Skip to main content
Log in

Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

GDP-Mannose 3′,5′-epimerase (GME; EC 5.1.3.18) catalyses the conversion of GDP-d-mannose to GDP-l-galactose, an important step in the ascorbic acid (AsA) biosynthesis pathway in higher plants. In this study, two members of the GME gene family were isolated from tomato (Solanum lycopersicum). Both SlGME genes encode 376 amino acids and share a 92% similarity with each other. Semi-quantitative RT-PCR indicated that SlGME1 was constantly expressed in various tissues, whereas SlGME2 was differentially expressed in different tissues. Transient expression of fused SlGME1-GFP (green fluorescent protein) and SlGME2-GFP in onion cells revealed the cytoplasmic localisation of the two proteins. Transgenic plants over-expressing SlGME1 and SlGME2 exhibited a significant increase in total ascorbic acid in leaves and red fruits compared with wild-type plants. They also showed enhanced stress tolerance based on less chlorophyll content loss and membrane-lipid peroxidation under methyl viologen (paraquat) stress, higher survival rate under cold stress, and significantly higher seed germination rate, fresh weight, and root length under salt stress. The present study demonstrates that the overexpression of two members of the GME gene family resulted in increased ascorbate accumulation in tomato and improved tolerance to abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AsA:

Ascorbic acid

GFP:

Green fluorescent protein

GME:

GDP-Mannose 3′,5′-epimerase

MDA:

Malondialdehyde

MV:

Methyl viologen

SOE-PCR:

Gene splicing with overlap extension PCR

References

  • Agius F, Gonz¨¢lez-Lamothe R, Caballero J, Mu oz-Blanco J, Botella M, Valpuesta V (2003) Engineering increased vitamin C levels in plants by overexpression of a d-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  CAS  PubMed  Google Scholar 

  • Alhagdow M, Mounet F, Gilbert L, Nunes-Nesi A, Garcia V, Just D, Petit J, Beauvoit B, Fernie A, Rothan C (2007) Silencing of the mitochondrial ascorbate synthesizing enzyme l-galactono-1, 4-lactone dehydrogenase affects plant and fruit development in tomato. Plant Physiol 145:1408–1422

    Article  CAS  PubMed  Google Scholar 

  • Bjellqvist B, Hughes G, Pasquali C, Paquet N, Ravier F, Sanchez J, Frutiger S, Hochstrasser D (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gallie D (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Article  CAS  PubMed  Google Scholar 

  • Conklin P, Barth C (2004) Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell Environ 27:959–970

    Article  CAS  Google Scholar 

  • Conklin P, Williams E, Last R (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93:9970–9974

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Hu Y, Zhao Y, Liu H, Zhou D (2007) A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol 144:380–390

    Article  CAS  PubMed  Google Scholar 

  • Davey M, Montagu M, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie I, Strain J, Favell D, Fletcher J (2000) Plant l-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    Article  CAS  Google Scholar 

  • Du Y, Yao Y, Liu J (2006) Molecular characterization of two rice cDNAs encoding GDP-mannose-3′,5′-epimerase and their expression patterns. Prog Biochem Biophys 33:368–376

    CAS  Google Scholar 

  • Eltayeb A, Kawano N, Badawi G, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264

    Article  CAS  PubMed  Google Scholar 

  • Fillatti J, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Nat Biotechnol 5:726–730

    Article  CAS  Google Scholar 

  • Fulton T, Chunwongse J, Tanksley S (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Gilbert L, Alhagdow M, Nunes-Nesi A, Quemener B, Guillon F, Bouchet B, Faurobert M, Gouble B, Page D, Garcia V (2009) The GDP-D-mannose 3,5-epimerase (GME) plays a key role at the intersection of ascorbate and non cellulosic cell wall biosynthesis in tomato. Plant J 60:499–508

    Article  CAS  PubMed  Google Scholar 

  • Heath R, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Ioannidi E, Kalamaki M, Engineer C, Pateraki I, Alexandrou D, Mellidou I, Giovannonni J, Kanellis A (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Nessler C (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78

    Article  CAS  Google Scholar 

  • Laing W, Wright M, Cooney J, Bulley S (2007) The missing step of the l-galactose pathway of ascorbate biosynthesis in plants, an l-galactose guanyltransferase, increases leaf ascorbate content. Proc Natl Acad Sci USA 104:9534–9539

    Article  CAS  PubMed  Google Scholar 

  • Linster CL, Clarke SG (2008) l-Ascorbate biosynthesis in higher plants: the role of VTC2. Trends Plant Sci 13:567–573

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Gomez T, Christensen K, Adler L, Young B, Brenner C, Clarke S (2007) Arabidopsis VTC2 encodes a GDP-l-galactose phosphorylase, the last unknown enzyme in the Smirnoff-Wheeler pathway to ascorbic acid in plants. J Biol Chem 282:18879–18885

    Article  CAS  PubMed  Google Scholar 

  • Lorence A, Chevone B, Mendes P, Nessler C (2004) myo-Inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Nishikirni M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human non-functional gene for l-gulono-g-lactone oxidase, the enzyme for l-ascorbic acid biosynthesis missing in man. J Biol Chem 269:13685–13688

    Google Scholar 

  • Rizzolo A, Forni E, Polesello A (1984) HPLC assay of ascorbic acid in fresh and processed fruit and vegetables. Food Chem 14:189–199

    Article  CAS  Google Scholar 

  • Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya C, Akula N, Young K, Chun S, Kim D, Park S (2009a) Enhanced ascorbic acid accumulation in transgenic potato confers tolerance to various abiotic stresses. Biotechnol Lett 32:321–330

    PubMed  Google Scholar 

  • Upadhyaya C, Young K, Akula N, Kim H, Heung J, Oh O, Aswath C, Chun S, Kim D, Park S (2009b) Over-expression of strawberry d-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667

    Article  Google Scholar 

  • Watanabe K, Suzuki K, Kitamura S (2006) Characterization of a GDP-d-mannose 3′,5′-epimerase from rice. Phytochemistry 67:338–346

    Article  CAS  PubMed  Google Scholar 

  • Wheeler G, Jones M, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  CAS  PubMed  Google Scholar 

  • Wolucka B, Van Montagu M (2003) GDP-mannose 3′,5′-epimerase forms GDP-l-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  CAS  PubMed  Google Scholar 

  • Wolucka B, Van Montagu M (2007) The VTC2 cycle and the de novo biosynthesis pathways for vitamin C in plants: an opinion. Phytochemistry 68:2602–2613

    Article  CAS  PubMed  Google Scholar 

  • Wolucka B, Persiau G, Van Doorsselaere J, Davey M, Demol H, Vandekerckhove J, Van Montagu M, Zabeau M, Boerjan W (2001) Partial purification and identification of GDP-mannose 3′,5′-epimerase of Arabidopsis thaliana, a key enzyme of the plant vitamin C pathway. Proc Natl Acad Sci USA 98:14843–14848

    Article  CAS  PubMed  Google Scholar 

  • Zou L, Li H, Ouyang B, Zhang J, Ye Z (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Wenwu Guo for his critical reviews of the manuscript. This study was supported by grants from the State Major Basic Research Development Program (No. 2011CB100600), High-Tech Research and Development Program (No. 2007AA10Z131) and National Natural Science Foundation of China (Nos. 30800756 and 30921002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibiao Ye.

Additional information

Communicated by Y. Lu.

A contribution to the Special Issue: Plant Biotechnology in Support of the Millennium Development Goals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 594 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Liu, J., Zhang, Y. et al. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30, 389–398 (2011). https://doi.org/10.1007/s00299-010-0939-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0939-0

Keywords

Navigation