Skip to main content
Log in

Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli

  • Published:
Molecules and Cells

Abstract

Glutathione reductase (GR) is an enzyme that recycles a key cellular antioxidant molecule glutathione (GSH) from its oxidized form (GSSG) thus maintaining cellular redox homeostasis. A recombinant plasmid to overexpress a GR of Brassica rapa subsp. pekinensis (BrGR) in E. coli BL21 (DE3) was constructed using an expression vector pKM260. Expression of the introduced gene was confirmed by semiquantitative RT-PCR, immunoblotting and enzyme assays. Purification of the BrGR protein was performed by IMAC method and indicated that the BrGR was a dimmer. The BrGR required NADPH as a cofactor and specific activity was approximately 458 U. The BrGR-expressing E. coli cells showed increased GR activity and tolerance to H2O2, menadione, and heavy metal (CdCl2, ZnCl2 and AlCl2)-mediated growth inhibition. The ectopic expression of BrGR provoked the co-regulation of a variety of antioxidant enzymes including catalase, superoxide dismutase, glutathione peroxidase, and glucose-6-phosphate dehydrogenase. Consequently, the transformed cells showed decreased hydroperoxide levels when exposed to stressful conditions. A proteomic analysis demonstrated the higher level of induction of proteins involved in glycolysis, detoxification/oxidative stress response, protein folding, transport/binding proteins, cell envelope/porins, and protein translation and modification when exposed to H2O2 stress. Taken together, these results indicate that the plant GR protein is functional in a cooperative way in the E. coli system to protect cells against oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerley, D.F., Barak, Y., Lynch, S.V., Curtin, J., and Matin, A. (2006). Effect of chromate stress on Escherichia coli K-12. J. Bacteriol. 188, 3371–3381.

    Article  CAS  PubMed  Google Scholar 

  • Benov, L., and Al-Ibraheem, J. (2002). Disrupting Escherichia coli: a comparison of methods. J. Biochem. Mol. Biol. 35, 428–431.

    CAS  PubMed  Google Scholar 

  • Bernstein, C., Bernstein, H., Payne, C.M., Beard, S.E., and Schneider, J. (1999). Bile salt activation of stress response promoters in Escherichia coli. Curr. Microbiol. 39, 68–72.

    Article  CAS  PubMed  Google Scholar 

  • Bucheler, U.S., Werner, D., and Schirmer, R.H. (1992). Generating compatible translation initiation regions for heterologous gene expression in Escherichia coli by exhaustive periShine-Dalgarno mutagenesis. Human glutathione reductase cDNA as a model. Nucleic Acids Res. 20, 3127–3133.

    Article  CAS  PubMed  Google Scholar 

  • Carmel-Harel, O., and Storz, G. (2000). Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 54, 439–461.

    Article  CAS  PubMed  Google Scholar 

  • Castro, F.A., Herdeiro, R.S., Panek, A.D., Eleutherio, E.C., and Pereira, M.D. (2007). Menadione stress in Saccharomyces cerevisiae strains deficient in the glutathione transferases. Biochim. Biophys. Acta 1770, 213–220.

    CAS  PubMed  Google Scholar 

  • Chen, J., Brevet, A., Fromant, M., Leveque, F., Schmitter, J.M., Blanquet, S., and Plateau, P. (1990). Pyrophosphatase is essential for growth of Escherichia coli. J. Bacteriol. 172, 5686–5689.

    CAS  PubMed  Google Scholar 

  • Chou, J.H., Greenberg, J.T., and Demple, B. (1993). Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J. Bacteriol. 175, 1026–1031.

    CAS  PubMed  Google Scholar 

  • Collinson, L.P., and Dawes, I.W. (1995). Isolation, characterization and overexpression of the yeast gene, GLR1, encoding glutathione reductase. Gene 156, 123–127.

    Article  CAS  PubMed  Google Scholar 

  • Creissen, G.P., and Mullineaux, P.M. (1995). Cloning and characterisation of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197, 422–425.

    Article  CAS  PubMed  Google Scholar 

  • Fan, W., Zhang, Z., and Zhang, Y. (2009). Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum. Plant Cell Rep. 28, 975–984.

    Article  CAS  PubMed  Google Scholar 

  • Greer, S., and Perham, R.N. (1986). Glutathione reductase from Escherichia coli: cloning and sequence analysis of the gene and relationship to other flavoprotein disulfide oxidoreductases. Biochemistry 25, 2736–2742.

    Article  CAS  PubMed  Google Scholar 

  • Han, K.Y., Park, J.S., Seo, H.S., Ahn, K.Y., and Lee, J. (2008). Multiple stressor-induced proteome responses of Escherichia coli BL21(DE3). J. Proteome Res. 7, 1891–1903.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Y.J., Tsai, T.Y., and Pan, T.M. (2007). Physiological response and protein expression under acid stress of Escherichia coli O157:H7 TWC01 isolated from Taiwan. J. Agric. Food Chem. 55, 7182–7191.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, Z.Y., Hunt, J.V., and Wolff, S.P. (1992). Ferrous ion oxidation in the presence of xylenol orange for detection of lipid hydroperoxide in low density lipoprotein. Anal. Biochem. 202, 384–389.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, F., Hellman, U., Sroga, G.E., Bergman, B., and Mannervik, B. (1995). Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. J. Biol. Chem. 270, 22882–22889.

    Article  CAS  PubMed  Google Scholar 

  • Kubo, A., Sano, T., Saji, H., Tanaka, K., Kondo, N., and Tanaka, K. (1993). Primary structure and properties of glutathione reductase from Arabidopsis thaliana. Plant Cell Physiol. 34, 1259–1266.

    CAS  Google Scholar 

  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lee, H., Jo, J., and Son, D. (1998). Molecular cloning and characterization of the gene encoding glutathione reductase in Brassica campestris. Biochim. Biophys. Acta 1395, 309–314.

    CAS  PubMed  Google Scholar 

  • Lee, H., Won, S.H., Lee, B.H., Park, H.D., Chung, W.I., and Jo, J. (2002). Genomic cloning and characterization of glutathione reductase gene from Brassica campestris var. pekinensis. Mol. Cells 13, 245–251.

    CAS  PubMed  Google Scholar 

  • Li, M., Huang, W., Yang, Q., Liu, X., and Wu, Q. (2005). Expression and oxidative stress tolerance studies of glutaredoxin from cyanobacterium Synechocystis sp. PCC 6803 in Escherichia coli. Protein Expr. Purif. 42, 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, A., and Moulis, J.M. (2004). Zinc and cadmium specifically interfere with RNA-binding activity of human iron regulatory protein 1. J. Inorg. Biochem. 98, 1413–1420.

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Cozatl, D., Loza-Tavera, H., Hernandez-Navarro, A., and Moreno-Sanchez, R. (2005). Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol. Rev. 29, 653–671.

    Article  CAS  PubMed  Google Scholar 

  • Mishra, Y., Chaurasia, N., and Rai, L.C. (2009). AhpC (alkyl hydroperoxide reductase) from Anabaena sp. PCC 7120 protects Escherichia coli from multiple abiotic stresses. Biochem. Biophys. Res. Commun. 381, 606–611.

    Article  CAS  PubMed  Google Scholar 

  • Mockett, R.J., Sohal, R.S., and Orr, W.C. (1999). Overexpression of glutathione reductase extends survival in transgenic Drosophila melanogaster under hyperoxia but not normoxia. FASEB J. 13, 1733–1742.

    CAS  PubMed  Google Scholar 

  • Nellemann, L.J., Holm, F., Atlung, T., and Hansen, F.G. (1989). Cloning and characterization of the Escherichia coli phosphoglycerate kinase (pgk) gene. Gene 77, 185–191.

    Article  CAS  PubMed  Google Scholar 

  • Nishino, K., Honda, T., and Yamaguchi, A. (2005). Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J. Bacteriol. 187, 1763–1772.

    Article  CAS  PubMed  Google Scholar 

  • O’Donovan, D.J., Katkin, J.P., Tamura, T., Husser, R., Xu, X., Smith, C.V., and Welty, S.E. (1999). Gene transfer of mitochondrially targeted glutathione reductase protects H441 cells from t-butyl hydroperoxide-induced oxidant stresses. Am. J. Respir. Cell Mol. Biol. 20, 256–263.

    PubMed  Google Scholar 

  • Perry, A.C., Ni Bhriain, N., Brown, N.L., and Rouch, D.A. (1991). Molecular characterization of the gor gene encoding glutathione reductase from Pseudomonas aeruginosa: determinants of substrate specificity among pyridine nucleotide-disulphide oxidoreductases. Mol. Microbiol. 5, 163–171.

    Article  CAS  PubMed  Google Scholar 

  • Pilon-Smits, E.A., Zhu, Y.L., Sears, T., and Terry, N. (2000). Overexpression of glutathion reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol. Plant 110, 455–460.

    Article  CAS  Google Scholar 

  • Seaver, L.C., and Imlay, J.A. (2001). Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 183, 7173–7181.

    Article  CAS  PubMed  Google Scholar 

  • Seo, J.S., Lee, K.W., Rhee, J.S., Hwang, D.S., Lee, Y.M., Park, H.G., and Park, J.S. (2006). Environmental stressors (salinity, heavy metals, H2O2) modulate expression of glutathione reductase (GR) gene from the intertidal copepod Tigriopus japonicus. Aquatic Toxiol. 80, 281–289.

    Article  CAS  Google Scholar 

  • Spickett, C.M., Smirnoff, N., and Pitt, A.R. (2000). The biosynthesis of erythroascorbate in Saccharomyces cerevisiae and its role as an antioxidant. Free Radic Biol Med 28, 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Stevens, R.G., Creissen, G.P., and Mullineaux, P.M. (2000). Characterisation of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211, 537–545.

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama, K., Kawamura, A., Izawa, S., and Inoue, Y. (2000). Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochem. J. 352, 71–78.

    Article  CAS  PubMed  Google Scholar 

  • Tamarit, J., Cabiscol, E., and Ros, J. (1998). Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J. Biol. Chem. 273, 3027–3032.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler, G.L., and Grant, C.M. (2004). Regulation of redox homeostasis in the yeast Saccharomyces cerevisiae. Physiol. Plant 120, 12–20.

    Article  CAS  PubMed  Google Scholar 

  • Yohannes, E., Barnhart, D.M., and Slonczewski, J.L. (2004). pHdependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J. Bacteriol. 186, 192–199.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, H.S., Lee, I.A., Lee, H., Lee, B.H., and Jo, J. (2005). Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli. Biochem. Biophys. Res. Commun. 326, 618–623.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., and Zhou, C.Z. (2007). Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae. Proteins 68, 972–979.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Sung Yoon.

About this article

Cite this article

Kim, IS., Shin, SY., Kim, YS. et al. Expression of a glutathione reductase from Brassica rapa subsp. pekinensis enhanced cellular redox homeostasis by modulating antioxidant proteins in Escherichia coli . Mol Cells 28, 479–487 (2009). https://doi.org/10.1007/s10059-009-0168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-009-0168-y

Keywords

Navigation