Skip to main content

Analysis of Signaling Pathways During Heavy Metal Toxicity: A Functional Genomics Perspective

  • Chapter
Elucidation of Abiotic Stress Signaling in Plants

Abstract

Abiotic stresses have major limiting factors for plant growth and crop productivity. Plants have different mechanisms to maintain the physiological concentrations of essential metal ions and to minimize exposure to non-essential heavy metals. Some mechanisms are ubiquitous because they are also required for general metal homeostasis, and they minimize the damage caused by high concentrations of heavy metals in plants by detoxification, thereby conferring tolerance to heavy metal stress. Metals in the cell are addressed using a range of storage and detoxification strategies, including metal transport, chelating, trafficking, and sequestration into the vacuole. A large number of genes encoding MAPK pathway components have a major role in cell proliferation and hormone action as well as in stress signaling. Germin-like protein genes were developed by various stresses including metal stress. Functional genomics (integrating genome sequencing, transcriptomics, proteomics, metabolomics, ionomics, and phenomics) allows large-scale gene function analysis with high-throughput technology and incorporates interaction of gene products at cellular and organism level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal GK, Rakwal R (2006) Rice proteomics, a cornerstone for cereal food crop proteomes. Mass Spectrom Rev 25:1–53

    CAS  PubMed  Google Scholar 

  • Ahsan N, Lee DG, Alam I (2012) Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during as stress. Proteomics 8:3561–3576

    Google Scholar 

  • Aina R, Labra M, Fumagalli P, Vannini C, Marsoni M, Cucchi U, Bracale M, Sgorbati S, Citterio S (2007) Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots. Environ Exp Bot 59(3):381–392

    CAS  Google Scholar 

  • Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9(9):2419–2431

    CAS  PubMed  Google Scholar 

  • Allan DL, Jarrell WM (1989) Proton and copper adsorption to maize and soybean root cell walls. Plant Physiol 89:823–832

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arasimowicz-Jelonek M, Wieczorek JF, Deckert J, Rucinska-Sobkowiak R, Gzyl J, Pawlak-Sprada S, Abramowski D, Jelonek T, Gwózdz EA (2012) Nitric oxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants. Plant Physiol Biochem 58:124–134

    CAS  PubMed  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci India 82:1227–1238

    CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Bashir H, Ahmad J, Bagheri R, Qureshi MI (2011) Proteomic study to investigate the role of sulphur in Cd stressed Arabidopsis thaliana. J Nat Sci Biol Med 2(2):44

    Google Scholar 

  • Bell CJ, Dixon RA, Farmer AD et al (2001) The Medicago genome initiatives: a model legume database. Nucleic Acids Res 29:114–117

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bertini I, Hartmann HJ, Klein T, Liu G, Luchinat C, Weser U (2000) High resolution solution structure of the protein part of Cu7 metallothionein. Eur J Biochem 267:1008–1018

    CAS  PubMed  Google Scholar 

  • Besson-Bard A, Gravot A, Richaud P et al (2009) Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149:1302–1315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Gong Q, Li P, Ma S (2006) Unraveling abiotic stress tolerance mechanisms: getting genomics going. Curr Opin Plant Biol 9:180–188

    CAS  PubMed  Google Scholar 

  • Brahim S, Dupae J, Cuypers A, Noben JP, Tuomainen M, Tervahauta A, Karenlampi S, Van Belleghem F, Smeets K, Vangronsveld J (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167:247–254

    Google Scholar 

  • Briat JF, Lebrun M (1999) Plant responses to metal toxicity. Comptes Rendus de l’Académie des Sciences –Series III—Sciences de la Vie. Sciences 322:43–54

    CAS  Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    CAS  PubMed  Google Scholar 

  • Chaudiere J, Ferrari—Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37:949–962

    CAS  PubMed  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyper accumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798

    CAS  PubMed  Google Scholar 

  • Cobbet C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    CAS  PubMed  Google Scholar 

  • Contreras-Porcia L, Dennett G, González A, Vergara E, Medina C, Correa JA, Moenne A (2011) Identification of copper-induced genes in the marine alga Ulva compressa (Chlorophyta). Mar Biotechnol (NY) 13(3):544–556

    CAS  Google Scholar 

  • Courbot M, Willams G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase1[OA]. Plant Physiol 144:1052–1065

    PubMed Central  CAS  PubMed  Google Scholar 

  • Craciun AR, Courbo M, Bourgis F, Salis P, Saumitou-Laprade P, Verbruggen N (2006) Comparative cDNA-AFLP analysis of Cd-tolerant and -sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyratas sp. Petraea. J Exp Bot 57(12):2967–2983

    PubMed  Google Scholar 

  • Cui Y, Xu G, Wang M, Yu Y, Li M, Ferreira da Rocha PSC, Xia X (2013) Expression of OsMSR3 in Arabidopsis enhances tolerance to cadmium stress. Plant Cell Tiss Org Cult 113:331–340

    CAS  Google Scholar 

  • Cutler AJ, Krochko JE (1999) Formation and breakdown of ABA. Trends Plant Sci 4(12):472–478

    PubMed  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H (2000) Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiol Plant 110:512–517

    CAS  Google Scholar 

  • Cuypers A, Vangronsveld J, Clijsters H. (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris. Copper and Zinc Phytotoxicity: a comparison. J Plant Physiol 159:869–879

    Google Scholar 

  • D’Alessandro A, Taamalli M, Gevi F, Timperio AM, Zolla L, Ghnaya T (2013) Cadmium stress responses in Brassica juncea: hints from proteomics and metabolomics. J Proteome Res 12:4979–4997

    PubMed  Google Scholar 

  • DalCorso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    PubMed Central  CAS  PubMed  Google Scholar 

  • Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32(1):40–52. doi:10.1016/j.biotechadv.2013.09.006

    CAS  PubMed  Google Scholar 

  • Dat JF, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    CAS  PubMed  Google Scholar 

  • Desikan R, Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dietz KJ (1996) Functions and responses of the leaf apoplast under stress. Prog Bot 58:221–254

    Google Scholar 

  • Ding Y, Chen Z, Zhu C (2011) Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot 62(10):3563–3573

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ding Y, Qu A, Gong S, Huang S, Lv B, Zhu C (2013) Molecular identification and analysis of Cd-responsive MicroRNAs in rice. J Agric Food Chem 61:11668–11675

    CAS  PubMed  Google Scholar 

  • Dixit V, Pandey V, Shyam R (2001) Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot 52:1101–1109

    CAS  PubMed  Google Scholar 

  • Dormer UH, Westwater J, McLaren NF, Kenti NA, Mellori J, Jamieson DJ (2000) Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem 275(42):32611–32616

    CAS  PubMed  Google Scholar 

  • Drager DB, Desbrosses-Fonrouge AG, Krach C, Chardonnens AN, Meyer RC, Saumitou-Laprade P, Kramer U (2004) Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J 39:425–439

    PubMed  Google Scholar 

  • Duressa D, Soliman K, Chen D (2010) Identification of aluminum responsive genes in Al-tolerant soybean line PI 416937. Int J Plant Genom 10:1–13

    Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ernst WHO, Mathys W, Janiesch P (1974) Aspekte von Schwermetallbelastungen in Westfalen. Abhandlungen Landesmuseum Naturkunde zu Münster in Westfalen 36(2): 1–31

    Google Scholar 

  • Fang W, Kao CH (2000) Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc. Plant Sci 158:71–76

    CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci U S A 108(4):1717–1722

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fusco N, Micheletto L, Dal G, Borgato CL, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56(421):3017–3027

    CAS  PubMed  Google Scholar 

  • Gao C, Wang C, Zheng L, Wang L, Wang Y (2012) A LEA gene regulates Cadmium tolerance by mediating physiological responses. Int J Mol Sci 13:5468–5481

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gill SS, Khan NA, Anjum NA, Tuteja N (2011) Amelioration of cadmium stress in crop plants by nutrient management: morphological, physiological and biochemical aspects. Plant Stress 5((Special issue 1)):1–23

    Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    CAS  PubMed  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Christopher S (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hartwig A (1995) Current aspects in metal genotoxicity. Biometals 8:3–11

    CAS  PubMed  Google Scholar 

  • He C, Fong SH, Yang D, Wang GL (1999) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Microbe Interact 12:1064–1073

    CAS  PubMed  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette M-LM, Auroy P, Richaud P, Forestier C, Vavasseur A, Bourguignon J, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    CAS  PubMed  Google Scholar 

  • Hewitt EJ (1983) A perspective of mineral nutrition: essential and functional metals in plants. In: Robb DA, Pierpoint WS (eds) Metals and micronutrients. Uptake and utilization by plants. Academic, London, pp 277–323

    Google Scholar 

  • Hossain Z, Hajika M, Komatsu S (2012a) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43:2393–2416

    CAS  PubMed  Google Scholar 

  • Hossain Z, Makino T, Komatsu S (2012b) Proteomic study of β-aminobutyric acid-mediated cadmium stress alleviation in soybean. J Proteomics 75:4151–4164

    CAS  PubMed  Google Scholar 

  • Huang SQ, Peng J, Qiu CX, Yang ZM (2009) Heavy metal-regulated new microRNAs from rice. J Inorg Biochem 103:282–287

    CAS  PubMed  Google Scholar 

  • Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, Tuskan GA, DiFazio SP (2012) Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol 32:626–638

    CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Google Scholar 

  • Ishikawa S, Ae N, Yano M (2005) Chromosomal regions with quantitative trait loci controlling cadmium concentration in brown rice (Oryza sativa). New Phytol 168:345–350

    CAS  PubMed  Google Scholar 

  • Ishikawa S, Abe T, Kuramata M, Yamaguchi M, Ando T, Yamamoto T, Yano M (2010) A major quantitative trait locus for increasing cadmium specific concentration in rice grain is located on the short arm of chromosome. J Exp Bot 61(3):923–934

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jagadeesan S, Yu K, Poysa V, Gawalko E, Morrison MJ, Shi C, Cober E (2010) Mapping and validation of simple sequence repeat markers linked to major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theor Appl Gene 121:283–294

    Google Scholar 

  • Jansen RC (2003) Studying complex biological systems using multifactorial perturbation. Nat Rev Genetics 4:145–151

    CAS  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:88–391

    Google Scholar 

  • Jonak C, Kiegerl S, Ligterink W, Barker PJ, Huskisson NS, Hirt H (1996) Stress signaling in plants: a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci U S A 93:11274–11279

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    CAS  PubMed  Google Scholar 

  • Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kanno T, Yaguchi T, Nagata T, Nishizaki T (2012) Indomethacin activates protein kinase C and potentiates α7 ACh receptor responses. Cell Physiol Biochem 29(1–2):189–196

    Google Scholar 

  • Keunen E, Remans T, Bohler S, Vangronsveld J, Cuypers A (2011) Metal-induced oxidative stress and plant mitochondria. Int J Mol Sci 12:6894–6918

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kieffer P, Dommes J, Hoffmann L, Hausman JF, Renaut J (2008) Quantitative changes in protein expression of cadmium-exposed poplar plants. Proteomics 8:2514–2530

    CAS  PubMed  Google Scholar 

  • Kim YK, Lee MY (2009) Proteomic analysis of differentially expressed proteins of rice in response to cadmium. J Korean Soc Appl Biol Chem 52(5):428–436

    CAS  Google Scholar 

  • Kim DY, Bovet L, Maeshima M, Martinoia E, Lee Y (2007) The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J 50:207–218

    CAS  PubMed  Google Scholar 

  • Knight H (1999) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324

    Google Scholar 

  • Kobae Y, Sekino T, Yoshioka H, Nakagawa T, Martinoia E, Maeshima M (2006) Loss of AtPDR8, a plasma membrane ABC transporter of Arabidopsis thaliana, causes hypersensitive cell death upon pathogen infection. Plant Cell Physiol 47:309–318

    CAS  PubMed  Google Scholar 

  • Konlechner C, Turketas M, Langer I, Vaculik M, Wenzel WW, Puschenreiter M, Hauser MT (2013) Expression of zinc and cadmium responsive genes in leaves of willow (Salix caprea L.) genotypes with different accumulation characteristics. Environ Pollut 178:121–127

    PubMed Central  CAS  PubMed  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    CAS  PubMed  Google Scholar 

  • Kovalchuk I, Titov V, Hoh B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161

    CAS  PubMed  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Krämer U, Talke IN, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    PubMed  Google Scholar 

  • Krystofova O, Zitka O, Krizkova S, Hynek D, Shestivska V, Adam V, Hubalek J, Mackova M, Macek T, Zehnalek J, Babula P, Havel L, Kizek R (2012) Accumulation of cadmium by transgenic tobacco plants (Nicotiana tabacum L.) carrying yeast metallothionein gene revealed by electrochemistry. Int J Electrochem Sci 7:886–907

    CAS  Google Scholar 

  • Kulik A, Anielska-Mazur A, Bucholc M, Koen E, Szymanska K, Å»mienko A, Krzywinska E, Wawer I, McLoughlin F, Ruszkowski D, Figlerowicz M, Testerink C, SkÅ‚odowska A, Wendehenne D, Dobrowolska G (2012) SNF1-Related protein kinases type 2 are involved in plant responses to Cadmium stress. Plant Physiol 160:868–883

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar P, ArunMozhi VP, Kumari RBD (2011) Cadmium stress response in Catharanthus roseus leaves through proteomic approach. Int Conf Biol Environ Chem 1:64–68

    Google Scholar 

  • Kumari M, Taylor GJ, Deyholos MK (2008) Transcriptomic responses to aluminum stress in roots of Arabidopsis thaliana. Mol Genet Genomics 279:339–357

    CAS  PubMed  Google Scholar 

  • Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, Kamiya A (2010) ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107:2361–2366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    Google Scholar 

  • Lee K, Bae DW, Kim SH, Han HJ, Liu X, Park HC et al (2010) Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. J Plant Physiol 167:161–168

    CAS  PubMed  Google Scholar 

  • Lolkema PC, Vooijs R (1986) Copper tolerance in silene cucubalus. Planta 167:30–36

    CAS  PubMed  Google Scholar 

  • Louie M, Kondor N, DeWitt JG (2003) Gene expression in cadmium-tolerant Datura innoxia: detection and characterization of cDNAs induced in response to Cd2+. Plant Mol Biol 52:81–89

    CAS  PubMed  Google Scholar 

  • Luchi S, Koyama H, Iuchi A (2007) Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. Proc Natl Acad Sci U S A 104(23):9900–9905

    CAS  Google Scholar 

  • Lux A, Martinka M, Vaculik PJ (2010) White root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    PubMed  Google Scholar 

  • Maksymiec W (2007) Signalling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    CAS  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    CAS  PubMed  Google Scholar 

  • Marschner H (1995) Functions of mineral nutrients: micronutrients. In: Marschner H (ed) Mineral nutrition of higher plants, 2nd edn. Academic, London, UK, pp 313–404

    Google Scholar 

  • Mendoza-Soto AB, Sanchez F, Hernandez G (2012) MicroRNAs as regulators in plant metal toxicity response. Front Plant Sci 105:1–6

    Google Scholar 

  • Mengoni A, Connelli C, Hakvoort HJW, Galardi F, Bazzicalupo M, Gabbrielli R, Schat H (2003) Evolution of copper-tolerance and increased expression of a 2b-type metallothionein gene in Silene paradoxa L. populations. Plant and Soil 257:451–457

    CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2007) Cadmium induced oxidative stress influence on glutathione metabolic genes of Camellia sinensis (L.) O. Kuntze. Environ. Toxicology 22(4):368–374

    CAS  Google Scholar 

  • Montanini B, Blaudez D, Jeandroz S, Sanders D, Chalot M (2007) Phylogenetic and functional analysis of the cation diffusion facilitator (CDF) family: improved signature and prediction of substrate specificity. BMC Genomics 8:107–118

    PubMed Central  PubMed  Google Scholar 

  • Moons A (2003) Ospdr9, which encodes a PDR-type ABC transporter, is induced by heavy metals, hypoxic stress and redox perturbations in rice roots. FEBS Lett 553:370–376

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Asamizu E, Kaneko T, Kato T, Sato S, Tabata S (2002) A legume Lotus japonicas genome annotation. Genome Inform 13:539–540

    CAS  Google Scholar 

  • Nakata M, Shiono T, Watanabe Y, Satoh T (2002) Salt stress-induced dissociation from cells of a Germin-like protein with Mn-SOD activity and an increase in its mRNA in a moss, Barbula unguiculata. Plant Cell Physiol 43:1568–1574

    CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Hancock JT (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5:388–395

    Google Scholar 

  • Norton GJ, Deacon CM, Xiong L, Huang S, Meharg AA, Price AH (2010) Genetic mapping of the rice ionome in leaves and grain: identification of QTLs for 17 elements including arsenic, cadmium, iron and selenium. Plant and Soil 329:139–153

    CAS  Google Scholar 

  • Ouelhadj A, Kaminski M, Mittag M, Humbeck K (2007) Receptor-like protein kinase HvLysMR1 of barley (Hordeum vulgareL.) is induced during leaf senescence and heavy metal stress. J Exp Bot 58(6):1381–1396

    CAS  PubMed  Google Scholar 

  • Ouziada F, Hildebrandta U, Schmelzerb E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Google Scholar 

  • Özturk L, Demir Y (2002) In vivo and vitro protective role of proline. Plant Growth Regul 38:259–264

    Google Scholar 

  • Panigrahi J, Mishra RR, Sahu AR, Rath SC, Kole C (2013) Marker-assisted breeding for stress resistance in crop plants. In: Rout GR, Das AB (eds) Molecular stress physiology of plants. Springer, India, pp 387–426

    Google Scholar 

  • Patnaik D, Khurana P (2001) Germins and germin like proteins: an overview. Indian J Exp Biol 39:191–200

    CAS  PubMed  Google Scholar 

  • Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJM, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci U S A 104:8532–8537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    CAS  PubMed  Google Scholar 

  • Peng H, Yang X, Tian S (2005) Accumulation and ultrastructural distribution of copper in Elsholtzia splendens. J Zhejiang Univ Sci 4B:311–318

    Google Scholar 

  • Porubleva L, Velden KV, Kothari S, Oliver DJ, Chitnis PR (2001) The proteome of maize leaves: Use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis 22:1724–1738

    CAS  PubMed  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    CAS  PubMed  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Perez-Rontome C, Sato S, Tabata S, Becana M (2007) Phytochelatin synthases of the model legume lotus japonicus. A small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143:1110–1118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ranjan A, Ichihashi Y, Sinha NR (2012) The tomato genome: implications for plant breeding, genomics and evolution. Genome Biol 13:167–173

    PubMed Central  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rensink WA, Buell CR (2005) Microarray expression profiling resources for plant genomics. Trends Plant Sci 10:603–609

    CAS  PubMed  Google Scholar 

  • Rodríguez-Celma J, Rellan-Alvarez R, Abadia A, Abadia J, Lopez-Millan AF (2010) Changes induced by two levels of cadmium toxicity in the 2-DE protein profile of tomato roots. J Proteomics 73:1694–1706

    PubMed  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Rodriguez-Serrano M, Gomez M, del Río LA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    CAS  PubMed  Google Scholar 

  • Roth U, von Roepenack-Lahaye E, Clemens S (2006) Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+. J Exp Bot 57(15):4003–4013

    CAS  PubMed  Google Scholar 

  • Sakulkoo N, Akaracharanya A, Chareonpornwattana S, Leepipatpiboon N, Nakamura T, Yamaguchi Y, Shinmyo A, Sano H (2005) Hyper-assimilation of sulfate and tolerance to sulfide and cadmium in transgenic water spinach expressing an Arabidopsis adenosine phosphosulfatereductase. Plant Biotechnol 22(1):27–32

    CAS  Google Scholar 

  • Seo M, Koshiba T (2002) The complex regulation of ABA biosynthesis in plants. Trends Plant Sci 7:41–48

    CAS  PubMed  Google Scholar 

  • Schneider T, Schellenberg M, Meyer S, Keller F, Gehrig P, Riedel K, Lee Y, Eberl L, Martinoia E (2009) Quantitative detection of changes in the leaf-mesophyll tonoplast proteome in dependency of a cadmium exposure of barley (Hordeum vulgare L.) plants. Proteomics 9(10):2668–2677

    Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    CAS  PubMed  Google Scholar 

  • Sheldon MC, Roessner U (2013) Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front Plant Sci 123:1–8

    Google Scholar 

  • Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa NK (2011) Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. J Exp Bot 62(15):5727–5734

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh NK, Gupta DK, Pawan KJ et al (2012) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112

    PubMed Central  PubMed  Google Scholar 

  • Siripornadulsil S, Traina S, Verma S, Sayre R (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skórzynska-Polit E, Tukendorf A, Selstam E, Baszynski T (1998) Calcium modifies Cd effect on runner bean plants. Environ Exp Bot 40:275–286

    Google Scholar 

  • Song HM, Wang HZ, Xu XB (2012) Over expression of AtHsp90.3 in Arabidopsis thaliana impairs plant tolerance to heavy metal stress. Biol Plant 56(1):197–199

    CAS  Google Scholar 

  • Souframanien J, Gupta SK, Gopalakrishna T (2010) Identification of quantitative trait loci for bruchid (Callosobruchus maculatus) resistance in black gram Vigna mungo (L.) Hepper. Euphytica 176:349–356

    Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavikishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    CAS  PubMed  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamas L, Dudikova DK, Haluskova L, Huttova J, Mistrik I, Olle M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203

    CAS  PubMed  Google Scholar 

  • Tanhuanpaa P, Kalendar R, Schulman AH, Kiviharju E (2007) A major gene for grain cadmium accumulation in oat (Avena sativa L.). Genome 50(6):588–594

    CAS  PubMed  Google Scholar 

  • Thapa G, Sadhukhan A, Panda SK, Sahoo L (2012) Molecular mechanistic model of plant heavy metal tolerance. Biometals 25:489–505

    CAS  PubMed  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Thiele D (1992) Metal-regulated transcription in eukaryotes. Nucleic Acids Res 20:1183–1191

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9(1):7–9

    CAS  PubMed  Google Scholar 

  • Tyagi AK, Vij S, Saini N (2006) Functional genomics of stress tolerance. In: Rao KVM, Raghavendra AS, Reddy KJ (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, The Netherlands, pp 301–334

    Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    CAS  PubMed  Google Scholar 

  • Vanderauwera S, Zimmermann P, Rombauts S, Vanderbeeler S, Langebartels C, Gruissem W, Inze D, Van Breusegem F (2005) Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol 139:806–821

    PubMed Central  CAS  PubMed  Google Scholar 

  • Varshney RK, Chen W, Li Y et al (2012) Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol 30:83–89

    CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    CAS  Google Scholar 

  • Vert G, Grotz N, Dédaldéchamp F, Gaymard F, Guerinot ML, Briat J-F, Curie C (2002) IRT1, an 11 Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2006) Genome-wide analysis, expression profile and protein level interaction of the stress associated protein (SAP) gene family containing A20/AN1 zinc-finger(s) in rice and their phylogenetic relationship with Arabidopsis. Mol Genet Genomics 276:565–571

    CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotechnol J 5:1–20

    Google Scholar 

  • Vij S, Gupta V, Kumar D, Ravi V, Raghuvanshi S, Khurana P, Khurana JP, Tyagi AK (2006) Decoding the rice genome. Bioessays 28:421–432

    CAS  PubMed  Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    CAS  PubMed  Google Scholar 

  • Vögeli-Lange R, Wagner GJ (1990) Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves. Implication of a transport function for cadmium-binding peptides. Plant Physiol 92:1086–1093

    PubMed Central  PubMed  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valona C (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    CAS  PubMed  Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    CAS  PubMed  Google Scholar 

  • Weng XZ, Wang LX, Tan FL, Huang L, Xing JH, Chen SP, Cheng CL, Chen W (2013) Proteomic and physiological analyses reveal detoxification and antioxidation induced by Cd stress in Kandelia candel roots. Trees 27:583–595

    CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Puschenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138

    CAS  PubMed  Google Scholar 

  • Wiebe K, Harris NS, Faris JD, Clarke JM, Knox RE, Taylor GJ, Pozniak CJ (2010) Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. vardurum). Theor Appl Gen 121:1047–1058

    CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 77:1–23

    Google Scholar 

  • Xu W, Shi W, Liu F, Ueda A, Takabe T (2008) Enhanced zinc and cadmium tolerance and accumulation in transgenic Arabidopsis plants constitutively over expressing a barley gene (HvAPX1) that encodes a peroxisomal ascorbate peroxidase. Botany 86:567–575

    CAS  Google Scholar 

  • Xu J, Yin H, Wang W, Mi Q, Liao X, Li X (2009) Identification of Cd-responsive genes of Solanum nigrum seedlings through differential display. Plant Mol Biol Rep 27:563–569

    CAS  Google Scholar 

  • Xue D, Chen M, Zhang G (2009) Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (Oryza sativa L.). Euphytica 165:587–596

    CAS  Google Scholar 

  • Yamaguchi H, Fukuoka H, Arao T, Ohyama A, Nunome T, Miyatake K, Negoro S (2010) Gene expression analysis in cadmium-stressed roots of a low cadmium-accumulating solanaceous plant, Solanum torvum. J Exp Bot 61(2):423–437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    CAS  PubMed  Google Scholar 

  • Yeh CM, Hsiao J, Huang HJ (2004) Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice cell. Plant Cell Physiol 45:1306–1312

    CAS  PubMed  Google Scholar 

  • Zhang H, Chunlan L, Zhenguo S (2009) Proteomic identification of small, copper-responsive proteins in germinating embryos of Oryza sativa. Ann Bot 103:923–930

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao L, Sun YL, Cui SX, Chen M, Yang HM, Liu HM, Chai TY, Huang F (2011) Cd-induced changes in leaf proteome of the hyper accumulator plant Phytolacca americana. Chemosphere 85:56–66

    CAS  PubMed  Google Scholar 

  • Zhou ZS, Huang SJ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Commun 374:538–542

    CAS  PubMed  Google Scholar 

  • Zhou ZS, Song JB, Yang ZM (2012) Genome-wide identification of Brassica napus micro RNAs and their targets in response to cadmium. J Exp Bot 63(12):4597–4613

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu JK, Hasegawa PM, Bressan RA (1997) Molecular aspects of osmotic stress in plants. Crit Rev Plant Sci 16:253–262

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyana Ranjan Rout .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rout, G.R., Panigrahi, J. (2015). Analysis of Signaling Pathways During Heavy Metal Toxicity: A Functional Genomics Perspective. In: Pandey, G. (eds) Elucidation of Abiotic Stress Signaling in Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2540-7_11

Download citation

Publish with us

Policies and ethics