Skip to main content

System Biology of Metal Tolerance in Plants: An Integrated View of Genomics, Transcriptomics, Metabolomics, and Phenomics

  • Chapter
  • First Online:
Plant Metallomics and Functional Omics

Abstract

Heavy metal toxicity is heavily damaging constraint to quality and productivity of crops these days. Plants exposed to heavy metals (HMs) contaminated sites respond at cellular, biochemical, physiological, and molecular levels to cope with lethal effects of heavy metal toxicity. A substantial interest has developed in plant metal tolerance mechanisms especially the ones enabling plants to thrive well in environments having high metals concentrations. Expression of genes in different plant cells, tissues along with expression timing and conditions in cells can be estimated. Gene expression analyses help in determining the response of stress tolerant plants to various environmental conditions including heavy metal stress. Previously, unannotated gene functions can also be inferred by this way. In comparison with practicing techniques, using omic technology is greatly helpful, pragmatic and feasible approach for improving plant systems. The earlier findings point toward omics as a prospective helping hand to engineer heavy metal (s) tolerance in plants. Current developments in various disciplines of biology, for example, genomics, transcriptomics, metabolomics, and phenomics have aided in the characterization of genomes, RNA biology, transcription factors, metabolites, and phenomes gene products involved in metal tolerance in one or the other way, thereby, used for producing heavy metal tolerant crops. The role of genomes (genomics), RNA transcripts (transcriptomics), metabolites (metabolomics), and phenotypes (phenomics) in inducing metal tolerance in plant biological systems under heavy metal toxicity has been summarized in this chapter. We reviewed the deterministic significance of integrated plant omics for heavy metal tolerance and their role in mediating plant responses to HM toxicity. This chapter also summarized the topical developments by the identification and validation of different metal stress-responsive genes, TFs, and miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M, Zia-ur-Rehman M, Irshad MK, Bharwana SA (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22(11):8148–8162

    Article  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. South Afric J Bot 77(1):36–44

    Article  CAS  Google Scholar 

  • Ahmad R, Ali S, Hannan F, Rizwan M, Iqbal M, Hassan Z, Akram NA, Maqbool S, Abbas F (2017) Promotive role of 5-aminolevulinic acid on chromium-induced morphological, photosynthetic, and oxidative changes in cauliflower (Brassica oleraceabotrytis L.). Environ Sci Pollut Res 24:8814–8824

    Article  CAS  Google Scholar 

  • Akula R, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    Article  CAS  Google Scholar 

  • Ali B, Qian P, Jin R, Ali S, Khan M, Aziz R, Tian T, Zhou W (2014) Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol Plant 58(1):131–138

    Article  CAS  Google Scholar 

  • Ali S, Rizwan M, Ullah N, Bharwana SA, Waseem M, Farooq MA, Abbasi GH, Farid M (2016) Physiological and biochemical mechanisms of silicon-induced copper stress tolerance in cotton (Gossypium hirsutum L.). Acta Physiol Plant 38:1–11

    Article  CAS  Google Scholar 

  • Andrés-Colás N, Sancenón V, Rodríguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236

    Article  PubMed  CAS  Google Scholar 

  • Anwer S, Khan S, Ashraf MY, Noman A, Baloch SU, Zafar S, Fahad S (2017) Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize. Int J Phytoremediation 19(6):505–513. https://doi.org/10.1080/15226514.2016.1254153

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    Article  CAS  PubMed  Google Scholar 

  • Arbaoui S, Slimane RB, Rezgui S, Bettaieb T (2014) Metal transporters for uptake, sequestration and translocation. In: Gupta DK, Chatterjee S (eds) Heavy metal remediation: transport and accumulation in plants. Nova Science Publishers, New York, pp 29–44

    Google Scholar 

  • Arora A, Byrem TM, Nair MG, Strasburg GM (2000) Modulation of liposomal membrane fluidity by flavonoids and isoflavonoid. Arch Biochem Biophys 373(1):102–109

    Article  CAS  PubMed  Google Scholar 

  • Arshad M, Ali S, Noman A, Ali Q, Rizwan M, Farid M, Irshad MK (2016) Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Arch Agron Soil Sci 62(4):533–546. https://doi.org/10.1080/03650340.2015.1064903

    Article  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissues. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, FL, pp 77–104

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006

    Article  CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:316. https://doi.org/10.1016/j.plantsci.2003.10.024

    Article  CAS  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  CAS  PubMed  Google Scholar 

  • Assunção AGL, Herrero E, Lin Y, Huettel B, Talukdar S, Smaczniak C, Immink RGH, Eldik M, Fiers M, Schat H, Aarts MGM (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Nat Acad Sci USA 107:10296–10301

    Article  PubMed  PubMed Central  Google Scholar 

  • Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827

    Article  CAS  PubMed  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3544. https://doi.org/10.1093/jxb/ers100

    Article  CAS  PubMed  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry) (2015) Toxicological profile for cadmium. http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=48&tid=15. Accessed 21 June 2017

  • Axelsen KB, Palmgren MG (1998a) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101. https://doi.org/10.1007/PL00006286

    Article  CAS  PubMed  Google Scholar 

  • Axelsen KB, Palmgren MG (1998b) Inventory of the superfamily of P-Type ion pumps in Arabidopsis. Plant Physiol 126:696–706

    Article  Google Scholar 

  • Bačkor M, Loppi S (2009) Interactions of lichens with heavy metals. Biol Plant 53(2):214–222

    Article  CAS  Google Scholar 

  • Barnes JD, Zheng Y, Lyons TM (2002) Plant resistance to ozone: the role of ascorbate. In: Omasa K, Saji H, Youssefian S, Kondo N (eds) Air pollution and plant biotechnology. Springer, Tokyo, Japan, pp 235–254

    Chapter  Google Scholar 

  • Barrameda-Medina Y, Montesinos-Pereira D, Romero L, Blasco B, Ruiz JM (2014) Role of GSH homeostasis under Zn toxicity in plants with different Zn tolerance. Plant Sci 227:110–121

    Article  CAS  PubMed  Google Scholar 

  • Bashri G, Prasad SM (2015) Indole acetic acid modulates changes in growth, chlorophyll a fluorescence and antioxidant potential of Trigonella foenum-graecum L. grown under cadmium stress. Acta Physiol Plant 37:1745. https://doi.org/10.1007/s11738-014-1745-z

    Article  CAS  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic Brassica napus plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1278–1269. https://doi.org/10.1046/j.0016-8025.2001.00783.x

    Article  Google Scholar 

  • Belhaj D, Elloumi N, Jerbi B, Zouari M, Abdallah FB, Ayadi H, Kallel M (2016) Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ Sci Pollut Res 23(20):20168–20177

    Article  CAS  Google Scholar 

  • Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D, Chalot M (2007) Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 174:151–158. https://doi.org/10.1111/j.1469-8137.2007.01973.x

    Article  CAS  PubMed  Google Scholar 

  • Bhattachrjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plant. Curr Sci 89:1113–1121

    Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97. https://doi.org/10.1016/01677799(96)80929-2

    Article  CAS  Google Scholar 

  • Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Kantar M, Bulut R, Akpinar BA (2015) Stress responsive miRNAs and isomiRs in cereals. Plant Sci 235:1–13. https://doi.org/10.1016/j.plantsci.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  • Bundy JG, Willey TL, Castell RS, Ellar DJ, Brindle KM (2005) Discrimination of pathogenic clinical isolates and laboratory strains of Bacillus cereus by NMR-based metabolomic profiling. FEMS Microbiol Lett 242:127–136. https://doi.org/10.1016/j.femsle.2004.10.048

    Article  CAS  PubMed  Google Scholar 

  • Caille N, Zhao FJ, McGrath SP (2005) Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytol 165:755–761. https://doi.org/10.1111/j.1469-8137.2004.01239.x

    Article  CAS  PubMed  Google Scholar 

  • Callahan DL, Baker AJM, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    Article  CAS  PubMed  Google Scholar 

  • Carneiro JM, Chacón-Madrid K, Galazzi RM, Campos BK, Arruda SC, Azevedo RA, Arruda MA (2017) Evaluation of silicon influence on the mitigation of cadmium-stress in the development of Arabidopsis thaliana through total metal content, proteomic and enzymatic approaches. J Trace Elem Med Biol 44:50–58

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia N, Mishra Y, Rai LC (2008) Cloning expression and analysis of phytochelatin synthase (pcs) gene from Anabaena sp. PCC 7120 offering multiple stress tolerance in Escherichia coli. Biochem Biophys Res Commun 376:225–230. https://doi.org/10.1016/j.bbrc.2008.08.129

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Pereira JS, Maroco J et al (2002) How plants cope with water stress in the field. Photosynth Growth Ann Botany 89:907–916

    Article  CAS  Google Scholar 

  • Chen LM, Lin CC, Kao CH (2000) Copper toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level, and cell wall peroxidase activity in roots. Bot Bull Acad Sinica 41:99–103

    CAS  Google Scholar 

  • Chen Z, Pan Y, Wang S, Ding Y, Yang W, Zhu C (2012) Overexpression of a protein disulfide isomerase-like protein from Methanothermobacter thermoautotrophicum enhances mercury tolerance in transgenic rice. Plant Sci 197:10–20. https://doi.org/10.1016/j.plantsci.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  • Chen YA, Chi WC, Trinh NN, Huang LY, Chen YC, Cheng KT (2014) Transcriptome profiling and physiological studies reveal a major role for aromatic amino acids in mercury stress tolerance in rice seedlings. PLoS One 9:95163. https://doi.org/10.1371/journal.pone.0095163

    Article  CAS  Google Scholar 

  • Collin VC, Eymery F, Genty B, Rey P, Havaux M (2008) Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal induced oxidative stress. Plant Cell Environ 31:244–257. https://doi.org/10.1111/j.1365-3040.2007.01755.x

    Article  CAS  PubMed  Google Scholar 

  • Copaciu F, Opriş O, Niinemets Ü, Copolovici L (2016) Toxic influence of key organic soil pollutants on the total flavonoid content in wheat leaves. Water Air Soil Pollut 227(6):196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corpas FJ, Palma JM, Sandalio LM, Valderrama R, Barroso JB, del Río LA (2008) Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J Plant Physiol 165(13):1319–1330

    Article  CAS  PubMed  Google Scholar 

  • Craciun AR, Meyer C-L, Chen J, Roosens N, Groodt RD, Hilson P et al (2012) Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. J Exp Bot 63:4179–4189

    Article  CAS  PubMed  Google Scholar 

  • Curie C, Alonso JM, Le Jean M, Ecker JR, Briat JF (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132. https://doi.org/10.1039/c3mt00038a

    Article  CAS  PubMed  Google Scholar 

  • Das K, Roychoudhury A (2016) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. In: Khan NA, Anjum NA, Sofo A, Kizek R, Baier M (eds) Redox homeostasis managers in plants under environmental stresses. Frontiers in Environmental Science, pp 53–65

    Google Scholar 

  • De Dorlodot S, Lutts S, Bertin P (2005) Effects of ferrous iron toxicity on the growth and mineral composition of an interspecific rice. J Plant Nutr 28:1–20. https://doi.org/10.1081/PLN-200042144

    Article  CAS  Google Scholar 

  • Del Río LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141(2):330–335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng F, Yamaji N, Xia J, Ma JF (2013) A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant Physiol 163:1353–1362. https://doi.org/10.1104/pp.113.226225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant Cell Environ 33:648–654

    Article  CAS  PubMed  Google Scholar 

  • Dixit P, Mukherjee PK, Ramachandran V, Eapen S (2011) Glutathione transferase from Trichoderma virens enhances cadmium tolerance without enhancing its accumulation in transgenic Nicotiana tabacum. PLoS One 6:16360. https://doi.org/10.1371/journal.pone.0016360

    Article  CAS  Google Scholar 

  • Dräger BD, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Krämer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439

    Article  PubMed  CAS  Google Scholar 

  • Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120. https://doi.org/10.1155/2015/756120

    Article  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezaki B, Katsuhara M, Kawamura M, Matsumoto H (2001) Different mechanisms of four aluminum (Al)-resistant transgenes for Al toxicity in Arabidopsis. Plant Physiol 127:918–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faller P, Kienzler K, Krieger-Liszkay A (2005) Mechanism of Cd2+ toxicity: Cd2+ inhibits photo activation of Photosystem II by competitive binding to the essential Ca2+ site. Biochimica et BiophysicaActa 1706(1–2):158–164

    Article  CAS  Google Scholar 

  • Fang X, Zhao Y, Ma Q, Huang Y, Wang P, Zhang J, Nian H, Yang C (2013) Identification and comparative analysis of cadmium tolerance associated miRNAs and their targets in two soybean genotypes. PLoS One 8:81471

    Article  CAS  Google Scholar 

  • Farias JG, Antes FLG, Nunes PAA, Nunes ST, Schaich G, Rossato LV et al (2013) Effects of excess copper in vineyard soils on the mineral nutrition of potato genotypes. Food Energy Security 2:49–69. https://doi.org/10.1002/fes3.16

    Article  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119(3):355–364

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott JM (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100(2):241–254

    Article  CAS  Google Scholar 

  • Fozia A, Muhammad AZ, Muhammad A, Zafar MK (2008) Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J Environ Sci 20(12):1475–1480

    Article  CAS  Google Scholar 

  • Freeman JL, Garcia D, Kim D, Hopf A, Salt DE (2005) Constitutively elevated salicylic acid signals glutathione-mediated nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Physiol 137:1082–1091. https://doi.org/10.1104/pp.104.055293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaber A, Yoshimura K, Yamamoto T, Yabuta Y, Takeda T, Miyasaka H, Nakano Y, Shigeoka S (2006) Glutathione peroxidase-like protein of Synechocystis PCC 6803 confers tolerance to oxidative and environmental stresses in transgenic Arabidopsis. Physiol Plant 128:251–262

    Article  CAS  Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycine betaine on Vicia faba responses to salt stress. Biol Plant 42(2):249–257

    Article  CAS  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulphur accumulation in selenium hyperaccumulators and related nonaccumulators. New Phytol 173:517–525

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Singla P (2011) Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9(3):303–321

    Article  CAS  Google Scholar 

  • Garzón T, Gunsé B, Moreno AR, Tomos AD, Barceló J, Poschenrieder C (2011) Aluminium-induced alteration of ion homeostasis in root tip vacuoles of two maize varieties differing in Al tolerance. Plant Sci 180:709–715. https://doi.org/10.1016/j.plantsci.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  • Gichner T, Patkova Z, Szakova J, Demnerova K (2004) Cadmium induces DNA damages in tobacco roots, but no DNA damage, somatic mutations or homologous recombinations in tobacco leaves. Mut Res Genet Toxicol Environ Mutagen 559:49–57. https://doi.org/10.1016/j.mrgentox.2003.12.008

    Article  CAS  Google Scholar 

  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N (2013) Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem 63:254–261. https://doi.org/10.1016/j.plaphy.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  • Grace SG, Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philos Trans R Soc B 355(1402):1499–1510

    Article  CAS  Google Scholar 

  • Guan Z, Chai T, Zhang Y, Xu J, Wei W (2009) Enhancement of Cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76(5):623–630

    Article  CAS  PubMed  Google Scholar 

  • Guerinot ML (2000) The ZIP, family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Dai X, Xu W, Ma M (2008) Overexpressing GSHI and AsPCSI simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72:1020–1026. https://doi.org/10.1016/j.chemosphere.2008.04.018

    Article  CAS  PubMed  Google Scholar 

  • Gupta O, Sharma P, Gupta R, Sharma I (2014) MicroRNA mediated regulation of metal toxicity in plants: present status and future perspectives. Plant Mol Biol 84:1–18

    Article  CAS  PubMed  Google Scholar 

  • Gustin JL, Loureiro ME, Kim D, Na G, Tikhonova M, Salt DE (2009) MTP1-dependent Zn sequestration into shoot vacuoles suggests dual roles in Zn tolerance and accumulation in Zn hyperaccumulating plants. Plant J 57:1116–1127

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 5th edn. Oxford University Press

    Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260

    Article  CAS  PubMed  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cisregulatory changes and triplication of HMA4. Nature 453:391–395

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S et al (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765. https://doi.org/10.1016/j.biochi.2006.04.018

    Article  CAS  PubMed  Google Scholar 

  • Hossain Z, Komatsu S (2013) Contribution of proteomic studies towards understanding plant heavy metal stress response. Front Plant Sci 3:310. https://doi.org/10.3389/fpls.2012.00310

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:872875. https://doi.org/10.1155/2012/87287

    Article  Google Scholar 

  • Howarth JR, Dominguez-Solis JR, Gutierrez-Alcala G, Wray JL, Romero LC, Gotor C (2003) The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Mol Biol 51:589–598

    Article  CAS  PubMed  Google Scholar 

  • Huang TL, Huang HJ (2008) ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead. Chemosphere 71:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Jagadeeswaran G, Li YF, Sunkar R (2014) Redox signaling mediates the expression of a sulfate-deprivation-inducible microRNA395 in Arabidopsis. Plant J 77:85–96. https://doi.org/10.1111/tpj.12364

    Article  CAS  PubMed  Google Scholar 

  • Jalmi SK, Sinha AK (2015) ROS mediated MAPK signaling in abiotic and biotic stress-striking similarities and differences. Front Plant Sci 6:769. https://doi.org/10.3389/fpls.2015.00769

    Article  PubMed  PubMed Central  Google Scholar 

  • Jam M, Alemzadeh A, Tale AM, Esmaeili-Tazangi S (2014) Heavy metal regulation of plasma membrane H+-ATPase gene expression in halophyte Aeluropus littoralis. Mol Biol Res Commun 3(2):129–139

    PubMed  PubMed Central  Google Scholar 

  • Janas KM, Amarowicz R, Zielinska-Tomaszewska J, Kosinska A, Posmyk MM (2009) Induction of phenolic compounds in two dark-grown lentil cultivars with different tolerance to copper ions. Acta Physiol Plant 31(3):587–595

    Article  CAS  Google Scholar 

  • Jewell MC, Campbell BC, Godwin ID (2010) Transgenic plants for abiotic stress resistance. In: Kole C, Michler CH, Abbott AG, Hall TC (eds) Transgenic crop plants. Springer, Berlin; Heidelberg, pp 67–31. https://doi.org/10.1007/978-3-642-04812-8_2

    Chapter  Google Scholar 

  • Jia X, Sun C, Zuo Y, Li G, Li G, Ren L et al (2016) Integrating transcriptomics and metabolomics to characterise the response of Astragalus membranaceus Bge. var. mongolicus (Bge.) to progressive drought stress. BMC Genomics 17:188. https://doi.org/10.1186/s12864-016-2554-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonak C, Okrész L, Bögre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signalling. Curr Opin Plant Biol 5:415–424. https://doi.org/10.1016/S1369-5266(02)00285-6

    Article  CAS  PubMed  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283. https://doi.org/10.1104/pp.104.045724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun M, Fu HY, Hong J, Wan X, Yang CS, Ho CT (2003) Comparison of antioxidant activities of isoflavones from kudzu root (PuerarialobataOhwi). J Food Sci 68:2117–2122. https://doi.org/10.1111/j.1365-2621.2003.tb07029.x

    Article  CAS  Google Scholar 

  • Kanoun-Boulé M, Vicente JA, Nabais C, Prasad MNV, Freitas H (2009) Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol 9(1):1–9. https://doi.org/10.1016/j.aquatox.2008.09.009

    Article  CAS  Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918. https://doi.org/10.3390/ijms12106894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid N, Hussain M, Hameed M, Ahmad R (2017) Physiological, biochemical and defense system responses of Parthenium hysterophorus to vehicular exhaust pollution. Pak J Bot 49(1):67–75

    CAS  Google Scholar 

  • Khalid N, Hussain M, Young HS, Ashraf M, Hameed M, Ahmad R (2018a) Lead concentrations in soils and some wild plant species along two busy roads in Pakistan. Bull Environ Contam Toxicol 100(2):250–258

    Article  CAS  PubMed  Google Scholar 

  • Khalid N, Hussain M, Ashraf M, Masood A, Akhtar Y (2018b) Spatio-Temporal variation in cadmium released by automobiles along two roads in Pakistan. Pak J Bot 50(2):529–536

    CAS  Google Scholar 

  • Khalid N, Noman A, Sanaullah T, Akram MA, Aqeel A (2018c) Vehicle pollution toxicity induced changes in physiology, defence system and biochemical characteristics of Calotropis procera L. Chem Ecol 34(6):565–581

    Article  CAS  Google Scholar 

  • Khalid N, Noman A, Aqeel M, Masood A, Tufail A (2018d) Phytoremediation potential of Xanthium strumarium for heavy metals contaminated soils at roadsides. Int J Environ Sci Technol 16(4):2091–2100. https://doi.org/10.1007/s13762-018-1825-5

    Article  CAS  Google Scholar 

  • Khalid N, Young HS, Hussain M, Boyce B, Aqeel M, Noman A (2018e) Effects of road proximity on heavy metal concentrations in soils and some common wild plants in Southern California. Environ Sci Pollut Res 25(35):35257–35265

    Article  CAS  Google Scholar 

  • Khan NA, Samiullah SS, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444

    Article  CAS  Google Scholar 

  • Kim IS, Shin SY, Kim YS, Kim HY, Yoon HS (2009) Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli. Mol Cells 28:479–487. https://doi.org/10.1007/s10059-009-0168-y

    Article  CAS  PubMed  Google Scholar 

  • Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Taqami M et al (2006) CAGE: cap analysis of gene expression. Nat Methods 3:211–222

    Article  CAS  PubMed  Google Scholar 

  • Konig J, Muthuramalingam M, Dietz KJ (2012) Mechanisms and dynamics in the thiol/disulfide redox regulatory network: transmitters, sensors and targets. Curr Opin Plant Biol 15:261–268

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638. https://doi.org/10.1038/379635a0

    Article  Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165(9):920–931

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Maiti SK (2013) Availability of chromium, nickel and other associated heavy. metals of ultramafc and serpentine soil/rock and in plants. Int J Emerg Technol Adv Eng 3(2):256–268

    Google Scholar 

  • Kumar P, Tewari RK, Sharma PN (2008) Modulation of copper toxicity induced oxidative damage by excess supply of iron in maize plants. Plant Cell Rep 27:399–409

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Pratab A, Kumar S (2015) Plant phenomics: an overview. In: Kumar J, Pratab A, Kumar S (eds) Phenomics in crop plants: trends, options and limitations. Springer, New Delhi, India, pp 1–10

    Google Scholar 

  • Kuo HF, Chiou TJ (2011) The role of microRNAs in phosphorus deficiency signaling. Plant Physiol 156:1016–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuriakose SV, Prasad MNV (2008) Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54:143–156. https://doi.org/10.1007/s10725-007-9237-4

    Article  CAS  Google Scholar 

  • Kwak JM, Nguyen V, Schroeder JI (2006) The role of reactive oxygen species in hormonal responses. Plant Physiol 141:323–329. https://doi.org/10.1104/pp.106.079004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavid N, Schwartz A, Yar Den O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy metal accumulation by epidermal glands of water lily (Nymphaeceaea). Planta 212:323. https://doi.org/10.1007/s004250000400

    Article  CAS  PubMed  Google Scholar 

  • Le Martret B, Poage M, Shiel K, Nugent GD, Dix PJ (2011) Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase, glutathione reductase, and glutathione-S-transferase, exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnol J 9:661–673. https://doi.org/10.1111/j.1467-7652.2011.00611.x

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Jo J, Son D (1998) Molecular cloning and characterization of the gene encoding glutathione reductase in Brassica campestris. Biochim Biophys Acta 1395:309–314. https://doi.org/10.1016/S0167-4781(97)00198-X

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS et al (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638. https://doi.org/10.1016/j.jplph.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  • Lewis S, Donkin ME, Depledge MH (2001) Hsp 70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors. Aqua Toxicol 51:277–291

    Article  CAS  Google Scholar 

  • Li F, Vallabhaneni R, Yu J, Rocheford T, Wurtzel ET (2008) The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis, and thermal stress tolerance. Plant Physiol 147(3):1334–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YF, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G et al (2010) Transcriptome-wide identification of microRNA targets in rice. Plant J62:742–759. https://doi.org/10.1111/j.1365-313X.2010.04187.x

    Article  CAS  Google Scholar 

  • Li D, Xu X, Hu X, Liu Q, Wang Z, Zhang H, Wang H, Wei M, Wang H, Liu H, Li C (2015a) Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa. Front Plant Sci 6:1149. https://doi.org/10.3389/fpls.2015.01149

    Article  PubMed  PubMed Central  Google Scholar 

  • Li JL, Cui J, Cheng DY (2015b) Computational identification and characterization of conserved miRNAs and their target genes in beet (Beta vulgaris). Genet Mol Res 14:9103–9108. https://doi.org/10.4238/2015

    Article  PubMed  Google Scholar 

  • Lima JC, Arenhart RA, Margis-Pinheiro M, Margis R (2011) Aluminum triggers broad changes in microRNA expression in rice roots. Genet Mol Res 10:2817–2832. https://doi.org/10.4238/2011.November.10.4

    Article  CAS  PubMed  Google Scholar 

  • Lin CC, Kao CH (1999) Excess copper induces an accumulation of putrescine in rice leaves. Bot Bull Acad Sinica 40:213–218

    CAS  Google Scholar 

  • Lin YF, Hassan Z, Talukdar S, Schat H, Aarts MG (2016) Expression of the ZNT1 zinc transporter from the metal hyperaccumulator Noccaea caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PLoS One 11(3). https://doi.org/10.1371/journal.pone.0149750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu Q, Zhang H (2012) Molecular identification and analysis of arsenite stress responsive miRNAs in rice. J Agric Food Chem 60:6524–6536

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zhang S, Shan X, Zhu YG (2005) Toxicity of arsenate and arsenite on germination seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301

    Article  CAS  PubMed  Google Scholar 

  • Liu GY, Zhang YX, Chai TY (2011) Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metal when expressed in yeast and tobacco. Plant Cell Rep 30:1067–1076. https://doi.org/10.1007/s00299-011-1013-2

    Article  CAS  PubMed  Google Scholar 

  • Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T (2017) Transcriptomics technologies. PLoS Comput Biol 13(5):e1005457. https://doi.org/10.1371/journal.pcbi.1005457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luckett BG, Su LJ, Rood JC, Fontham ETH (2012) Cadmium exposure and pancreatic cancer in South Louisiana. J Environ Public Health 2012:180186. https://doi.org/10.1155/2012/180186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukaszewicz M, Matysiak-Kata I, Skala J, Fecka I, Cisowski W, Szopa J (2004) Antioxidant capacity manipulation in transgenic potato tuber by changes in phenolic compounds content. J Agric Food Chem 52(6):1526–1533

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Semchuk NM (2012) Tocopherol biosynthesis: chemistry, regulation and effects of environmental factors. Acta Physiol Plant 34:1607–1628. https://doi.org/10.1007/s11738-012-0988-9

    Article  CAS  Google Scholar 

  • Maeda H, DellaPenna D (2007) Tocopherol functions in photosynthetic organisms. Curr Opin Plant Biol 10:260–265

    Article  CAS  PubMed  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  CAS  Google Scholar 

  • Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59(1):37–49

    Article  CAS  Google Scholar 

  • Malar S, Vikram SS, Favas PJ, Perumal V (2014) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55(1):54. https://doi.org/10.1186/s40529-014-0054-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malar S, Vikram SS, Favas PJ, Perumal V (2016) Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Bot Stud 55(1):54. https://doi.org/10.1186/s40529-014-0054-6

    Article  CAS  PubMed  Google Scholar 

  • Mallick N, Mohn FH (2000) Reactive oxygen species: response of algal cells. J Plant Physiol 157(2):183–193

    Article  CAS  Google Scholar 

  • Manara A (2012) Plant responses to heavy metal toxicity. In: Furini A (ed) Plants and heavy metals. Springer Briefs in Molecular Science, pp 27–53

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, Toronto

    Google Scholar 

  • Mattiello L, Kirst M, Da Silva FR, Jorge RA, Menossi M (2010) Transcriptional profile of maize roots under acid soil growth. BMC Plant Biol 10:196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–42

    Article  CAS  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61(15):4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mignolet-Spruyt L, Idänheimo N, Hoeberichts FA, Mühlenbock P, Brosché M, Van Breusegem F, Kangasjärvi J (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844

    Article  CAS  PubMed  Google Scholar 

  • Mils RF, Krjiger GC, Baccarini PJ, Hall JL, Williams LE (2003) Functional expression of AtHMA4, a P-1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176

    Article  CAS  Google Scholar 

  • Mishra Y, Chaurasia N, Rai LC (2009) AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses. Biochem Biophys Res Commun 381:606–611. https://doi.org/10.1016/j.bbrc.2009.02.100

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. https://doi.org/10.1016/S1360-1385(02)02312-9

    Article  CAS  PubMed  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19. https://doi.org/10.1016/j.tplants.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K et al (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  PubMed  Google Scholar 

  • Mohamed HI (2011) Molecular and biochemical studies on the effect of gamma rays on lead toxicity in cowpea (Vigna sinensis) plants. Biol Trace Elem Res 144:1205–1218

    Article  CAS  PubMed  Google Scholar 

  • Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107. https://doi.org/10.1186/1471-2164-8-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009a) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A et al (2009b) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904. https://doi.org/10.1104/pp.108.130294v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow KJJ (2010) Mass spec central to metabolomics. Gen Eng Biotechnol News 30:1–3

    Google Scholar 

  • Munne-Bosch S (2005) The role of a9-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748. https://doi.org/10.1016/j.jplph.2005.04.022

    Article  CAS  PubMed  Google Scholar 

  • Nakabayashi R, Saito K (2015) Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol 24:10–16

    Article  CAS  PubMed  Google Scholar 

  • Nedjimi B, Daoud Y (2009) Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol Distrib Funct Ecol Plants 204(4):316–324

    Article  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395. https://doi.org/10.1016/S1369-5266(02)00282-0

    Article  CAS  PubMed  Google Scholar 

  • Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Biol 2(4):969–974

    CAS  Google Scholar 

  • Nevo Y, Nelson N (2006) The NRAMP family of metal-ion transporters. Biochim Biophys Acta 1763:609–620

    Article  CAS  PubMed  Google Scholar 

  • Noman A, Aqeel M (2017) miRNA-based heavy metal homeostasis and plant growth. Environ Sci Pollut Res 24:10068–10082

    Article  CAS  Google Scholar 

  • Noman A, Ali Q, Hameed M, Mehmood T, Iftikhar T (2014) Comparison of leaf anatomical characteristics of Hibiscus rosa-sinensis grown in Faisalabad region. Pak J Bot 46(1):199–206

    Google Scholar 

  • Noman A, Fahad S, Aqeel M, Ali U, Ullah A, Anwer S, Khan S, Zainab M (2017a) miRNAs: major modulators for crop growth and development under abiotic stresses. Biotechnol Lett 39(5):685–700. https://doi.org/10.1007/s10529-017-2302-9

    Article  CAS  PubMed  Google Scholar 

  • Noman A, Aqeel M, Javed MT, Zafar S, Ali Q, Islam W, Irshad MK, Buriro M, Kanwal H, Khalid N, Khan S (2017b) Histological changes in Hibiscus rosa-sinensis endorse acclimation and phytoremediation of industrially polluted sites. J Anim Plant Sci 27(5):1637–1648

    Google Scholar 

  • Noman A, Aqeel M, Deng J, Khalid N, Sanaullah T, Shuilin H (2017c) Biotechnological advancements for improving floral attributes in ornamental plants. Front Plant Sci 8:530

    Article  PubMed  PubMed Central  Google Scholar 

  • Noman A, Kanwal H, Khalid N, Sanaullah T, Tufail A, Masood A, Sabir S, Aqeel M, He S (2017d) Perspective research progress in cold responses of Capsella bursa-pastoris. Front Plant Sci 8:1388. https://doi.org/10.3389/fpls.2017.01388

    Article  PubMed  PubMed Central  Google Scholar 

  • Noman A, Liu ZQ, Aqeel M, Zaynab M, Khan MI, Hussain A, Ashraf MF, Li X, Weng Y, He SL (2017e) Basic leucine zipper domain transcription factors: the vanguards in plant immunity. Biotechnol Lett 39(12):1779–1791. https://doi.org/10.1007/s10529-017-2431-1

    Article  CAS  PubMed  Google Scholar 

  • Noman A, Ali Q, Maqsood J, Iqbal N, Javed MT, Rasool N, Naseem J (2018a) Deciphering physio-biochemical, yield, and nutritional quality attributes of water-stressed radish (Raphanus sativus L.) plants grown from Zn-Lys primed seeds. Chemosphere 195:175–189

    Article  CAS  PubMed  Google Scholar 

  • Noman A, Ali Q, Nasim J, Javed MT, Kanwal H, Islam W, Aqeel M, Khalid N, Zafar S, Tayyeb M, Iqbal N, Buriro M, Maqsood J, Shahid S (2018b) Sugar beet extract acts as a natural bio-stimulant for physio-biochemical attributes in water stressed wheat (Triticum aestivum L.). Acta Physiol Plant 40:110

    Article  CAS  Google Scholar 

  • Norton GJ, Lou-Hing DE, Meharg AA, Price AH (2008) Rice-arsenate interactions in hydrophonics: whole genome transcriptional analysis. J Exp Bot 59:2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Opdenakker K, Remans T, Vangronsveld J, Cuypers A (2012) Mitogen-activated protein (MAP) kinases in plant metal stress: regulation and responses in comparison to other biotic and abiotic stresses. Int J Mol Sci 13:7828–7853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission Yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  CAS  PubMed  Google Scholar 

  • Ovečka M, Takáč T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32(1):73–86

    Article  PubMed  CAS  Google Scholar 

  • Paicu C, Mohorianu I, Stocks M, Xu P, Coince A, Billmeier M, Dalmay T, Moulton V, Moxon S (2017) miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets. Bioinformatics 33(16):2446–2454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci U S A 104:8532–8537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci 97(9):4956–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng JS, Gong JM (2014) Vacuolar sequestration capacity and long-distance metal transport in plants. Front Plant Sci 5:19. https://doi.org/10.3389/fpls.2014.00019

    Article  PubMed  PubMed Central  Google Scholar 

  • Petö A, Lehotai N, Lozano-Juste J, León J, Tari I, Erdei L et al (2011) Involvement of nitric oxide and auxin in signal transduction of copper-induced morphological responses in Arabidopsis seedlings. Ann Bot 108:449–457. https://doi.org/10.1093/aob/mcr176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilon M, Cohu CM, Ravet K, Abdel-Ghany SE, Gaymard F (2009) Essential transition metal homeostasis in plants. Curr Opin Plant Biol 12:347–357

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC et al (1999) Overexpression of ATP sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:1123–1132. https://doi.org/10.1104/pp.119.1.123

    Article  Google Scholar 

  • Pilon-Smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460. https://doi.org/10.1111/j.1399-3054.2000.1100405.x

    Article  CAS  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Zambrzycka E, Godlewska-Zyłkiewicz B (2012) Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Physiol Biochem 52:52–65

    Article  CAS  PubMed  Google Scholar 

  • Piotrowska-Niczyporuk A, Bajguz A, Talarek M, Bralska M, Zambrzycka E (2015) The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae). Environ Sci Pollut Res 22(23):19112–19123

    Article  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R et al (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd (2+) tolerance and accumulation but not translocation to the shoot. Planta 223:180–190. https://doi.org/10.1007/s00425-005-0073-3

    Article  CAS  PubMed  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MA (2007) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:98–105

    Article  CAS  PubMed  Google Scholar 

  • Pu L, Brady S (2010) Systems biology update: cell type-specific transcriptional regulatory networks. Plant Physiol 152:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Perez-Rontome C, Sato S et al (2007) Phytochelatin synthases of the model legume Lotus japonicus. A small multigene family with different responses to cadmium and alternatively spiced variants. Plant Physiol 143:110–118. https://doi.org/10.1104/pp.106.090894

    Article  CAS  Google Scholar 

  • Rashotte AM, Brady SR, Reed RC, Ante SJ, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122:481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers ED, Jackson T, Moussaieff A, Aharoni A, Benfey PN (2012) Cell type-specific transcriptional profiling: implications for metabolite profiling. Plant J 70:5–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Puertas MC, Rodr’ıguez-Serrano M, Corpas FJ, Gomez M, Del LA, Sandalio LM (2004) Cadmium induced subcellular accumulation of O2.- and H2O2 in pea leaves. Plant Cell Environ 27(9):1122–1134

    Article  CAS  Google Scholar 

  • Ros R, Morales A, Segura J, Picazo I (1992) In vivo and in vitro effects of nickel and cadmium on the plasmalemma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sci 83:1–6

    Article  CAS  Google Scholar 

  • Rounsley SD, Last RL (2010) Shotguns and SNPs: how fast and cheap sequencing is revolutionizing plant biology. Plant J 61:922–927

    Article  CAS  PubMed  Google Scholar 

  • Rout GR, Panigrahi J (2015) Analysis of signaling pathways during heavy metal toxicity: a functional genomics perspective. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants. Springer, New York, pp 295–322

    Chapter  Google Scholar 

  • Ruiz ON, Alvarez D, Torres C, Roman L, Daniell H (2011) Metallothionein expression in chloroplasts enhances mercury accumulation and phytoremediation capability. Plant Biotechnol J 9:609–617. https://doi.org/10.1111/j.1467-7652.2011.00616.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarowar S, Kim EN, Kim YJ, Ok SH, Kim KD, Hwang BK, Shin JS (2005) Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Sci 169:55–63

    Article  CAS  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wirén N (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore- and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341. https://doi.org/10.1046/j.13653040.2002.00754.x

    Article  PubMed  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12. https://doi.org/10.1016/j.jhazmat.2012.01.060

    Article  CAS  PubMed  Google Scholar 

  • Shameer K, Ambika S, Varghese SM, Karaba N, Udayakumar M, Sowdhamini R (2009) STIFDB–Arabidopsis stress-responsive transcription factor DataBase. Int J Plant Genomics 2009:583429. https://doi.org/10.1155/2009/583429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31(5):739–753

    Article  CAS  PubMed  Google Scholar 

  • Shao HB, Chu LY, Lu ZH, Kang CM (2008) Primary antioxidant free radical scavenging and redox signaling pathways in higher plant cells. Int J Biol Sci 4(1):8–14

    Article  CAS  Google Scholar 

  • Sharma RK, Agrawal M (2005) Biological effects of heavy metals: an overview. J Environ Biol 26:301–313

    CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726. https://doi.org/10.1093/jxb/erj073

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50. https://doi.org/10.1016/j.tplants.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS (2010) Oxidative stress and antioxidative defense system in plants growing under abiotic Stresses. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. CRC Press, Taylor and Francis Publishing Company, Boca Raton, FL, pp 89–138

    Google Scholar 

  • Shin SY, Kim IS, Kim YH, Park HM, Lee JY, Kang HG et al (2008) Scavenging reactive oxygen species by rice dehydroascorbate reductase alleviates oxidative stresses in Escherichia coli. Mol Cells 26:616–620

    CAS  PubMed  Google Scholar 

  • Singh K, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436. https://doi.org/10.1016/S1369-5266(02)00289-3

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  • Singh HP, Kaur G, Batish DR, Kohli RK (2011a) Lead (Pb)-inhibited radicle emergence in Brassica campestris involves alterations in starch-metabolizing enzymes. Biol Trace Elem Res 144:1295–1301

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Gautam N, Mishra A, Gupta R (2011b) Heavy metals and living systems: an overview. Indian J Pharm 43(3):246–253. https://doi.org/10.4103/0253-7613.81505

    Article  CAS  Google Scholar 

  • Singh VP, Srivastava PK, Prasad SM (2012) Differential effect of UV-B radiation on growth, oxidative stress and ascorbate-glutathione cycle in two cyanobacteria under copper toxicity. Plant Physiol Biochem 61:61–70. https://doi.org/10.1016/j.plaphy.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  • Singh VP, Singh S, Kumar J, Prasad SM (2015) Investigating the roles of ascorbate-glutathione cycle and thiol metabolism in arsenate tolerance in ridged Luffa seedlings. Protoplasma 252:1217–1229. https://doi.org/10.1007/s00709-014-0753-6

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metal in transgenic microalgae. Plant Cell 14:2837–2847. https://doi.org/10.1105/tpc.004853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnoff N, Running JA, Gatzek S (2004) Ascorbate biosynthesis: a diversity of pathways. In: Asard H, May JM, Smirnoff N (eds) Vitamin C: its functions and biochemistry in animals and plants. BIOS Scientific, New York, NY, pp 7–29

    Google Scholar 

  • Soares C, de Sousa A, Pinto A, Azenha M, Teixeira J, Azevedo RA, Fidalgo F (2016) Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ Exp Bot 122:115–125

    Article  CAS  Google Scholar 

  • Soda N, Wallace S, Karan R (2015) Omics study for abiotic stress responses in plants. Adv Plant Agric Res 2(1):00037

    Google Scholar 

  • Spence A, Hanson RE, Grant CN, Fung LH, Rattray R (2014) Assessment of the bioavailability of cadmium in Jamaican soils. Environ Monit Assess 186(7):4591–4603

    Article  CAS  PubMed  Google Scholar 

  • Spollen WG, Tao W, Valliyodan B, Chen K, Hejlek LG, Kim JJ et al (2008) Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biol 8:32. https://doi.org/10.1186/1471-2229-8-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16

    Article  CAS  Google Scholar 

  • Srivastava S, Jain R (2011) In-situ monitoring of chromium cytotoxicity in sugarcane. J Environ Biol 32(6):759–763

    CAS  PubMed  Google Scholar 

  • Srivastava S, Suprasanna PS, D’Souza SF (2012) Mechanisms of arsenic tolerance and detoxification in plants and their application in transgenic technology: a critical appraisal. Int J Phytoremediation 14:506–517

    Article  CAS  PubMed  Google Scholar 

  • Steinhorst L, Kudla J (2014) Signaling in cells and organisms—calcium holds the line. Curr Opin Plant Biol 22:14–21

    Article  CAS  PubMed  Google Scholar 

  • Stoeva N, Bineva T (2003) Oxidative changes and photosynthesis in Oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95

    Google Scholar 

  • Stoeva N, Berova M, Zlatez Z (2004) Physiological response of maize to arsenic contamination. Biol Plantarum 47(3):449–452

    Article  Google Scholar 

  • Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy: (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. C R Biol 333:597–607. https://doi.org/10.1016/j.crvi.2010.03.002

    Article  CAS  PubMed  Google Scholar 

  • Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MN (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35(4):985–999

    Article  CAS  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15(2):89–97

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13(4):178–182

    Article  CAS  PubMed  Google Scholar 

  • Takahashi R, Bashir K, Ishimaru Y, Nishizawa NK, Nakanishi H (2012) The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal Behav 7:1799–1801

    Article  CAS  Google Scholar 

  • Talanova VV, Titov AF, Boeva NP (2000) Effect of increasing concentrations of lead and cadmium on cucumber seedlings. Biol Plant 43:441–444. https://doi.org/10.1023/A:1026735603890

    Article  CAS  Google Scholar 

  • Talke IN, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KC, Ipcho SVS, Trengove RD, Oliver RP, Solomon PS (2009) Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol 10:703–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanyolac D, Ekmekçi Y, Ünalan Ş (2007) Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67:89–98

    Article  CAS  PubMed  Google Scholar 

  • Thounaojam TC, Panda P, Mazumdar P, Kumar D, Sharma G, Sahoo L, Panda S (2012) Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiol Biochem 53:33–39

    Article  CAS  PubMed  Google Scholar 

  • Tiwari M, Sharma D, Dwivedi S, Singh M, Tripathi RD, Trivedi PK (2014) Expression in Arabidopsis and cellular localization reveal involvement of rice NRAMP, OsNRAMP1, in arsenic transport and tolerance. Plant Cell Environ 37:140–152. https://doi.org/10.1111/pce.12138

    Article  CAS  PubMed  Google Scholar 

  • Tran LSP, Nishiyama R, Yamaguchi-Shinozaki K, Shinozaki K (2010) Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops 1:32–39. https://doi.org/10.4161/gmcr.1.1.10569

    Article  PubMed  Google Scholar 

  • Trindade I, Capitao C, Dalmay T, Fevereiro MP, Santos DM (2010) miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta 231:705–716. https://doi.org/10.1007/s00425-009-1078-0

    Article  CAS  PubMed  Google Scholar 

  • Truta E, Vochita G, Zamfirache MM, Olteanu Z, Rosu CM (2013) Copper-induced genotoxic effects in root meristems of Triticum aestivum L. cv. beti. Carpath J Earth Environ Sci 8:83–92

    Google Scholar 

  • Tsukagoshi H, Busch W, Benfey PN (2010) Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell 143:606–616. https://doi.org/10.1016/j.cell.2010.10.020

    Article  CAS  PubMed  Google Scholar 

  • Ueno D, Milner MJ, Yamaji N, Yokosho K, Koyama E, Zambrano CM et al (2011) Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J 66:852–862

    Article  CAS  PubMed  Google Scholar 

  • Vaahtera L, Brosché M, Wrzaczek M, Kangasjärvi J (2014) Specificity in ROS signaling and transcript signatures. Antioxid Redox Signal 21:1422–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  CAS  PubMed  Google Scholar 

  • Van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varotto C, Maiwald D, Pesaresi P, Jahns P, Salamini F, Leister D (2002) The metal ion transporter IRT1 is necessary for iron homeostasis and efficient photosynthesis in Arabidopsis thaliana. Plant J 31:589–599. https://doi.org/10.1046/j.1365-313X.2002.01381.x

    Article  CAS  PubMed  Google Scholar 

  • Vassilev A, Perez-Sanz A, Semane B, Carteer R, Vangronsveld J (2005) Cadmium accumulation and tolerance of two salix genotypes hydro-ponically grown in presence of cadmium. J Plant Nutr 28:2159–2177

    Article  CAS  Google Scholar 

  • Vazquez S, Esteban E, Carpena RO (2008) Evolution of arsenate toxicity in nodulated White Lupine in a long-term culture. J Agric Food Chem 56(18):8580–8587

    Article  CAS  PubMed  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576:306–312

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat JF et al (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233. https://doi.org/10.1105/tpc.001388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitti A, Nuzzaci M, Scopa A, Tataranni G, Remans T, Vangronsveld J et al (2013) Auxin and cytokinin metabolism and root morphological modifications in Arabidopsis thaliana seedlings infected with Cucumber mosaic virus (CMV) or exposed to cadmium. Int J Mol Sci 14:6889–6902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HY, Klatte M, Jakoby M, Bäumlein H, Weisshaar B, Bauer P (2007) Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 226:897–908. https://doi.org/10.1007/s00425-007-0535-x

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52(4):400–409

    Article  CAS  PubMed  Google Scholar 

  • Wang CL, Liu YG, Zeng GM, Hu XJ, Ying YC, Xi HU, Lu ZH, Wang YQ, Li HY (2014) Mechanism of exogenous selenium alleviates cadmium induced toxicity in Bechmeria nivea (L.) Gaud (Ramie). Trans Nonferrous Metals Soc China 24(12):3964–3970

    Article  CAS  Google Scholar 

  • Wang S, Ren X, Huang B, Wang G, Zhou P, An Y (2016) Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa) is mediated by interrupting auxin transport and accumulation in roots. Sci Rep 6:30079. https://doi.org/10.1038/srep30079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+− hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963. https://doi.org/10.1111/j.1365-3040.2005.01479.x

    Article  CAS  PubMed  Google Scholar 

  • Weinstein LH, Kaur-Sawhney R, Venkat Rajam M, Wettlaufer SH, Galston AW (1986) Cadmium-induced accumulation of putrescine in oat and bean leaves. Plant Physiol 82:641–645. https://doi.org/10.1104/pp.82.3.641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393(6683):365–369

    Article  CAS  PubMed  Google Scholar 

  • Whiting SN, Leake JR, McGrath SP, Baker AJM (2000) Positive responses to zinc and cadmium by roots of the hyperaccumulator Thlaspi caerulescens. New Phytol 145:199–210. https://doi.org/10.1046/j.1469-8137.2000.00570.x

    Article  CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases-an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502. https://doi.org/10.1016/j.tplants.2005.08.008

    Article  CAS  PubMed  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  PubMed  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    Article  CAS  PubMed  Google Scholar 

  • Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV et al (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419. https://doi.org/10.1093/molbev/msg140

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Chen C, Du J, Liu H, Cui Y, Zhang Y et al (2012) Cooverexpression FIT with AtbHLH38 or AtbHLH39 in Arabidopsis-enhanced cadmium tolerance via increased cadmium sequestration in roots and improved iron homeostasis of shoots. Plant Physiol 158:790–800. https://doi.org/10.1104/pp.111.190983

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki H, AbdelGhany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by microRNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  CAS  PubMed  Google Scholar 

  • Yang ZM, Chen J (2013) A potential role of microRNAs in plant response to metal toxicity. Metallomics 5:1184–1190

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffell PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353. https://doi.org/10.1016/j.jtemb.2005.02.007

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W et al (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621. https://doi.org/10.1007/s00425-009-1075-3

    Article  CAS  PubMed  Google Scholar 

  • Young J (1991) The photoprotective role of carotenoids in higher plants. Physiol Plant 83(4):702–708

    Article  CAS  Google Scholar 

  • Yu Y, Jin C, Sun C, Wang J, Ye Y, Zhou W et al (2016) Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants. Sci Rep 6:8888. https://doi.org/10.1038/srep18888

    Article  CAS  Google Scholar 

  • Yuan HM, Huang X (2016) Inhibition of root meristem growth by cadmium involves nitric oxide-mediated repression of auxin accumulation and signaling in Arabidopsis. Plant Cell Environ 39:120–135

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Wu H, Wang N, Li J, Zhao W, Du J et al (2008) FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res 18:385–397. https://doi.org/10.1038/cr.2008.26

    Article  CAS  PubMed  Google Scholar 

  • Yuan HM, Xu HH, Liu WC, Lu YT (2013) Copper regulates primary root elongation through PIN1-mediated auxin redistribution. Plant Cell Physiol 54:766–778. https://doi.org/10.1093/pcp/pct030

    Article  PubMed  Google Scholar 

  • Zaefyzadeh M, Quliyev RA, Babayeva SM, Abbasov MA (2009) The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk J Biol 33(1):1–7

    CAS  Google Scholar 

  • Zafar S, Ashraf MY, Ali Q, Ashraf A, Anwer S, Iqbal N, Kausar A, Noman A, Ali M, Zafar MA, Feroz K (2016) Antioxidant activity and secondary metabolites in selected vegetables irrigated with sewage water. Appl Ecol Environ Res 14(5):35–48. https://doi.org/10.15666/aeer/1405_035048

    Article  Google Scholar 

  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA, Najeeb U, Iqbal N, Ahmad R (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317

    Article  CAS  PubMed  Google Scholar 

  • Zayneb C, Bassem K, Zeineb K, Grubb CD, Noureddine D, Hafedh M, Amine E (2015) Physiological responses of fenugreek seedlings and plants treated with cadmium. Environ Sci Pollut Res 22(14):10679–10689

    Article  CAS  Google Scholar 

  • Zhang C, Liu J, Zhang Y et al (2011) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30(3):389–398

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Yu Q, Du H, Ai W, Yao X, Mendoza-Cózatl DG, Qiu B (2016) Enhanced cadmium efflux and root-to-shoot translocation are conserved in the hyperaccumulator Sedum alfredii (Crassulaceae family). FEBS Lett 590(12):1757–1764

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686. https://doi.org/10.1104/pp.107.111443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Liu Q, Li J, Jiang D, Zhou L, Wu P, Lu S, Li F, Zhu L, Liu Z (2012a) Photoperiod and thermosensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res 22:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012b) Genome wide identification of Brassica napus microRNAs and their targets in response to cadmium. J Exp Bot 63:4597–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu LY, Pilon-Smits EAH, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:173–180

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Noman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khalid, N., Aqeel, M., Noman, A. (2019). System Biology of Metal Tolerance in Plants: An Integrated View of Genomics, Transcriptomics, Metabolomics, and Phenomics. In: Sablok, G. (eds) Plant Metallomics and Functional Omics. Springer, Cham. https://doi.org/10.1007/978-3-030-19103-0_6

Download citation

Publish with us

Policies and ethics