Skip to main content

QTL Analysis in Plants: Ancient and Modern Perspectives

  • Chapter
  • First Online:
Plant Omics: Trends and Applications

Abstract

Quantitative traits exhibit continuous variation, indicating their control through multiple genes. Segregating populations are used to mine out associations between phenotypic and genotypic variations. Phenotyping performed for a specific trait and its variation in the population is justified with genotypic variation obtained through genetic markers application. A snapshot of genotypic variation is strictly dependent on the number and density of the markers applied. Parental and marker information is required to correlate genetic and phenotypic data for quantitative trait loci (QTL) analysis. For many years (now becoming obsolete), it has been of core importance to identify QTL with such methodology. Failure had to be faced by the researcher because the DNA region identified for phenotypic variation was much wider, and needed to be narrowed down by further dense marker application in that area to obtain required and accurate results. Nowadays the focus is on high-throughput technologies to obtain genome-wide resolution: high-throughput sequencing (HTS) is one of them. A comprehensive map of genomic variations can be produced with resequencing or reference genome sequences. Along with expression profiling, new molecular markers can be searched out with QTL analysis. Genomic-assisted breeding by studying the evolutionary variations in crops has many applied aspects as well. As compared to the conventional biparental population, presently the focus is on raising multiparent advanced generation inter-cross (MAGIC) populations to explore the genetic basis of quantitative traits. Probabilities of alleles of interest across the whole genome are calculated through the Hidden Markov Model (HMM). Different software packages (such as R-package, Qgene) are used for the estimates. Such whole-genome approaches in QTL analysis are a powerful and recently used technique. In this chapter, all these recent and modified modern techniques are reviewed with the most recent upcoming details. Traditional and modern QTL analyses have clearly been differentiated on applicable grounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ågren J, Oakley CG, McKay JK, Lovell JT, Schemske DW (2013) Genetic mapping of adaptation reveals fitness tradeoffs inArabidopsis thaliana. Proc Natl Acad Sci USA 110:21077–21082

    Article  PubMed Central  CAS  Google Scholar 

  • Akbarpour O, Dehghani H, Sorkhi B, GauchJr H (2014) Evaluation of genotype × environment interaction in barley (Hordeum vulgare L.) based on AMMI model using developed SAS program. J Agric Sci Technol 16:909–920

    Google Scholar 

  • Ali MB, Ibrahim AM, Malla S, Rudd J, Hays DB (2013) Family-based QTL mapping of heat stress tolerance in primitive tetraploid wheat (Triticum turgidum L.). Euphytica 192:189–203

    Article  CAS  Google Scholar 

  • Almeida GD, Makumbi D, Magorokosho C, Nair S, Borém A, Ribaut J-M, Bänziger M, Prasanna BM, Crossa J, Babu R (2013) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126:583–600

    Article  CAS  PubMed  Google Scholar 

  • Almeida GD, Nair S, Borém A, Cairns J, Trachsel S, Ribaut J-M, Bänziger M, Prasanna BM, Crossa J, Babu R (2014) Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol Breed 34:701–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso-Blanco C, Méndez-Vigo B (2014) Genetic architecture of naturally occurring quantitative traits in plants: an updated synthesis. Curr Opin Plant Biol 18:37–43

    Article  PubMed  Google Scholar 

  • Asins M (2002) Present and future of quantitative trait locus analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Avni R, Nave M, Eilam T, Sela H, Alekperov C, Peleg Z, Dvorak J, Korol A, Distelfeld A (2014) Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Mol Breed 34:1549–1562

    Article  CAS  Google Scholar 

  • Ban Y, Mitani N, Hayashi T, Sato A, Azuma A, Kono A, Kobayashi S (2014) Exploring quantitative trait loci for anthocyanin content in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 198:101–114

    Article  CAS  Google Scholar 

  • Barchi L, Lanteri S, Portis E, Valè G, Volante A, Pulcini L, Ciriaci T, Acciarri N, Barbierato V, Toppino L (2012) A RAD tag derived marker based eggplant linkage map and the location of QTLs determining anthocyanin pigmentation. PLoS One 7:e43740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett B, Griffiths A, Schreiber M, Ellison N, Mercer C, Bouton J, Ong B, Forster J, Sawbridge T, Spangenberg G (2004) A microsatellite map of white clover. Theor Appl Genet 109:596–608

    Article  CAS  PubMed  Google Scholar 

  • Basten CJ, Weir BS, Zeng Z-B (2004) QTL Cartographer, version 1.17. Department of Statistics, North Carolina State University, Raleigh, NC

    Google Scholar 

  • Blair MW, Izquierdo P, Astudillo C, Grusak MA (2013) A legume biofortification quandary: variability and genetic control of seed coat micronutrient accumulation in common beans. Front Plant Sci 4:275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bradbury P, Parker T, Hamblin MT, Jannink J-L (2011) Assessment of power and false discovery rate in genome-wide association studies using the BarleyCAP germplasm. Crop Sci 51:52–59

    Article  Google Scholar 

  • Buckler ES (2014) Applying genotyping-by-sequencing to characterize and map in diverse maize. In: Plant and Animal Genome XXII Conference: Plant and Animal Genome

    Google Scholar 

  • Burleigh JG, Alphonse K, Alverson AJ, Bik HM, Blank C, Cirranello AL, Cui H, Daly M, Dietterich TG, Gasparich G (2013) Next-generation phenomics for the Tree of Life. PLoS Curr 5

    Google Scholar 

  • Burton AL, Johnson JM, Foerster JM, Hirsch CN, Buell C, Hanlon MT, Kaeppler SM, Brown KM, Lynch JP (2014) QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor Appl Genet 127:2293–2311

    Article  PubMed  Google Scholar 

  • Burton AL, Johnson J, Foerster J, Hanlon MT, Kaeppler SM, Lynch JP, Brown KM (2015) QTL mapping and phenotypic variation of root anatomical traits in maize (Zea mays L.). Theor Appl Genet 128(1):93–106

    Article  PubMed  Google Scholar 

  • Chankaew S, Isemura T, Naito K, Ogiso-Tanaka E, Tomooka N, Somta P, Kaga A, Vaughan DA, Srinives P (2014) QTL mapping for salt tolerance and domestication-related traits inVigna marina subsp.oblonga, a halophytic species. Theor Appl Genet 127:691–702

    Article  CAS  PubMed  Google Scholar 

  • Cheng P, Chen X (2010) Molecular mapping of a gene for stripe rust resistance in spring wheat cultivar IDO377s. Theor Appl Genet 121:195–204

    Article  CAS  PubMed  Google Scholar 

  • Collard B, Jahufer M, Brouwer J, Pang E (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Cook JP, McMullen MD, Holland JB, Tian F, Bradbury P, Ross-Ibarra J, Buckler ES, Flint-Garcia SA (2012) Genetic architecture of maize kernel composition in the nested association mapping and inbred association panels. Plant Physiol 158:824–834

    Article  CAS  PubMed  Google Scholar 

  • Cubillos FA, Yansouni J, Khalili H, Balzergue S, Elftieh S, Martin-Magniette M-L, Serrand Y, Lepiniec L, Baud S, Dubreucq B (2012) Expression variation in connected recombinant populations ofArabidopsis thaliana highlights distinct transcriptome architectures. BMC Genomics 13:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui F, Zhao C, Ding A, Li J, Wang L, Li X, Bao Y, Li J, Wang H (2014) Construction of an integrative linkage map and QTL mapping of grain yield-related traits using three related wheat RIL populations. Theor Appl Genet 127:659–675

    Article  PubMed  Google Scholar 

  • Danan S, Veyrieras J-B, Lefebvre V (2011) Construction of a potato consensus map and QTL meta-analysis offer new insights into the genetic architecture of late blight resistance and plant maturity traits. BMC Plant Biol 11:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Daoura BG, Chen L, Du Y, Hu Y-G (2014) Genetic effects of dwarfing geneRht-5 on agronomic traits in common wheat (Triticum aestivum L.) and QTL analysis on its linked traits. Field Crop Res 156:22–29

    Article  Google Scholar 

  • De Donato M, Peters SO, Mitchell SE, Hussain T, Imumorin IG (2013) Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS One 8:e62137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deshmukh RK, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Plant Genet Genomics 5:244

    Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  CAS  PubMed  Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2013) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Genomes 9:189–204

    Article  Google Scholar 

  • Erickson DL, Fenster CB, Stenøien HK, Price D (2004) Quantitative trait locus analyses and the study of evolutionary process. Mol Ecol 13:2505–2522

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Fonceka D, Tossim H-A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn MC, Bertioli DJ, Glaszmann J-C, Courtois B (2012a) Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol 12:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonceka D, Tossim H-A, Rivallan R, Vignes H, Lacut E, de Bellis F, Faye I, Ndoye O, Leal-Bertioli SC, Valls JF (2012b) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS One 7:e48642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier-Level A, Korte A, Cooper MD, Nordborg M, Schmitt J, Wilczek AM (2011) A map of local adaptation inArabidopsis thaliana. Science 334:86–89

    Article  CAS  PubMed  Google Scholar 

  • Frary A, Frary A, Daunay M-C, Huvenaars K, Mank R, Doğanlar S (2014) QTL hotspots in eggplant (Solanum melongena) detected with a high resolution map and CIM analysis. Euphytica 197:211–228

    Article  Google Scholar 

  • Gardner KM, Latta RG (2007) Shared quantitative trait loci underlying the genetic correlation between continuous traits. Mol Ecol 16:4195–4209

    Article  PubMed  Google Scholar 

  • Geldermann H (1975) Investigations on inheritance of quantitative characters in animals by gene markers. I. Methods. Theor Appl Genet 46:319–330

    Article  CAS  PubMed  Google Scholar 

  • Grada A, Weinbrecht K (2013) Next-generation sequencing: methodology and application. J Invest Dermatol 133:e11

    Article  PubMed  CAS  Google Scholar 

  • Grimmer M, Boyd L, Clarke S, Paveley N (2014) Pyramiding of partial disease resistance genes has a predictable, but diminishing, benefit to efficacy. Plant Pathol 64(3):748–753

    Article  Google Scholar 

  • Grzebelus D, Iorizzo M, Senalik D, Ellison S, Cavagnaro P, Macko-Podgorni A, Heller-Uszynska K, Kilian A, Nothnagel T, Allender C (2014) Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. Mol Breed 33:625–637

    Article  CAS  PubMed  Google Scholar 

  • Guan R, Chen J, Jiang J, Liu G, Liu Y, Tian L, Yu L, Chang R, Qiu L-J (2014) Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng 8. Crop J 2(6):358–365

    Article  Google Scholar 

  • Guo Y, Kong F-M, Xu Y-F, Zhao Y, Liang X, Wang Y-Y, An D-G, Li S-S (2012) QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet 124:851–865

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Ding W, Chen J, Chen X, Zheng Y, Wang Z, Liu J (2014) Genetic linkage map construction and QTL mapping of salt tolerance traits inZoysia grass (Zoysia japonica). PLoS One 9:e107249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gutiérrez L, Berberian N, Capettini F, Falcioni E, Fros D, Germán S, Hayes PM, Huerta-Espino J, Herrera S, Pereyra S (2013) Genome-wide association mapping identifies disease-resistance QTLs in barley germplasm from Latin America, Advances in barley sciences. Springer, Dordrecht, pp 209–215

    Google Scholar 

  • Ha B-K, Vuong TD, Velusamy V, Nguyen HT, Shannon JG, Lee J-D (2013) Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 193:79–88

    Article  CAS  Google Scholar 

  • Han J, Ming R (2014) Molecular genetic mapping of papaya, Genetics and genomics of papaya. Springer, New York, pp 143–155

    Book  Google Scholar 

  • Hartl D, Jones E (2001) Introduction to molecular genetics and genomics. In: Hartl DL, Jones EW (eds) Genetics: analysis of genes and genomes, 5th edn. Jones & Bartlett, Mississauga, ON, Canada, pp 1–35

    Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9:e97047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annu Rev Plant Biol 65:531–551

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-F, Bertrand Y, Guiraud J-L, Vialet S, Launay A, Cheynier V, Terrier N, This P (2013) Expression QTL mapping in grapevine: revisiting the genetic determinism of grape skin colour. Plant Sci 207:18–24

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W (2012) Genome-wide genetic changes during modern breeding of maize. Nat Genet 44:812–815

    Article  CAS  PubMed  Google Scholar 

  • Joehanes R, Nelson JC (2008) QGene 4.0, an extensible Java QTL-analysis platform. Bioinformatics 24:2788–2789

    Article  CAS  PubMed  Google Scholar 

  • Joosen RVL, Arends D, Willems LAJ, Ligterink W, Jansen RC, Hilhorst HW (2012) Visualizing the genetic landscape ofArabidopsis seed performance. Plant Physiol 158:570–589

    Article  CAS  PubMed  Google Scholar 

  • Joosen RVL, Arends D, Li Y, Willems LA, Keurentjes JJ, Ligterink W, Jansen RC, Hilhorst HW (2013) Identifying genotype-by-environment interactions in the metabolism of germinatingArabidopsis seeds using generalized genetical genomics. Plant Physiol 162:553–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph B, Corwin JA, Züst T, Li B, Iravani M, Schaepman-Strub G, Turnbull LA, Kliebenstein DJ (2013) Hierarchical nuclear and cytoplasmic genetic architectures for plant growth and defense withinArabidopsis. Plant Cell 25:1929–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joshi RK, Nayak S (2010) Gene pyramiding: a broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev 5:51–60

    CAS  Google Scholar 

  • Kaur S, Kimber RB, Cogan NO, Materne M, Forster JW, Paull JG (2014) SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs forAscochyta blight resistance. Plant Sci 217:47–55

    Article  PubMed  CAS  Google Scholar 

  • Khedikar Y, Gowda M, Sarvamangala C, Patgar K, Upadhyaya H, Varshney R (2010) A QTL study on late leaf spot and rust revealed one major QTL for molecular breeding for rust resistance in groundnut (Arachis hypogaea L.). Theor Appl Genet 121:971–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kou Y, Wang S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181–185

    Article  CAS  PubMed  Google Scholar 

  • Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, Purugganan MD, Durrant C, Mott R (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits inArabidopsis thaliana. PLoS Genet 5:e1000551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030

    Article  CAS  PubMed  Google Scholar 

  • Larson WA, Seeb LW, Everett MV, Waples RK, Templin WD, Seeb JE (2014) Data from geotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol Appl 7(3):355–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinonen PH, Remington DL, Leppälä J, Savolainen O (2013) Genetic basis of local adaptation and flowering time variation inArabidopsis lyrata. Mol Ecol 22:709–723

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Maurer HP, Reif JC, Melchinger A, Utz H, Tucker MR, Ranc N, Della Porta G, Würschum T (2012) Optimum design of family structure and allocation of resources in association mapping with lines from multiple crosses. Heredity 110:71–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Wang L, Sun C, Zhang Z, Zheng Y, Qiu F (2014) Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet 127:1019–1037

    Article  CAS  PubMed  Google Scholar 

  • Lowry DB, Sheng CC, Zhu Z, Juenger TE, Lahner B, Salt DE, Willis JH (2012) Mapping of ionomic traits inMimulus guttatus reveals Mo and Cd QTLs that colocalize with MOT1 homologues. PLoS One 7:e30730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Xu J, Yuan Z, Hao Z, Xie C, Li X, Shah T, Lan H, Zhang S, Rong T (2012) Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol Breed 30:407–418

    Article  CAS  Google Scholar 

  • Luciano Da Costa ES, Wang S, Zeng Z-B (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL cartographer. Methods Mol Biol 871:75–119

    Article  CAS  Google Scholar 

  • Luo X, Ji S-D, Yuan P-R, Lee H-S, Kim D-M, Balkunde S, Kang J-W, Ahn S-N (2013) QTL mapping reveals a tight linkage between QTLs for grain weight and panicle spikelet number in rice. Rice 6:33

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv H, Wang Q, Zhang Y, Yang L, Fang Z, Wang X, Liu Y, Zhuang M, Lin Y, Yu H (2014) Linkage map construction using InDel and SSR markers and QTL analysis of heading traits inBrassica oleracea var.capitata L. Mol Breed 34:87–98

    Article  CAS  Google Scholar 

  • Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  PubMed  Google Scholar 

  • Manly KF, Cudmore RH Jr, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  CAS  PubMed  Google Scholar 

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381

    Article  CAS  PubMed  Google Scholar 

  • Mekonnen MD (2013) QTL mapping of root and leaf traits associated with drought tolerance in a canola (Brassica napus L.) doubled haploid population. Colorado State University, Fort Collins

    Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  • Morton NE (1955) Sequential tests for the detection of linkage. Am J Hum Genet 7:277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moscou MJ, Lauter N, Steffenson B, Wise RP (2011) Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 7:e1002208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci USA 97:12649–12654

    Article  PubMed  PubMed Central  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell Online 21:2194–2202

    Article  CAS  Google Scholar 

  • Naegele R, Ashrafi H, Hill T, Chin-Wo SR, Van Deynze A, Hausbeck M (2014) QTL mapping of fruit rot resistance to the plant pathogenPhytophthora capsici L. in a recombinant inbred lineCapsicum annuum L. population. Phytopathology 104(5):479–483

    Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Oakley CG, Ågren J, Atchison RA, Schemske DW (2014) QTL mapping of freezing tolerance: links to fitness and adaptive trade‐offs. Mol Ecol 23:4304–4315

    Article  PubMed  Google Scholar 

  • Paliwal R, Röder MS, Kumar U, Srivastava J, Joshi AK (2012) QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theor Appl Genet 125:561–575

    Article  PubMed  Google Scholar 

  • Pandey MK, Wang ML, Qiao L, Feng S, Khera P, Wang H, Tonnis B, Barkley NA, Wang J, Holbrook CC (2014) Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaea L.). BMC Genet 15:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Portis E, Barchi L, Toppino L, Lanteri S, Acciarri N, Felicioni N, Fusari F, Barbierato V, Cericola F, Valè G (2014) QTL mapping in eggplant reveals clusters of yield-related loci and orthology with the tomato genome. PLoS One 9:e89499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prashar A, Hornyik C, Young V, McLean K, Sharma SK, Dale MFB, Bryan GJ (2014) Construction of a dense SNP map of a highly heterozygous diploid potato population and QTL analysis of tuber shape and eye depth. Theor Appl Genet 127:2159–2171

    Article  PubMed  Google Scholar 

  • Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and IlluminaMiSeq sequencers. BMC Genomics 13:341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman H, Kebede B, Zimmerli C, Yang R-C (2014) Genetic study and QTL mapping of seed glucosinolate content inBrassica rapa L. Crop Sci 54:537–543

    Article  CAS  Google Scholar 

  • Routaboul J-M, Dubos C, Beck G, Marquis C, Bidzinski P, Loudet O, Lepiniec L (2012) Metabolite profiling and quantitative genetics of natural variation for flavonoids inArabidopsis. J Exp Bot 63:3749–3764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SJ, Tucker EJ, Tester M (2011) Genetic analysis of abiotic stress tolerance in crops. Curr Opin Plant Biol 14:232–239

    Article  CAS  PubMed  Google Scholar 

  • Sax K (1923) The association of size differences with seed-coat pattern and pigmentation inPhaseolus vulgaris. Genetics 8:552

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz RJ, He Y, Valdés-López O, Khan SM, Joshi T, Urich MA, Nery JR, Diers B, Xu D, Stacey G (2013) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res 23:1663–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma T, Rai A, Gupta S, Vijayan J, Devanna B, Ray S (2012) Rice blast management through host-plant resistance: retrospect and prospects. Agric Res 1:37–52

    Article  Google Scholar 

  • Singh S, Singh RP, Bhavani S, Huerta-Espino J, Eugenio L-VE (2013) QTL mapping of slow-rusting, adult plant resistance to race Ug99 of stem rust fungus in PBW343/Muu RIL population. Theor Appl Genet 126:1367–1375

    Article  PubMed  Google Scholar 

  • Slate J (2005) Invited review: Quantitative trait locus mapping in natural populations: progress, caveats and future directions. Mol Ecol 14:363–379

    Article  CAS  PubMed  Google Scholar 

  • Sonah H, O’Donoughue L, Cober E, Rajcan I, Belzile F (2015) Identification of loci governing eight agronomic traits using a GBS‐GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol J 13(2):211–221

    Article  CAS  PubMed  Google Scholar 

  • Suh J-P, Jeung J-U, Noh T-H, Cho Y-C, Park S-H, Park H-S, Shin M-S, Kim C-K, Jena KK (2013) Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice 6:1–11

    Article  Google Scholar 

  • Sun F-D, Zhang J-H, Wang S-F, Gong W-K, Shi Y-Z, Liu A-Y, Li J-W, Gong J-W, Shang H-H, Yuan Y-L (2012) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breed 30:569–582

    Article  Google Scholar 

  • Talukder SK, Babar MA, Vijayalakshmi K, Poland J, Prasad PV, Bowden R, Fritz A (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet 15:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang S, Teng Z, Zhai T, Fang X, Liu F, Liu D, Zhang J, Liu D, Wang S, Zhang K (2015) Construction of genetic map and QTL analysis of fiber quality traits for Upland cotton (Gossypium hirsutum L.). Euphytica 201:195–213

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tinker N, Mather D (1995) MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Agric Genomics 1(2)

    Google Scholar 

  • Topp CN, Iyer-Pascuzzi AS, Anderson JT, Lee C-R, Zurek PR, Symonova O, Zheng Y, Bucksch A, Mileyko Y, Galkovskyi T (2013) 3D phenotyping and quantitative trait locus mapping identify core regions of the rice genome controlling root architecture. Proc Natl Acad Sci USA 110:E1695–E1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Touré A, Haussmann B, Jones N, Thomas H, Ougham H (2000) Construction of a genetic map, mapping of major genes, and QTL analysis In: Haussmann BIG, Geiger HH, Hess DE, Hash CT, Bramel-Cox P (eds) Application of molecular markers in plant breeding. Training manual for a seminar held at IITA, Ibadan, Nigeria, from 16–17 August 1999. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India, p 17–34

    Google Scholar 

  • Trick M, Adamski NM, Mugford SG, Jiang C-C, Febrer M, Uauy C (2012) Combining SNP discovery from next-generation sequencing data with bulked segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC Plant Biol 12:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ooijen J (2004) MapQTL® 5, software for the mapping of quantitative trait loci in experimental populations. Kyazma, Wageningen, Netherlands, p 63

    Google Scholar 

  • Van Ooijen J (2006) JoinMap 4. Software for the calculation of genetic linkage maps in experimental populations. Kyazma, Wageningen, Netherlands

    Google Scholar 

  • Van Ooijen J, Kyazma B (2009) MapQTL 6. Software for the mapping of quantitative trait loci in experimental populations of diploid species. Kyazma, Wageningen, Netherlands

    Google Scholar 

  • Van Ooijen J, Boer M, Jansen R, Maliepaard C (2000) MapQTL 4.0: software for the calculation of QTL positions on genetic maps (user manual)

    Google Scholar 

  • Verbyla AP, George AW, Cavanagh CR, Verbyla KL (2014) Whole-genome QTL analysis for MAGIC. Theor Appl Genet 127:1753–1770

    Article  PubMed  Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7:e35668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinod K (2011) Kosambi and the genetic mapping function. Resonance 16:540–550

    Article  Google Scholar 

  • Wang H, Smith KP, Combs E, Blake T, Horsley RD, Muehlbauer GJ (2012) Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet 124:111–124

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten C, Zeng Z (2013) Windows QTL Cartographer 2.5. User manual. Department of Statistics, North Carolina State University, Raleigh

    Google Scholar 

  • Wu X-L, Hu Z-L (2012) Meta-analysis of QTL mapping experiments. In: Rifkin SA (ed) Quantitative trait loci (QTL). Springer, New York, pp 145–171

    Chapter  Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  • Xie L, Tan Z, Zhou Y, Xu R, Feng L, Xing Y, Qi X (2014) Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice. J Integr Plant Biol 56(8):749–759

    Article  CAS  PubMed  Google Scholar 

  • Yasuda N, Mitsunaga T, Hayashi K, Koizumi S, Fujita Y (2015) Effects of pyramiding quantitative resistance genes pi21, Pi34, and Pi35 on rice leaf blast disease. Plant Dis 99(7):904–909

    Google Scholar 

  • Ye C, Argayoso MA, Redoña ED, Sierra SN, Laza MA, Dilla CJ, Mo Y, Thomson MJ, Chin J, Delaviña CB (2012) Mapping QTL for heat tolerance at flowering stage in rice using SNP markers. Plant Breed 131:33–41

    Article  CAS  Google Scholar 

  • Ye H, Liu Y, Liu X, Wang X, Wang Z (2014) Genetic mapping and QTL analysis of growth traits in the large yellow croakerLarimichthys crocea. Mar Biotechnol 16:729–738

    Article  CAS  PubMed  Google Scholar 

  • Young N (1996) QTL mapping and quantitative disease resistance in plants. Annu Rev Phytopathol 34:479–501

    Article  CAS  PubMed  Google Scholar 

  • Yun B-W, Kim M-G, Handoyo T, Kim K-M (2014) Analysis of rice grain quality-associated quantitative trait loci by using genetic mapping. Am J Plant Sci. doi:10.4236/ajps.2014.59125

    Google Scholar 

  • Zambrano JL, Jones MW, Francis DM, Tomas A, Redinbaugh MG (2014) Quantitative trait loci for resistance to maize rayado fino virus. Mol Breed 34:989–996

    Article  CAS  Google Scholar 

  • Zeng Z-B, Kao C-H, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74:279–289

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Miao H, Wei L, Li C, Zhao R, Wang C (2013) Genetic analysis and QTL mapping of seed coat color in sesame (Sesamum indicum L.). PLoS One 8:e63898

    Article  PubMed  PubMed Central  Google Scholar 

  • Zwart R, Thompson J, Milgate A, Bansal U, Williamson P, Raman H, Bariana H (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed 26:107–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Jamil or Alvina Gul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jamil, M., Ali, A., Akbar, K.F., Napar, A.A., Gul, A., Mujeeb-Kazi, A. (2016). QTL Analysis in Plants: Ancient and Modern Perspectives. In: Hakeem, K., Tombuloğlu, H., Tombuloğlu, G. (eds) Plant Omics: Trends and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31703-8_3

Download citation

Publish with us

Policies and ethics