Skip to main content

Somatic Embryogenesis in Rosewood and other Indian Tree Legumes

  • Chapter
Somatic Embryogenesis in Woody Plants

Part of the book series: Forestry Sciences ((FOSC,volume 59))

Abstract

Legumes are the most important among plants, and rank next to cereals. While extensive work has been done on cereals such as rice, wheat, corn, sorghum, and barley, important legumes like soybean and peanut have received comparatively less attention. Tree legumes have received even less attention, yet members of Leguminosae family show more promise for producing vast supplies of vegetable protein, fuel, fodder and timber. In the developing countries, cultivation of grain or tree legumes seems to be the quickest way to develop virgin lands. Leguminous species are found throughout the world, but the largest number of varieties grow in the tropics and subtropics (NRC, 1979). Of the thousands of known leguminous species, less than 20 are extensively used. The remaining species are little used and many of them are yet to be exploited. Many people are unaware that legumes encompass far more than herbaceous annual food crops, and they occur as vines, shrubs and trees. The significance of legumes for the energy crisis has been recognized by the international community. The most important task facing mankind today is to lessen the exploitation of non-renewable energy resources. For more than one-third of the world’s population, the real energy crisis (Anonymous, 1980) is a daily scramble to find wood for cooking. The western world has given little attention to the scarcity of firewood and most people in the developed countries have little idea of its importance: 90% people depend upon firewood as their main source of fuel and each year an average user burns anywhere from a fifth of a ton to a well over a ton. This is an enormous amount of fuel wood when multiplied by hundreds of millions of users, and 86% of this is consumed as fuel in the developing countries. Of this total at least half is used for cooking (Ayensu, 1980). To meet this enormous demand of fuel wood, large-scale plantations of fast growing fuel woods such as Acacia, Sesbania, Albizzia, Cassia, Prosopis, Pithecellobium, Parkinsonia and Leucaena, all leguminous trees has become a necessity. In the tropics, uncertain supplies and increasing costs of feed, fertilizer and food, coupled with projected population increases, are giving leguminous trees an important status that has not been previously realized. Leguminous trees are often among the first to colonize newly cleared land. Like other pioneer species, their advantages include rapid growth, adaptability to a wide range of soils, particularly nutrient deficient soils and marginal sites unsuited to food crops. They are also endowed with copious seed production at an early age, in all seasons and the ability to coppice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahuja, M.R. (ed.) 1992. Micropropagation of Woody Plants, Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Anand, M. and S.S. Bir. 1984. Organogenetic differentiation in tissue cultures of Dalbergia lanceolana. Curr Sci. 53: 183–189.

    Google Scholar 

  • Anandarajah, K. and B.D. McKersie. 1990. Manipulating the dessication tolerance and vigor of dry somatic embryos of Medicago sativa L. with sucrose, heat shock abscisic acid. Plant Cell Rep. 9: 451–455.

    Article  CAS  Google Scholar 

  • Anandarajah, K. and B.D. McKersie. 1990. Enhanced vigor of dry somatic embryos of Medicago sativa L. with increased sucrose. Plant Sci. 71: 261–266.

    Article  CAS  Google Scholar 

  • Anonymous. 1980 In: Report by ad hoc committee. Firewood Crops: Shrubs and Trees Species for Energy Production. Washington DC: National Academy of Sciences.

    Google Scholar 

  • Arrillaga, I, S.A. Tobolski and S.A. Merkle. 1994. Advances in somatic embryogenesis and plant production of black locust. Plant Cell Rep. 13: 171–175.

    Article  CAS  Google Scholar 

  • Ayensu, E.S 1980. In: Report by ad hoc committee. Firewood Crops. Shrubs and Tree Species for Energy Production. Washington DC: National Academy of Sciences.

    Google Scholar 

  • Baker, C.M. and H.Y. Wetsztein. 1994. Influence of auxin type and concentration on peanut somatic embryogenesis. Plant Cell Tiss Org Cult. 36: 361–368.

    Article  CAS  Google Scholar 

  • Bajaj, Y.P.S. 1986. Biotechnology in Agriculture and Forestry. Vol. 1 Trees. Berlin: Springer Verlag.

    Google Scholar 

  • Bajaj, Y.P.S. 1995. Biotechnology in Agriculture and Forestry. 31. Somatic Embryogenesis and Synthetic Seed. Vol. 1 and 2. Berlin: Springer Verlag.

    Book  Google Scholar 

  • Bansal, Y.K. and P. Pandey. 1993. Micropropagation of Sesbania aculeata (Pers) by adventitious organogenesis. Plant Cell Tiss Org Cult. 32: 351–355.

    Article  CAS  Google Scholar 

  • Bapat, V.A. and P.S. Rao. 1988. Sandalwood plantlets from synthetic seeds. Plant Cell Rep. 7: 434–436.

    Article  Google Scholar 

  • Berger, K. and W. Schaffner. 1995. In vitro propagation of leguminous tree Swartzia madagascariensis. Plant Cell Tiss Org Cult. 40: 289–291.

    Article  Google Scholar 

  • Bhojwani, S.S. and M.K. Razdan. 1983. Plant Tissue Culture Theory and Practice. Amsterdam: Elsevier Scientific.

    Google Scholar 

  • Bingham, E.T., T.J. McCoy and K.A. Walker. 1988. Alfalfa tissue culture. In: Alfalfa Improvement, pp. 903–929. (eds. A.A. Hanson, D.K. Barnes and R.R. Hill). Madison WI: American Society of Agronomy.

    Google Scholar 

  • Bonga, J.M. 1977. Application of tissue culture in forestry. In: Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture, pp. 93–108. (eds. Reinert, J. and Y.P.S. Bajaj). Berlin: Springer Verlag.

    Google Scholar 

  • Bonga, J.M. and DJ. Durzan. 1987. Tissue Culture in Forestry. Vol. 1–3. Dordrecht, Martinus, Nijhoff.

    Google Scholar 

  • Cullis, C.A. and G.P. Creissen. 1987. Genome organization and variation in higher plants. Ann Bot. 60(Suppl. 4): 103–113.

    CAS  Google Scholar 

  • Das, A.B., G.R. Rout and P. Das. 1995. In vitro somatic embryogenesis from callus culture of the timber yielding tree Hardwickia binata Roxb. Plant Cell Rep.15: 147–149.

    Article  CAS  Google Scholar 

  • Das, P., S. Samataray, A.V. Roberts and G.R. Rout. 1997. In vitro somatic embryogenesis of Dalbergia sissoo Roxb. A multipurpose timber-yielding tree. Plant Cell Rep. 16: 578–582.

    CAS  Google Scholar 

  • Datta, S.K., K. Datta and T. Pramanik. 1983. In vitro clonal multiplication of mature trees of Dalbergia sissoo (Roxb). Plant Cell Tiss Org Cult. 2: 15–20.

    Article  Google Scholar 

  • Denchov, P., M. Velcheva and A. Atenssov. 1991. A new approach to direct somatic embryogenesis in Medicago. Plant Cell Rep. 10: 338–341.

    Google Scholar 

  • Detrez, C., S. Ndiaye and B. Ddreyfus. 1994. In vitro regeneration of the tropical multipurpose leguminous tree Sesbania grandiflora from cotyledon expiants. Plant Cell Rep. 14: 87–93.

    Article  CAS  Google Scholar 

  • Dhawan, V. and S.S. Bhojwani. 1985. In vitro Propagation of Leucaena leucocephala (Lam de wit). Plant Cell Rep. 4: 315–318.

    Article  CAS  Google Scholar 

  • Dhawan, V. 1992. Micropropagation of nitrogen fixing trees. In: Micropropagation of Trees, pp. 303–315. (ed. M.R. Ahuja). Dordrecht: Kluwer Academic Publisher.

    Google Scholar 

  • Dinesh K., P.B. Kirti, J.K.S. Sachan and V.L. Chopra. 1994. Plant regeneration via somatic embryogenesis in chickpea (Cicer arietinum L.). Plant Cell Rep. 18: 468–472.

    Google Scholar 

  • Eapen, S, L. George and P.S. Rao. 1993. Plant regeneration through somatic embryogenesis (Arachis hypogaea). Biol Plant. 35: 499–504.

    Article  Google Scholar 

  • Finer J.J. 1984. Direct somatic embryogenesis and plant regeneration from immature embryos of hybrid sunflower (Helianthus annuus L.) on a high sucrose containing medium. Plant Cell Rep. 6: 372–374.

    Article  Google Scholar 

  • Finer, J.J. and M.D. Mcmullen. 1991. Transformation of soybean via particle bombardment of embryogenic suspension culture tissue. In Vitro Cell Dev Biol. 27P: 175.

    CAS  Google Scholar 

  • Galau, G.A., K.S. Jacobson and D.W. Hughes. 1991. The controls of late dicot embryogenesis and early germination. Physiol Plant. 81: 280–288.

    Article  CAS  Google Scholar 

  • Gamborg, O.L., R.A. Miller and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 50: 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Garg, L., N.N. Bhandari, R. Vijaya and S.S. Bhojwani. 1996. Somatic embryogenesis and regeneration of triploid plants in endosperm cultures of Acacia nilotica. Plant Cell Rep. 15: 855–858.

    Article  CAS  Google Scholar 

  • George, E.F. 1993. Plant Propagation by Tissue Culture. Part I. The Technology. Exegetics Ltd., England.

    Google Scholar 

  • George, L. and S. Eapen. 1994. Organogenesis and embryogenesis from diverse expiants in pigeonpea (Cajanus cajan L). Plant Cell Rep. 13: 417–420.

    Article  CAS  Google Scholar 

  • Gharyal, P.K. and S.C. Maheswari. 1981. In vitro differentiation of somatic embryoids in a leguminous tree-Albizzia lebbeck. Naturewissenschaften. 68: 379–38

    Article  Google Scholar 

  • Goyal, Y., R.C. Bingham and P. Keller. 1985. Propagation of a tropical tree, Lecaena leucocephala K67 by in vitro bud culture. Plant Cell Tiss Org Cult. 4: 3–10.

    Article  CAS  Google Scholar 

  • Gupta, P.K. and J.A. Grob. 1995. Somatic embryogenesis in conifers. In: Somatic Embryogenesis in Woody Plants. Vol. 1, (eds. S.M. Jain, P.K. Gupta and R.J. Newton). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Haccius, B. 1978. Question of unicellular origin on non-zygotic embryos in callus cultures. Phytomorphology. 28: 74–81.

    Google Scholar 

  • Haissig, B.E, N.D. Nelson and G.H. Kidd. 1987. Trends in the use of tissue culture in forest improvement. Bio/Technology. 5: 53–59.

    Article  Google Scholar 

  • Hanna, W.W., C. Lu and I.K. Vasil. 1984. Uniformity of plants regenerated from somatic embryos of Panicum maximum Jacq. Guineagrass. Theor Appl Genet. 67: 155–159.

    Article  Google Scholar 

  • Hazra, S, S.S. Sathaye and A.F. Mascarenhas. 1989. Direct somatic embryogenesis in peanut (Arachis hypogaea). Bio/Technology. 7: 949–951.

    Article  Google Scholar 

  • Huang, F.H, J.M. Al-Khayri and E.D.E. Grur. 1994. Micropropagation of Acacia mearnsil. In Vitro Cell Dev Biol. 30: 70–74.

    Google Scholar 

  • Huetteman, C.A. and J.E. Preece. 1993. Thidiazuron: A potent cytokinin for woody plants tissue culture. Plant Cell Tiss Org Cult. 33: 105–119.

    Article  CAS  Google Scholar 

  • Jacques, LC., Y.L. Marche and Y.L. Deunff. 1995. Effects of auxin, cytokinin, carbohydrates and aminoacids on somatic embryogenesis induction from shoot apices of pea. Plant Cell Tiss Org Cult. 4: 267–275.

    Google Scholar 

  • Jain, S.M., P.K. Gupta and R.J. Newton. (eds). 1995. Somatic Embryogenesis in Woody Plants Vol. 1–3, Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Jaiwal, P.K. and A. Gulati. 1991. In vitro high frequency plant regeneration of a tree legume Tamarindus indica (L.). Plant Cell Rep. 10: 569–573.

    Article  CAS  Google Scholar 

  • Kapoor. S. and S.C. Gupta. 1986. Rapid in vitro differentiation of Sesbania bispinosa plants — a leguminous shrub. Plant Cell Tiss Org Cult. 7: 263–268.

    Article  CAS  Google Scholar 

  • Khattar, S. and H.Y. Mohan Ram. 1982. Organogenesis and plantlet formation in vitro in Sesbania sesban, a leguminous shrub. Indian J Exp Biol. 20: 216–219.

    Google Scholar 

  • Khattar, S. and H.Y. Mohan Ram. 1983. Organogenesis and plantlet formation in vitro in Sesbania grandiflora (L) Pers. Indian J Exp Biol. 21: 251–253.

    Google Scholar 

  • Lakshmi Sita, G. 1986. Sandalwood (Santalum album L.). In: Biotechnology in Agriculture and Forestry. Vol. 1. Trees, pp. 363–374. (ed. Bajaj, Y.P.S.). Berlin: Springer Verlag.

    Google Scholar 

  • Lakshmi Sita, G., N.V. Raghavaram and C.S. Vaidyanathan. 1979. Differentiation of embryoids and plantlet from shoot cultures of sandalwood. Plant Sci Lett. 15: 265–271.

    Article  Google Scholar 

  • Lakshmi Sita, G., N.V. Raghavaram and C.S. Vaidyanathan]. 1980a. Triploids from endosperm cultures of sandalwood by experimental embryogenesis. Plant Sci Lett. 20: 63–69

    Article  Google Scholar 

  • Lakshmi Sita, G., J. Shobha and C.S. Vaidyanathan. 1980b. Regeneration of whole plants from suspension cultures of sandalwood. Curr Sci. 49: 196–198.

    Google Scholar 

  • Lakshman Rao, P.V and D.N. De. 1987. Tissue culture propagation of tree legumes Albizzia lebbeck (L) Benth. Plant Cell Rep. 51: 266–268.

    Google Scholar 

  • Lakshmi Sita, G. and A. Bhattacharya. 1997. cDNA cloning and characterization of proline rich (hydroxyproline) protein from Santalum album L. In: Sandalwood International Seminar Proceedings. Australia: Australian Academy Publishers.

    Google Scholar 

  • Lakshmi Sita, G. and B.V. Raghava Swamy. 1992. Application of cell and tissue culture technology for mass propagation of elite trees with special reference to rosewood (Dalbergia latifolia Roxb). Indian For. 118: 36–47.

    Google Scholar 

  • Lakshmi Sita, G. and B.V. Raghava Swamy. 1993. Regeneration of plantlets from leaf disc cultures of rosewood. Control of leaf abscission and shoot tip necrosis. Plant Cell Rep. 88: 107–112.

    Google Scholar 

  • Lakshmi Sita, G, Chattopadhyay, and D.H. Tejovathi. 1986. Plant regeneration from shoot callus of rosewood (Dalbergia latifolia Roxb). Plant Cell Rep. 5: 266–268.

    Article  Google Scholar 

  • Lakshmi Sita, G., K.S. Sreenatha and S. Sujata. 1992. Plantlet production from shoot tip cultures of Red Sanders (Pterocarpus santalinus). Curr Sci. 62: 532–535.

    Google Scholar 

  • Lakshmi Sita, G., S. Mridula and K.P. Gopinathan]. 1994. R.P. Sharma and M.S. Swaminathan). New Delhi: Oxford IBH Publishe

    Google Scholar 

  • Lelu, M.A., C. Bastein, K.K. Limaszewska, C. Ward and P.J. Charest]. 1994. An improved method for somatic plantlet production in hybrid larch. Part 1. Somatic embryo maturation. Plant Cell Tiss Org Cult. 36: 107–115

    Article  CAS  Google Scholar 

  • Le Page-Degivry, M.T. and C. Bulard. 1988. L’acide abscissique 1988 dans la regulation du developpement embryonnaire et de la germination. Bull Soc Bot Fr. 135: 19–32.

    Google Scholar 

  • Lu, C.Y. 1993. The use of thidiazuron in tissue culture. In Vitro Cell Dev Biol. 29: 92–96

    Google Scholar 

  • Maheswaran, G. and E.G. Williams. 1984. Direct somatic embryoid formation on immature embryos of Trifolium repens, T. pratense and Medicago sativa and rapid clonal propagation of T. repens. Ann Bot. 54: 201–211.

    Google Scholar 

  • Maheswaran, G. and E.G. Williams. 1987. Uniformity of plants regenerated by direct somatic embryogenesis from zygotic embryos of Trifolium repens. Ann Bot. 59: 93–97.

    CAS  Google Scholar 

  • McKersie, B.D. and S.R. Bowley. 1993. Synthetic seeds of alfalfa, in synseeds. In: Application of Synthetic Seeds to Crop Improvement. (eds. K. Redenbaugh). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Merkle, S.A. and A.T. Wiecko. 1989. Regeneration of Robina pseudoacacia via somatic embryogenesis. Can J For Res. 19: 285–288.

    Article  Google Scholar 

  • Michler, C.H. 1992. In vitro genetic selection of woody plant improvement. In: Micropropagation of Woody Plants. pp. 443–455. (eds. M.R. Ahuja). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Mittal, A., R. Agarwal and S.C. Gupta. 1989. In vitro development of plantlets from axillary buds of Acacia auriculiformis — a leguminous tree. Plant Cell Tiss Org Cult. 19: 65–70.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, A. and H.Y. Mohan Ram. 1981. Regeneration of plantlets from excised roots of Dalbergia sisoo. Indian J Exp Biol. 19: 1113–1115.

    Google Scholar 

  • Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nagarajan, P. and P.D. Walton. 1987. A comparison of somatic chromosomal instibility in tissue culture regenerants from Medicago medica Pers. Plant Cell Rep. 6: 109–113.

    Google Scholar 

  • NRC. 1979. Tropical Legumes, Resources of Future Timbers: Rosewoods, pp. 231–238. Washington, DC: National Academy of Sciences.

    Google Scholar 

  • Ostry, M.E. and C.H. Michler. 1992. Use of biotechnology for tree improvement in Populus model systems. In: Micropropagation of Woody Plants. pp. 471–483. (ed. M.R. Ahuja). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Parrott, W.A., G. Dryden, S. Vogt, D.F. Hilderbrund, G.B. Collins and E.G. Williams. 1988. Optimization of somatic embryogenesis and embryo germination in soybean. In vitro Cell Dev Biol. 24: 817.

    Article  CAS  Google Scholar 

  • Parrott, W.A., R.E. Durham and M.A. Bailey. 1995. Somatic Embryogenesis in Legumes. In: Biotechnology in Agriculture and Forestry Vol. 31. Somatic Embryogenesis and Synthetic Seed. pp. 199–227. (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Raghava Swamy, B.V, K. Himabindu and G. Lakshmi Sita. 1992. In vitro micropropagation of elite rosewood (Dalbergia latifolia Roxb). Plant Cell Rep. 11: 126–131.

    Google Scholar 

  • Rao, P.S. and P. Ozias-Akins. 1985. Plant regeneration through somatic embryogenesis in protoplast cultures of sandalwood (Santalum album L). Protoplasma. 124: 80–86.

    Article  Google Scholar 

  • Rao, A.N. 1993. Recent researches on propagation of tropical forest trees. Int Workshop BIOREFOR Yogyakarta. pp. 21–30.

    Google Scholar 

  • Rao, M.M. and G. Lakshmi Sita. 1996. Direct somatic embryogenesis from immature embryos of rosewood (Dalbergia latifolia Roxb.). Plant Cell Rep. 15: 355–359.

    Article  CAS  Google Scholar 

  • Ravishankar Rai, V. and K.S. Jagadishchandra. 1988. In vitro regeneration plantlets from shoot callus of mature trees of Dalbergia latifolia. Plant Cell Tiss Org Cult. 13: 77–83.

    Article  Google Scholar 

  • Redenbaugh, K., B.D. Paasch, J.W. Nichol, M.E. Kossier, R.R. Viss and K.A. Waiker]. 1986. Somatic seeds: Encapsulation of asexual plant embryos. Biotechnology. 4: 797–801

    Article  Google Scholar 

  • Sarita, P., S.P. Bhatnagar. and S.S. Bhojwani. 1988. Preliminary investigations of micro-propagation of a leguminous timber tree. Pterocarpus santalinus. Phytomorphology. 38: 41–45.

    Google Scholar 

  • Schuller, A. and G. Reuther. 1993. Response of Abies alba, embryonal-suspensor mass to various carbohydrate treatments. Plant Cell Rep. 12: 199–202.

    Article  CAS  Google Scholar 

  • Senaratna, T., B.D. McKersie and S.R. Bowley. 1990. Artificial seeds of alfalfa (Medicago sativa L.). Induction of dessication tolerance in somatic embryos. In Vitro Cell Dev Biol. 26: 85–90.

    Article  Google Scholar 

  • Shanker, S. and H.Y. Mohan Ram. 1990. Plantlet regeneration from tissue cultures of Sesbania grandiflora. Curr Sci. 59: 39–43.

    Google Scholar 

  • Sinha, R.K. and R. Mallick. 1991. Plantlets from somatic callus tissue of the woody legume Sesbania bispinosa (Jacq.) WE Wight. Plant Cell Rep. 10: 247–250.

    Article  Google Scholar 

  • Skirvin, R.M., H. Abu-Qaoud, S. Sriskandarajah. and D.E. Harry. 1993. Genetics of micropropagated woody plants. In: Micropropagation of Woody Plants, pp. 263–277. (ed. R. Ahuja). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Skoleman, R.G., and M.O. Mapes. 1976. Acacia koa gray plantlets from somatic callus tissue. J Heredity. 67: 114–115.

    Google Scholar 

  • Stickland, S.G., J.W. Nichol, C.M. McCall and D.A. Stuart. 1987. Effects of carbohydrate source on alfalfa somatic embryogenesis. Plant Sci. 48: 113–121.

    Article  Google Scholar 

  • Stuart, D.A. and S.G. Strickland. 1984. Somatic embryogenesis from cell cultures of Medicago sativa. 2. The interactions of amino acid with ammonium. Plant Sci Lett. 34: 165–174.

    Article  CAS  Google Scholar 

  • Suhasini, K., A.P. Sagare and K.V. Krishnamurthy. 1994. Direct somatic embryogenesis from mature axes in chickpea. Plant Sci. 102: 189–194.

    Article  CAS  Google Scholar 

  • Thorpe, T.A. 1995. In vitro Embryogenesis in Plants. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Tomar, U.K. and S.C. Gupta. 1988a. In vitro plant regeneration of leguminous tree (Albizia spp). Plant Cell Rep. 7: 385–388.

    Article  CAS  Google Scholar 

  • Tomar, U.K. and S.C. Gupta. 1988b. Somatic embryogenesis and organogenesis in callus cultures of a tree legume — Albizzia richardiana King. Plant Cell Rep. 7: 70–73.

    Article  CAS  Google Scholar 

  • Tomar, U.K. and S.C. Gupta. 1992. Factors affecting somatic embryogenesis in four-year old callus of a Fabaceous tree — Albizzia richardiana King and Prain In: Tissue Culture of Forest Tree Species: Recent Researches in India. pp.38–50. (eds. V. Dhawan, P.M. Ganapathy and D.K. Khurana). IDRC-TIFNET.

    Google Scholar 

  • Trigiano, R.N., R.M. Beaty and E.T. Graham. 1988. Somatic embryogenesis from immature embryos of redbud (Cercis canadensis). Plant Cell Rep. 7: 148–150.

    Article  CAS  Google Scholar 

  • Trigiano R.N., R.M. Beaty and J.T.F. Dietrich. 1989. Somatic embryogenesis and plantlet regeneration in Cornus florida. Plant Cell Rep. 8: 270–273.

    Article  Google Scholar 

  • Trigiano, R.N., R.L. Geneve and S.A. Merkle. 1992. Tissue and cell culture of woody legumes. Hort Rev. 14: 265–331.

    CAS  Google Scholar 

  • Tulecke W, 1987. Somatic embryogenesis in woody perennials. In: Cell and Tissue Culture in Forestry. Vol. 2. pp. 61–91. (eds. J.M. Bonga and D.J. Durzan). Boston: Martinus Nijhoff.

    Chapter  Google Scholar 

  • Upadhyay, S. and N. Chandra. 1983. Shoot and plantlet formation in organ and callus cultures of Albizzia lebbeck Benth. Ann Bot. 52: 421–424.

    Google Scholar 

  • Vlachova, M., B.A. Metz, J. Schell and F.J. de Bruijn. 1987. The tropical legume, Sesbania rostrata, Tissue Culture Plant Regeneration and infection with Agrobacterium tumefaciens and rhizogenes strains. Plant Sci. 50: 213–223.

    Article  CAS  Google Scholar 

  • Verma, D.C. and D.K. Dougall. 1977. Influence of carbohydrates on quantitative aspects of growth and embryo formation in wild carrot suspension cultures. Plant Physiol. 59: 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Wang, G.H. and F.B. Holl. 1988. In vitro culture and the incidence of somaclonal variation in regenerated plants of Trifolium pratense L. Plant Sci. 55: 159–167.

    Article  Google Scholar 

  • Weaver L.A. and R.N. Trigiano. 1991. Regeneration of Cladrastis lutea (Fabaceae) via somatic embryogenesis. Plant Cell Rep. 10: 183–186.

    Article  CAS  Google Scholar 

  • Wetherell, D.F. 1984. Enhanced adventive embryogenesis resulting from plasmolysis of cultured wild carrot cells. Plant Cell Tiss Org Cult. 3: 221–227.

    Article  Google Scholar 

  • Winton, L. 1978. Morphogenesis in clonal propagation of woody plants. In: Frontiers of Plant Tissue Culture 1978. pp. 419–426. (ed. T.A. Thorpe). Calgary: University of Calgary.

    Google Scholar 

  • Yu, N., K.M. Coutter and J.D. Bewly. 1990. Abscisic acid and osmoticum prevent germination of developing alfalfa embryos but only osmoticum maintains the synthesis of developing proteins. Planta. 182: 382–390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lakshmi Sita, G. (1999). Somatic Embryogenesis in Rosewood and other Indian Tree Legumes. In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 59. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4774-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4774-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6006-6

  • Online ISBN: 978-94-011-4774-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics