Y, Du Y (2014) Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Mol Breed 34:749–760

    PubMed  PubMed Central  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch H, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, TY-1. Theor Appl Genet 88:141–146

    Google Scholar 

  • Zhang L-H, Mojtahedi H, Kuang H, Baker B, Brown C (2007) Marker-assisted selection of Columbia root-knot nematode resistance introgressed from Solanum bulbocastanum. Crop Sci 47:2021–2026

    Article  CAS  Google Scholar 

  • Zhou X, Liu J, Bao S, Yang Y, Zhuang Y (2018) Molecular cloning and characterization of a wild eggplant Solanum aculeatissimum NBS-LRR gene, involved in plant resistance to Meloidogyne incognita. Int J Mol Sci 19:583

    Article  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Bradeen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bradeen, J.M. (2021). On the Value of Wild Solanum Species for Improved Crop Disease Resistance: Resistances to Nematodes and Viruses. In: Carputo, D., Aversano, R., Ercolano, M.R. (eds) The Wild Solanums Genomes. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-30343-3_5

Download citation

Publish with us

Policies and ethics