Skip to main content

Advertisement

Log in

Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Heavy metals are toxic substances released into the environment, contributing to a variety of toxic effects on living organisms in food chain by accumulation and biomagnifications. Certain pollutants such as arsenic (As) remain in the environment for an extensive period. They eventually accumulate to levels that could harm physiochemical properties of soils and lead to loss of soil fertility and crop yield. Arsenic, when not detoxified, may trigger a sequence of reactions leading to growth inhibition, disruption of photosynthetic and respiratory systems, and stimulation of secondary metabolism. Plants respond to As toxicity by a variety of mechanisms including hyperaccumulation, antioxidant defense system, and phytochelation. Arbuscular mycorrhizae symbiosis occurs in almost all habitats and climates, including disturbed soils. There is growing evidence that arbuscular mycorrhizae fungi may alleviate metal/metalloid toxicity to host plant. Here, we review (1) arsenic speciation in the environment and how As is taken up by the roots and metabolised within plants, and (2) the role of arbuscular mycorrhizae in alleviating arsenic toxicity in crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    CAS  Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York

    Google Scholar 

  • Afton SE, Carton B, Caruso JA (2009) Elucidating the selenium and arsenic metabolic pathways following exposure to the non-hyperaccumulating Chlorophytum comosum, spider plant. J Exp Bot 60(4):1289–1297

    CAS  Google Scholar 

  • Agely AA, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual 34:2181–2186

    Google Scholar 

  • Ahmed SFR, Killham K, Alexander I (2006) Influences of arbuscular fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil 258:33–41

    Google Scholar 

  • Alia, Saradhi PP, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage[J]. J Photochem Photobiol B 38:253–257

    CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    CAS  Google Scholar 

  • ATSDR (2007) Toxicological profile for arsenic. US Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Atlanta

  • Bago B, Pfeffer PE, Shacher-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of biochemical resources for phytoremediation of metal polluted soil. In: Terry N, Baneulos G (eds) Phytoremediation of contaminated soil and water. Lewis Publications, CRC, Boca Raton, pp 85–107

    Google Scholar 

  • Bertolero F, Pozzi G, Sabbioni E, Saffiotti U (1987) Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 8:803–808

    CAS  Google Scholar 

  • Bleeker PM, Schat H, Vooijs R, Verkleij JAC, Ernst WHO (2003) Mechanisms of arsenate tolerances in Cystisus striatus. New Phytol 157:33–38

    CAS  Google Scholar 

  • Bleeker PM, Hakvoort HWJ, Bliek M, Souer E, Schat H (2006) Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatins accumulation in arsenate-tolerant Holcus lanatus. Plant J 45:917–929

    CAS  Google Scholar 

  • Blum JJ (1996) Phosphate uptake by phosphate-starved Euglena. J Gen Physiol 49:125–137

    Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptions to environmental stresses. Plant Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant 99:385–390

    Google Scholar 

  • Borrell A, Carbonell L, Farras R, Pulg-Parellada P, Tiburcio AF (1997) Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant 99:385–390

    CAS  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H (1989) Polyamines as radical scavengers and protectants against ozone damage. Phytochemistry 28:1589–1595

    CAS  Google Scholar 

  • Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhizae interfaces. New Phytol 173:11–26

    CAS  Google Scholar 

  • Carbonell-Barrachina AA, Burló F, Burgos-Hernández A, López E, Mataix J (1997) The influence of arsenite concentration on arsenic accumulation in tomato and bean plants. Sci Hortic 71:167–176

    CAS  Google Scholar 

  • Carbonell-Barrachina AA, Burlo F, Mataix J (1998) Response of bean micronutrient nutrition to arsenic and salinity. J Plant Nutr 21(6):1287–1299

    CAS  Google Scholar 

  • Castillo-Michela H, Parsonsa JG, Peralta-Videaa JR, Martínez-Martínezb A, Dokkena KM, Gardea-Torresdeya JL (2007) Use of X-ray absorption spectroscopy and biochemical techniques to characterize arsenic uptake and reduction in pea (Pisum sativum) plants. Plant Physiol Biochem 45:457–463

    Google Scholar 

  • Catarecha P, Segura MD, Franco-Zorrilla JM, Garcia-Ponce B, Lanza M, Solano R, Paz-Ares J, Leyva A (2007) A mutant of the arabidopsis phosphate transporter PHT1:1 displays enhanced arsenic accumulation. Plant Cell 19:1123–1133

    CAS  Google Scholar 

  • Chen BD, Christie P, Zhu YG, Smith FA, Xie ZM, Smith SE (2007) The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorous and arsenic acquisition by Medicago sativa Linn. Sci Total Environ 379:226–234

    CAS  Google Scholar 

  • Cheng S (2003) Effects of heavy metals on plants and resistance mechanisms. Environ Sci Pollut Res 10(4):256–264

    CAS  Google Scholar 

  • Clark GT, Dunlop J, Phung HT (2003) Phosphate absorption by Arabidopsis thaliana: interactions between phosphorous status and inhibition by arsenate. Aust J Plant Physiol 27:959–965

    Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    CAS  Google Scholar 

  • Cobbett C, Meagher R (2002) Phytoremediation and the Arabidopsis proteome. In: Somerville C (ed) Arabidopsis. Cold spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–22

    Google Scholar 

  • Cozzolino V, Pigna M, Di Meo V, Caporale AG, Violante A (2010) Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions. Appl Soil Ecol 45:262–268

    Google Scholar 

  • Dat JF, Vandenabeele S, Vranova E, Montagu MV, Inze D, Breusegem FV (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    CAS  Google Scholar 

  • Delnomdedieu M, Basti MM, Otvos JD, Thomas DJ (1994) Reduction and binding of arsenate and dimethylarsenate by glutathione-a magnetic-resonance study. Chem Biol Interact 90:139–155

    CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    CAS  Google Scholar 

  • Dhankher OP, Rosen BP, McKinney EC, Meagher RB (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci 103(14):5413–5418

    CAS  Google Scholar 

  • Dietz K-J, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 73–97

    Google Scholar 

  • Dorban S, Zagury G (2005) Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content. Sci Total Environ 364(1–3):239–250

    Google Scholar 

  • Ellis DR, Gumaelius L, Indriolo E, Pickering IJ, Banks JA, Salt DE (2006) A novel arsenate reductase from the arsenic hyperaccumulating Pteris vittata. Plant Physiol 141:1544–1554

    CAS  Google Scholar 

  • Epstein E (1976) Kinetics of transport and carrier concept. In: Lüttge U, Pitman MG (eds) Transport in plants II. Part B, tissues and organs. Encyclopedia of plant physiology, Springer, Berlin, pp 2, 70

  • Esteban E, Carpena RO, Meharg AA (2003) High-affinity phosphate/arsenate transport in white lupine (Lupinus albus) is relatively insensitive to phosphate status. New Phytol 158:165–173

    CAS  Google Scholar 

  • Fayiga AO, Ma LQ (2006) Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. Sci Total Environ 359:17–25

    CAS  Google Scholar 

  • Flora S (1999) Arsenic-induced oxidative stress and its reversibility following combined administration of N-acetylcysteine and meso 2,3-dimercaptosuccinic acid in rats. Clin Exp Pharmacol Physiol 26:865–869

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2003) Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364

    CAS  Google Scholar 

  • Frost RR, Griffin RA (1977) Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Sci Soc Am J 41:53–57

    CAS  Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycine betaine on Vicia faba responses to salt stress. Biol Plant 42(2):249–257

    CAS  Google Scholar 

  • Gao Y, Mucci A (2001) Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochem Cosmochim Acta 65:2361–2378

    CAS  Google Scholar 

  • Garg N, Manchanda G (2009) ROS generation in plants: boon or bane? Plant Biosyst 143(1):81–96

    Google Scholar 

  • Geng CN, Zhu YG, Hu Y, Williams P, Meharg AA (2006a) Arsenate causes differential acute toxicity to two P-deprived genotypes of rice seedlings (Oryza sativa L.). Plant Soil 279:297–306

    CAS  Google Scholar 

  • Geng CN, Zhu YG, Tong YP, Sally E, Smith FA (2006b) Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.). Chemosphere 62:608–615

    CAS  Google Scholar 

  • Georgieva K, Yordanov I (1993) Temperature dependence of chlorophyll fluorescence parameters of pea seedlings. J Plant Physiol 142:151–155

    CAS  Google Scholar 

  • Ghosh M, Shen J, Rosen BP (1999) Pathway of As(III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 96:5001–5006

    CAS  Google Scholar 

  • Gonzaga SMI, Santos JAG, Ma LQ (2006) Arsenic phytoextraction and hyper accumulation by fern species. Sci Agric 63(1):90–101

    CAS  Google Scholar 

  • Gonzalez E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) Phosphate transporter traffic facilitator! Is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512

    CAS  Google Scholar 

  • Gonzalez-Chavez C, Harris PJ, Dodd J, Meharg AA (2002) Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol 155(1):163–171

    CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols K (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    CAS  Google Scholar 

  • Gorham J (1995) Betaines in higher plants-biosynthesis and role in stress metabolism. In: Wallsgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University press, Cambridge, pp 171–203

    Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy metal complexing peptides of higher plants. Science 230:674–676

    CAS  Google Scholar 

  • Groppa M, Tomaro M, Benavides M (2001) Polyamines as protectors against cadmium or cooper-induced oxidative damage in sunflower leaf discs. Plant Sci 161:481–488

    CAS  Google Scholar 

  • Gunes A, Pilbeam DJ, Inal A (2009) Effect of arsenic-phosphorous interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 314:211–220

    CAS  Google Scholar 

  • Gupta DK, Tohoyama H, Joho M, Inouhe M (2004) Changes in the levels of phytochelatins and related metal-binding peptides in chickpea seedlings exposed to arsenic and different heavy metal ions. J Plant Res 117:253–256

    CAS  Google Scholar 

  • Harper M, Haswell SJ (1988) A comparison of copper, lead and arsenic extraction from polluted and unpolluted soils. Environ Technol Lett 9:1271–1280

    CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Meharg A (2001a) Copper- and arsenic induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant Cell Environ 24:713–722

    CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Voojis R, Bookum WT, Schat H, Meharg AA (2001b) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    CAS  Google Scholar 

  • Hartley-Whitaker J, Woods C, Meharg AA (2002) Is differential phytochelatins production related to decreased arsenate influx in arsenate tolerant Holcus lanatus? New Phytol 155:219–225

    CAS  Google Scholar 

  • Hua J, Lin X, Yin R, Jiang Q, Shao Y (2009) Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco (Nicotiana tabacum L.). J Environ Sci 21(9):1214–1220

    Google Scholar 

  • Inskeep WP, Mcdermott TR, Fendorf S (2002) Arsenic (V)/(III) cycling in soil and natural waters: chemical and microbiological processes. In: Frankenberger WF Jr, Macy JM (eds) Environmental chemistry of arsenic. Marcell Dekker, New York, pp 183–215

    Google Scholar 

  • International Programme on Chemical Safety (IPCS) (2001) World Health Organization

  • Jacobsen I, Abbott LK, Robson A (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifoluim subterraneum L. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Google Scholar 

  • Jankong P, Visoottiviseth P (2008) Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil. Chemosphere 72:1092–1097

    CAS  Google Scholar 

  • Jiang QQ, Singh BR (1994) Effect of different forms and sources of arsenic on crop yield and arsenic concentration. Water Air Soil Pollut 74:321–343

    CAS  Google Scholar 

  • Juhasz AL, Naidu R, Zhu YG, Wang LS, Jiang JY, Cao ZH (2003) Toxicity tissues associated with geogenic arsenic in the groundwater-soil-plant-human continuum. Bull Environ Contam Toxicol 71:1100–1107

    CAS  Google Scholar 

  • Kadpal RP, Rao NA (1985) Alterations in the biosynthesis of proteins and nucleic acid in finger millet (Eleucine coracena) seedling during water stress and the effect of protein biosynthesis. Plant Sci 40:73–79

    Google Scholar 

  • Kaldorf M, Kuhn AJ, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    CAS  Google Scholar 

  • Kertulis-Tartara GM, Rathinasapathip B, Ma LQ (2009) Characterization of glutathione reductase and catalase in the fronds of two Pteris ferns upon arsenic exposure. Plant Physiol Biochem 47(10):960–965

    Google Scholar 

  • Khana I, Ahmada A, Iqbal M (2009) Modulation of antioxidant defence system for arsenic detoxification in Indian mustard. Ecotoxicol Environ Saf 72(2):626–634

    Google Scholar 

  • Kim K-W, Bang S, Zhu Y, Meharg AA, Bhattacharya P (2009) Arsenic geochemistry, transport mechanism in the soil-plant system, human and animal health issues. Environ Int 35:453–454

    Google Scholar 

  • Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Moller IM (2004) Identification of oxidized protein in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography-tandem mass spectrometry. Phytochemistry 65:1839–1851

    CAS  Google Scholar 

  • Laliberte G, Hellebust JA (1989) Regulation of proline content of Chlorella autotrophica in response to changes in salinity. Can J Bot 67:1959–1965

    Google Scholar 

  • Lambkin DC, Alloway BJ (2003) Arsenate-induced phosphate release from soils and its effect on plant phosphorous. Water Air Soil Pollut 144:41–56

    CAS  Google Scholar 

  • Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8

    CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    CAS  Google Scholar 

  • Li Y, Dhankher OP, Carreira L, Lee D, Chen A, Schroeder JI, Balish RS, Meagher RB (2004) Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity. Plant Cell Physiol 45(12):1787–1797

    CAS  Google Scholar 

  • Li Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15(3):187–192

    Google Scholar 

  • Lin Z, Puls RW (2000) Adsorption, desorption and oxidation of arsenic affected by clay minerals and ageing process. Environ Geol 39:753–759

    CAS  Google Scholar 

  • Liu A, Hamel C, Elmi A, Costa C, Ma B, Smith DL (2002) Concentrations of K, Ca, and Mg in maize colonized by arbuscular mycorrhizal fungi under field conditions. Can J Soil Sci 82(3):271–278

    CAS  Google Scholar 

  • Liu X, Zhang S, Shan X, Zhu YG (2005) Toxicity of arsenate and arsenite on germination seedling growth and amylolytic activity of wheat. Chemosphere 61:293–301

    CAS  Google Scholar 

  • Loua IQ, Yec ZH, Wonga MH (2009) A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, P. semipinnata L.—a hydroponic study. J Hazard Mater 171(1–3):436–442

  • Luongo L, Ma LQ (2005) Characteristics of arsenic accumulation by Pteris and non-Pteris ferns. Plant Soil 277:117–126

    CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su Y-H, McGrath SP, Zhao F-J (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. PNAS 105:9931–9935

    CAS  Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton, pp 235–250

  • Marin AR, Masscheleyn PH, Patrik J (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183

    CAS  Google Scholar 

  • Marin AR, Pezeshki SR, Masschelen PH, Choi HS (1993) Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. J Plant Nutr 16(5):865–880

    CAS  Google Scholar 

  • Matysik J, Alia BhaluB, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82(5):525–532

    CAS  Google Scholar 

  • Meagher RB, Heaton ACP (2005) Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic. J Ind Microbiol Biotechnol 32:502–513

    CAS  Google Scholar 

  • Meharg AA (2004) Arsenic in rice-understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417

    CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non resistant plant species. New Phytol 154:29–43

    CAS  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    CAS  Google Scholar 

  • Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenic tolerant Holcus lanatus L. New Phytol 116:29–35

    CAS  Google Scholar 

  • Meharg AA, Macnair MR (1991) The mechanism of arsenate tolerance in Deschampsia cespitosa (L.) Beauv and Agrostis capillaries L. New Phytol 119:291–297

    CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. J Exp Bot 43:519–524

    CAS  Google Scholar 

  • Meharg AA, Macnair MR (1994) Relationship between plant phosphorous status and the kinetics of arsenate influx in clones of Deschampsia cepitosa (L.) Beauv that differ in their tolerance to arsenate. Plant Soil 162:99–106

    CAS  Google Scholar 

  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76

    CAS  Google Scholar 

  • Milivojevic DB, Nikolic BR, Drinic G (2006) Effects of arsenic on phosphorous content in different organs and chlorophyll fluorescence in primary leaves of soybean. Biol Plant 50(1):149–151

    CAS  Google Scholar 

  • Miteva E (2002) Accumulation and effect of arsenic on tomatoes. Comm Soil Sci Plant Anal 33(11):1917–1926

    CAS  Google Scholar 

  • Mokgalaka-Matlala NS, Flores-Tavizon E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2008) Toxicity of Arsenic(III) and (V) on plant growth, element uptake, and total amylolytic activity of Mesquite (Prosopis Juliflora × P. Velutina). Int J Phytoremed 10(1):47–60

    Google Scholar 

  • Molassiotis A, Sotiropoulos T, Tanou G, Diamantidis G, Therios I (2006) Boron induced oxidative damage and antioxidant and nucleolytic responses in shoot tips culture of the apple rootstock EM9 (Malus domestica Borkh). Environ Exp Bot 56:54–62

    CAS  Google Scholar 

  • Moller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3:730–735

    CAS  Google Scholar 

  • Mondal P, Majumdar CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water; recent developments. J Hazard Mater 137:464–479

    CAS  Google Scholar 

  • Mukhopadhyay R, Shi J, Rosen BP (2000) Purification and characterization of ACR2p, the Saccharomyces cerevisiae arsenate reductase. J Biol Chem 275:21149–21157

    CAS  Google Scholar 

  • Mylona PV, Polidoros AN, Scandalios JG (1998) Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med 25:576–585

    CAS  Google Scholar 

  • Navrot N, Rouhier N, Gelhaye E, Jacquot J-P (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. Plant Physiol 129:185–195

    CAS  Google Scholar 

  • Nikolopoulos D, Manetas Y (1991) Compatible solutes and in vitro stability of Salsola soda enzyme: proline incompatibility. Phytochemistry 30:411–413

    CAS  Google Scholar 

  • Nriagu JO (2002) Arsenic poisoning through the ages. In: Frank-Enberger WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 1–26

    Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    CAS  Google Scholar 

  • Padilla IMG, Encina CL (2005) Changes in root morphology accompanying mycorrhizal alleviation of phosphorus deficiency in micropropagated Annona cherimola Mill. Plants Sci Hortic 106:360–369

    CAS  Google Scholar 

  • Páez-Espino D, Tamames J, Lorenzo VD, Canovas D (2009) Microbial responses to environmental arsenic. Biometals 22:117–130

    Google Scholar 

  • Paivoke AEA (2003) Soil pollution alters ATP and chlorophyll contents in Pisum sativum seedlings. Biol Plant 46(1):145–148

    CAS  Google Scholar 

  • Paivoke AEA, Simola LK (2001) Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content, and phytase activity. Ecotoxicol Environ Saf 49:111–121

    CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen evolving photosystem II complex. Photosynth Res 44:243–252

    CAS  Google Scholar 

  • Pavioke A (1983) The long term effects of lead and arsenate on the growth and development chlorophyll content and nitrogen fixation of the garden pea. Ann Bot Fenn 20:297–306

    Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    CAS  Google Scholar 

  • Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Residue 16:1247–1253

    CAS  Google Scholar 

  • Pigna M, Cozzolina V, Violante A, Meharg AA (2008) Influence of phosphate on the Arsenic uptake by Wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Pollut 197(1–4):371–380

    Google Scholar 

  • Pitzschke A, Forzani C, Hirt H (2006) Reactive oxygen species signaling in plants. Antioxid Redox Signal 6:1757–1764

    Google Scholar 

  • Planas D, Healey FP (1978) Effects of arsenate on growth and phosphorous metabolism of phytoplankton. J Phycol 14:337–341

    CAS  Google Scholar 

  • Poynton CY, Huang JWW, Blaylock MJ, Kochian LV, Elless MP (2004) Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation. Planta 219:1080–1088

    CAS  Google Scholar 

  • Quaghebeur M, Rengel Z (2004) Arsenic uptake, translocation and speciation in pho1 and pho2 mutants of Arabidopsis thaliana. Physiol Plant 120:280–286

    CAS  Google Scholar 

  • Quaghebeur M, Rengel Z (2005) Arsenic speciation governs arsenic uptake and transport in terrestrial plants. Microchem Acta 151:141–152

    CAS  Google Scholar 

  • Raab A, Schar H, Meharg AA, Feldmann J (2005) Uptake, translocation of arsenate and arsenite in sunflower (Helianthus annuus): formation of arsenic-phytochelatin complexes during exposure to high arsenic concentrations. New Phytol 168:551–558

    CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Rahman MM, Miah MAM, Tasim A (2008) Straighthead disease of rice (Oryza sativa L.) induced by arsenic toxicity. Environ Exper Bot 62(1):54–59

    Google Scholar 

  • Rathinasabapathi B, Ma LQ, Srivastava M (2006) Arsenic hyperaccumulating ferns and their application to phytoremediation of arsenic contaminated sites. Floricult Ornam Plant Biotechnol 3:304–311

    Google Scholar 

  • Rhodes D, Hanson AD (1993) Quarternary ammonium and tertiary sulphonium compounds in higher plants. Ann Rev Plant Physiol Plant Mol Biol 44:357–384

    CAS  Google Scholar 

  • Romero-Puertas MC, Rodriquez-Serrano M, Corpas FJ, Gómez M, Del Rio LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    CAS  Google Scholar 

  • Rothstein A, Donovan K (1963) Interactions of arsenate with the phosphate-transporting system of yeast. J Gen Physiol 46:1075–1085

    CAS  Google Scholar 

  • Sadiq M (1986) Solubility relationships of arsenic in calcareous soils and its uptake by corn. Plant Soil 91(2):241–248

    CAS  Google Scholar 

  • Sadiq M (1995) Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut 93:117–136

    Google Scholar 

  • Sadiq M, Alam I (1996) Arsenic chemistry in a groundwater aquifer from the Eastern Province of Saudi Arabia. Water Air Soil Pollut 89(1–2):67–76

  • Sairam RK, Srivastava GC, Aggarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    CAS  Google Scholar 

  • Sakamoto A, Murata N (2000) Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot 51(342):81–88

    CAS  Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal-specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton, pp 171–188

    Google Scholar 

  • Schmoger MEV, Oven M, Grill E (2000) Detoxification of arsenic by phytochelatins in plants. Plant Physiol 122:793–801

    CAS  Google Scholar 

  • Schulz H, Hartling S, Tanneberg H (2008) The identification and quantification of arsenic-induced phytochelatins-comparison between plants with varying As sensitivities. Plant Soil 303:275–287

    CAS  Google Scholar 

  • Selvaraj T, Chelleppan P (2006) Arbuscular mycorrhizae: a diverse personality. Central Eur J Agric 7(2):349–358

    Google Scholar 

  • Shaibur MR, Kitajima N, Sugewara R, Kondo T, Alam S, Imamul Huq SM, Kawai S (2008) Critical toxicity of arsenic and elemental composition of arsenic-induced chlorosis in hydroponic Sorghum. Water Air Soil Pollut 191:279–292

    CAS  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acid and amino acid-derived molecules in plant responses and adaption to heavy metal stress. J Exp Bot 57(4):711–726

    CAS  Google Scholar 

  • Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Symbiotic solution to arsenic contamination. Nature 404:951–952

    CAS  Google Scholar 

  • Shin H, Shin H-S, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    CAS  Google Scholar 

  • Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    CAS  Google Scholar 

  • Smith S, Read D (1997) Mycorrhizal symbiosis. Academic Press, London, pp 453–469

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Smith E, Naidu R, Alston AM (2002) Chemistry of inorganic arsenic in soils: II. Effects of phosphorous, sodium, and calcium on arsenic sorption. J Environ Qual 31:557–563

    CAS  Google Scholar 

  • Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21

    CAS  Google Scholar 

  • Sneller FEC, Van Heerwaarden LM, Kraaijeveld-Smit FJL, Ten Bookum WM, Koevoets PLM, Schat H, Verklejj JAC (1999) Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol 144:223–232

    CAS  Google Scholar 

  • Sonderegger JL, Ohguchi T (1988) Irrigation related arsenic contamination of a thin, alluvial aquifer, Madison River valley, Montana, U.S.A. Environ Geol Water Sci 11(21):153–161

    CAS  Google Scholar 

  • Srivastava M, Ma LQ, Singh N, Singh S (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    CAS  Google Scholar 

  • Srivastava S, Srivastava AK, Suprasanna P, D’Souza SF (2009) Comparitive biochemical and transcriptional profiling of two contrasting varities of Brassica juncea L. in response to arsenic exposure reveals mechanisms of stress perception and tolerance. J Exp Bot 181:1–13

    Google Scholar 

  • Stoeva N, Tz Bineva (2003) Oxidative changes and photosynthesis in Oat plants grown in As-contaminated soil. Bulg J Plant Physiol 29(1–2):87–95

    Google Scholar 

  • Stoeva N, Berova M, Zlatez Z (2004) Physiological response of maize to arsenic contamination. Biol Planta 47(3):449–452

    Google Scholar 

  • Stoeva N, Berova M, Vassilev A, Zlatev Z (2005a) Effect of arsenic on some physiological parameters in bean plants. Biol Planta 49(2):293–296

    CAS  Google Scholar 

  • Stoeva N, Berova M, Vassilev A, Zlatev Z (2005b) Effect of exogenous polyamine diethylenetriamine on oxidative changes and photosynthesis in As-treated Maize plants (Zea mays L.). Cent Eur Agric 6(3):367–374

  • Sun Y, Li Z, Guo B, Chu G, Wei C, Liang Y (2008) Arsenic mitigates cadmium toxicity in rice seedlings. Environ Exp Bot 64(3):264–270

    CAS  Google Scholar 

  • Thanobalasingam P, Pickering WF (1986) Arsenic sorption by humic acids. Environ Pollut 12:233–246

    Google Scholar 

  • Tlustos P, Szakova J, Hruby J, Hartman I, Najmanova J, Nedelnik J, Pavlikova D, Batysta M (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52(9):413–423

    CAS  Google Scholar 

  • Tong YP, Kneer R, Zhu YG (2004) Vacuolar compartmentalization: a second generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    CAS  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25(4):158–165

    CAS  Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyper accumulator ladder brake. J Environ Q 31:641–647

    CAS  Google Scholar 

  • Tu S, Ma LQ (2003) Effects of arsenate and phosphate on their accumulation by an arsenic-hyperaccumulator Pteris vittata L. Plant Soil 249:373–382

    CAS  Google Scholar 

  • Tu C, Ma LQ (2005) Effect of arsenic concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environ Pollut 135:333–340

    CAS  Google Scholar 

  • Tu S, Ma LQ, MacDonaldb GE, Bondadaa B (2003) Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ Exp Bot 51(2):121–131

    Google Scholar 

  • Ullrich-Eberius C, Sanz A, Novacky A (1989) Evaluation of arsenic and vanadate-associated changes of electrical membrane potential and phosphate transport in Lemna gibba GL. J Exp Bot 40:119–128

    CAS  Google Scholar 

  • Ultra V, Tanaka S, Sakurai K, Iwasaki K (2007) Effects of arbuscular mycorrhizae and phosphorous application on arsenic toxicity in sunflower (Helianthus annus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil 290:29–41

    CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Google Scholar 

  • Vaughan GT (1993) The environmental chemistry and fate of arsenical pesticides in cattle tick dip sites and banana land plantations. CSIRO Division of Coal Industry, Centre for Advanced Analytical Chemistry, NSW, Melboune

  • Vazquez S, Esteban E, Carpena RO (2008) Evolution of arsenate toxicity in nodulated White Lupine in a long-term culture. J Agric Food Chem 56(18):8580–8587

    CAS  Google Scholar 

  • Venekemp JH (1989) Regulation of cytosolic acidity in plants under condition of drought. Plant Physiol 76:112–117

    Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Mechanisms to cope with arsenic or cadmium in plants. Curr Opin Plant Bio 12:1–9

    Google Scholar 

  • Wang S, Mulligan CN (2006) Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Sci Total Environ 366:701–721

    CAS  Google Scholar 

  • Wang JR, Zhoa FJ, Meharg AA, Raab A, Feldmann J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1561

    CAS  Google Scholar 

  • Wang ZH, Zhang JL, Christie P, Li XL (2008) Influence of inoculation with Glomus mosseae or Acaulospora morrowiae on arsenic uptake and translocation by maize. Plant Sci 311:235–244

    CAS  Google Scholar 

  • Weiersbye IM, Straker CJ, Przybylowicz WJ (1999) Micro-PIXE mapping of elemental distribution in arbuscular mycorrhizal roots of the grass, Cynodon dactylon, from gold and uranium mine tailings. Nucl Instrum Meth B 158:335–343

    CAS  Google Scholar 

  • Wells BR, Gilmor J (1997) Sterility in rice cultivars as influenced by MSMA rate and water management. Agron J 69:451–454

    Google Scholar 

  • Wenzel WW, Brandstetter A, Wutte H, Lombi E, Prohaska T, Stingeder G, Adrino DC (2002) Arsenic in field-collected soil solutions and extracts of contaminated soils and its implication to soil standards. J Plant Nutr Soil Sci Zeitschrift fur Pflanzenernahrung Bodenkunde 165:221–228

    CAS  Google Scholar 

  • Wojasa S, Clemensb S, SkŁodowskac A, Antosiewicza DM (2010) Arsenic response of AtPCS1- and CePCS-expressing plants—Effects of external As(V) concentration on As-accumulation pattern and NPT metabolism. J Plant Physiol 167(3):169–175

    Google Scholar 

  • Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals. Encl Plant Physiol NS 12:245–300

    Google Scholar 

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowles RD, Somero GN (1982) Living with water stress: evolution of osmolyte system. Science 217:1214–1222

    CAS  Google Scholar 

  • Yu Y, Zhang S, Huang H, Luo L, Wen B (2009) Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. J Agric Food Chem 57(9):3695–3701

    CAS  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath MP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    CAS  Google Scholar 

  • Zhou JL (1999) Zn biosorption by Rhizopus arrhizus and other fungi. Appl Microbiol Biot 51:686–693

    CAS  Google Scholar 

  • Zhu Y-G, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality. Curr Opin Biotechnol 20:220–224

    CAS  Google Scholar 

Download references

Acknowledgments

The financial assistance received from University Grant Commission (UGC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neera Garg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, N., Singla, P. Arsenic toxicity in crop plants: physiological effects and tolerance mechanisms. Environ Chem Lett 9, 303–321 (2011). https://doi.org/10.1007/s10311-011-0313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-011-0313-7

Keywords

Navigation