Skip to main content
Log in

Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Phytochelatin synthase (PCS) is key enzyme for heavy metal detoxification and accumulation in plant. In this study, we isolated the PCS gene TcPCS1 from the hyperaccumulator Thlaspi caerulescens. Overexpression of TcPCS1 enhanced PC production in tobacco. Cd accumulation in the roots and shoots of TcPCS1 transgenic seedlings was increased compared to the wild type (WT), while Cd translocation from roots to shoots was not affected under Cd treatment. The root length of the TcPCS1 transgenic tobacco seedlings was significantly longer than that of the WT under Cd stress. These data indicate that TcPCS1 expression might increase Cd accumulation and tolerance in transgenic tobacco. In addition, the malondialdehyde content in TcPCS1 plants was below that of the wild type. However, the antioxidant enzyme activities of superoxide dismutase, peroxidase and catalase were found to be significantly higher than those of the WT when the transgenic plant was exposed to Cd stress. This suggests that the increase in PC production might enhance the Cd accumulation and thus increase the oxidative stress induced by the cadmium. The production of PCs could cause a transient decrease in the cytosolic glutathione (GSH) pool, and Cd and lower GSH concentration caused an increase in the oxidative response. We also determined TcPCS1 in Thlaspi caerulescens was regulated after exposure to various concentrations of CdCl2 over different treatment times. Expression of TcPCS1 leading to increased Cd accumulation and enhanced metal tolerance, but the Cd contents were restrained by adding zinc in Saccharomyces cerevisiae transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CAT:

Catalase

MDA:

Malondialdehyde

PEG:

Polyethylene glycol

POD:

Peroxidase

SOD:

Superoxide dismutase

WT:

Wild type

PCs:

Phytochelatins

References

  • Amaro F, Ruotolo R, Martin-Gonzalez A, Faccini A, Ottonello S, Gutierrez JC (2009) A pseudo-phytochelatin synthase in the ciliated protozoan Tetrahymena thermophila. Comp Biochem Physiol C Toxicol Pharmacol 149(4):598–604. doi:10.1016/j.cbpc.2009.01.002

    Article  PubMed  Google Scholar 

  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel cpx-atpase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569(1–3):140–148. doi:10.1016/j.febslet.2004.05.036

    Article  PubMed  CAS  Google Scholar 

  • Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 53:302–310

    Article  Google Scholar 

  • Chen J, Zhou J, Goldsbrough PB (1997) Characterization of phytochelatin synthase from tomato. Plant Physiol 101(1):165–172

    Article  CAS  Google Scholar 

  • Clemens S, Schroeder JI, Degenkolb T (2001) Caenorhabditis elegans expresses a functional phytochelatin synthase. Eur J Biochem/FEBS 268(13):3640–3643

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Ann Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • DalCorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50(10):1268–1280. doi:10.1111/j.1744-7909.2008.00737.x

    Article  PubMed  CAS  Google Scholar 

  • Dong R (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biotechnol 32(11–12):527–533

    Article  PubMed  CAS  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214(4):635–640

    Google Scholar 

  • Gasic K, Korban SS (2007a) Expression of arabidopsis phytochelatin synthase in Indian mustard (Brassica juncea) plants enhances tolerance for Cd and Zn. Planta 225(5):1277–1285. doi:10.1007/s00425-006-0421-y

    Article  PubMed  CAS  Google Scholar 

  • Gasic K, Korban SS (2007b) Transgenic Indian mustard (Brassica juncea) plants expressing an arabidopsis phytochelatin synthase (atpcs1) exhibit enhanced As and Cd tolerance. Plant Mol Biol 64(4):361–369. doi:10.1007/s11103-007-9158-7

    Article  PubMed  CAS  Google Scholar 

  • Gendre D, Czernic P, Conejero G, Pianelli K, Briat JF, Lebrun M, Mari S (2007) Tcysl3, a member of the ysl gene family from the hyper-accumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49(1):1–15. doi:10.1111/j.1365-313X.2006.02937.x

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Mendoza D, Moreno AQ, Zapata-Perez O (2007) Coordinated responses of phytochelatin synthase and metallothionein genes in black mangrove, Avicennia germinans, exposed to cadmium and copper. Aquat Toxicol (Amsterdam, Netherlands) 83(4):306–314

    Article  CAS  Google Scholar 

  • Grill E, Winnacker EL, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230(4726):674–676. doi:10.1126/science.230.4726.674

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). In: Proceedings of the National Academy of Sciences of the United States of America 86(18):6838–6842

  • Guan ZQ, Chai TY, Zhang YX, Xu J, Wei W, Han L, Cong L (2008) Gene manipulation of a heavy metal hyperaccumulator species Thlaspi caerulescens l. Via Agrobacterium-mediated transformation. Mol Biotechnol 40(1):77–86. doi:10.1007/s12033-008-9065-4

    Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116(1):73–78 (pii:ppl1160109)

    Article  PubMed  CAS  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (pcs) protein is induced in Brassica juncea leaves after prolonged cd exposure. J Exp Bot 54(389):1833–1839

    Article  PubMed  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153(1):163–168

    PubMed  CAS  Google Scholar 

  • Kang SH, Singh S, Kim JY, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation. Appl Environ Microbiol 73(19):6317–6320

    Article  PubMed  CAS  Google Scholar 

  • Kozlov MV (2004) Retrospective analysis of the age at death in two heavily polluted and two unpolluted russian towns. Chemosphere 56(4):405–410. doi:10.1016/j.chemosphere.2004.04.023

    Article  PubMed  CAS  Google Scholar 

  • Kupper H, Parameswaran A, Leitenmaier B, Trtilek M, Setlik I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175(4):655–674

    Article  PubMed  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003a) Overexpression of arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131(2):656–663

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Petros D, Moon J, Ko T-S, Goldsbrough P, Korban S (2003b) Higher levels of ectopic expression of arabidopsis phytochelatin synthase do not lead to increased cadmium tolerance and accumulation. Plant Physiol Biochem 41:903–910

    Article  CAS  Google Scholar 

  • Lei M, Zhang Y, Khan S, Qin PF, Liao BH (2009) Pollution, fractionation, and mobility of Pb, Cd, Cu, and Zn in garden and paddy soils from a Pb/Zn mining area. Environ Monit Assess. doi:10.1007/s10661-009-1105-4

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45(12):1787–1797

    Article  PubMed  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Moreno-Sanchez R (2006) Control of glutathione and phytochelatin synthesis under cadmium stress. Pathway modeling for plants. J Theor Biol 238(4):919–936. doi:10.1016/j.jtbi.2005.07.003

    Google Scholar 

  • Nakazawa R, Takenaga H (1998) Interactions between cadmium and several heavy metals in the activation of the catalytic activity of phytochelatin synthase. Soil Sci Plant Nutr 44(2):265–268

    Google Scholar 

  • Nocito FF, Lancilli C, Crema B, Fourcroy P, Davidian JC, Sacchi GA (2006) Heavy metal stress and sulfate uptake in maize roots. Plant Physiol 141(3):1138–1148. doi:10.1104/pp.105.076240

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  PubMed  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548 (pii:1442)

    Article  PubMed  CAS  Google Scholar 

  • Piechalak A, Tomaszewska B, Baralkiewicz D (2003) Enhancing phytoremediative ability of Pisum sativum by EDTA application. Phytochemistry 64(7):1239–1251 (pii:S0031942203005156)

    Article  PubMed  CAS  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of arabidopsis phytochelatin synthase in tobacco plants enhances Cd(2+) tolerance and accumulation but not translocation to the shoot. Planta 223(2):180–190

    Article  PubMed  CAS  Google Scholar 

  • Romero-Puertas MC, Perazzolli M, Zago ED, Delledonne M (2004) Nitric oxide signalling functions in plant–pathogen interactions. Cell Microbiol 6(9):795–803. doi:10.1111/j.1462-5822.2004.00428.x

    Article  PubMed  CAS  Google Scholar 

  • Scebba F, Canaccini F, Castagna A, Bender J, Weigel HJ, Ranieri A (2006) Physiological and biochemical stress responses in grassland species are influenced by both early-season ozone exposure and interspecific competition. Environ Pollut 142(3):540–548. doi:10.1016/j.envpol.2005.10.014

    Article  PubMed  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    Article  PubMed  CAS  Google Scholar 

  • Sengar RS, Gautam M, Garg SK, Sengar K, Chaudhary R (2008) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:73–93

    PubMed  CAS  Google Scholar 

  • Sethi P, Jyoti A, Singh R, Hussain E, Sharma D (2008) Aluminium-induced electrophysiological, biochemical and cognitive modifications in the hippocampus of aging rats. Neurotoxicology 29(6):1069–1079. doi:10.1016/j.neuro.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Lee W, Dasilva NA, Mulchandani A, Chen W (2008) Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnol Bioeng 99(2):333–340. doi:10.1002/bit.21577

    Article  PubMed  CAS  Google Scholar 

  • Street RA, Kulkarni MG, Stirk WA, Southway C, Van Staden J (2007) Toxicity of metal elements on germination and seedling growth of widely used medicinal plants belonging to hyacinthaceae. Bull Environ Contam Toxicol 79(4):371–376. doi:10.1007/s00128-007-9237-0

    Article  PubMed  CAS  Google Scholar 

  • Takamura T, Kato I, Kimura N, Nakazawa T, Yonekura H, Takasawa S, Okamoto H (1998) Transgenic mice overexpressing type 2 nitric-oxide synthase in pancreatic beta cells develop insulin-dependent diabetes without insulitis. J Biol Chem 273(5):2493–2496

    Article  PubMed  CAS  Google Scholar 

  • Tennstedt P, Peisker D, Bottcher C, Trampczynska A, Clemens S (2009) Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiol 149(2):938–948. doi:10.1104/pp.108.127472

    Article  PubMed  CAS  Google Scholar 

  • Tsuji N, Nishikori S, Iwabe O, Shiraki K, Miyasaka H, Takagi M, Hirata K, Miyamoto K (2004) Characterization of phytochelatin synthase-like protein encoded by alr0975 from a prokaryote, nostoc sp. Pcc 7120. Biochem Biophys Res Commun 315(3):751–755

    Google Scholar 

  • Valls M, Gonzalez-Duarte R, Atrian S, De Lorenzo V (1998) Bioaccumulation of heavy metals with protein fusions of metallothionein to bacterial omps. Biochimie 80(10):855–861 (pii:S030090840088880X)

    Article  PubMed  CAS  Google Scholar 

  • Wawrzynska A, Wawrzynski A, Gaganidze D, Kopera E, Piatek K, Bal W, Sirko A (2005) Overexpression of genes involved in phytochelatin biosynthesis in escherichia coli: effects on growth, cadmium accumulation and thiol level. Acta Biochim Pol 52(1):109–116

    PubMed  CAS  Google Scholar 

  • Wei W, Chai T, Zhang Y, Han L, Xu J, Guan Z (2009) The Thlaspi caerulescens nramp homologue tcnramp3 is capable of divalent cation transport. Mol Biotechnol 41(1):15–21. doi:10.1007/s12033-008-9088-x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Major Special Project on New Varieties Cultivation for Transgenic Organisms (Grant nos. 2009ZX08009-130B), the National High Technology Planning Program of China (Grant nos. 2009AA06Z320) and China National Natural Sciences Foundation (Grant nos. 50874112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan-Yao Chai.

Additional information

Communicated by K. Chong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, GY., Zhang, YX. & Chai, TY. Phytochelatin synthase of Thlaspi caerulescens enhanced tolerance and accumulation of heavy metals when expressed in yeast and tobacco. Plant Cell Rep 30, 1067–1076 (2011). https://doi.org/10.1007/s00299-011-1013-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-011-1013-2

Keywords

Navigation