Skip to main content
Log in

QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Nutrient use efficiency (NuUE), comprising nutrient uptake and utilization efficiency, is regarded as one of the most important factors for wheat yield. In the present study, six morphological, nine nutrient content and nine nutrient utilization efficiency traits were investigated at the seedling stage using a set of recombinant inbred lines (RILs), under hydroponic culture of 12 treatments including single nutrient levels and two- and three-nutrient combinations treatments of N, P and K. For the 12 designed treatments, a total of 380 quantitative trait loci (QTLs) on 20 chromosomes for the 24 traits were detected. Of these, 87, 149 and 144 QTLs for morphological, nutrient content and nutrient utilization efficiency traits were found, respectively. Using the data of the average value (AV) across 12 treatments, 70 QTLs were detected for 23 traits. Most QTLs were located in new marker regions. Twenty-six important QTL clusters were mapped on 13 chromosomes, 1A, 1B, 1D, 2B, 3A, 3B, 4A, 4B, 5D, 6A, 6B, 7A and 7B. Of these, ten clusters involved 147 QTLs (38.7%) for investigated traits, indicating that these 10 loci were more important for the NuUE of N, P and K. We found evidence for cooperative uptake and utilization (CUU) of N, P and K in the early growth period at both the phenotype and QTL level. The correlation coefficients (r) between nutrient content and nutrient utilization efficiency traits for N, P and K were almost all significantly positive correlations. A total of 32 cooperative CUU loci (L1–L32) were found, which included 190 out of the 293 QTLs (64.8%) for the nutrient uptake and utilization efficiency traits, indicating that the CUU-QTLs were common for N, P and K. The CUU-QTLs in L3, L7, L16 and L28 were relatively stable. The CUU-QTLs may explain the CUU phenotype at the QTL level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • An DG, Su JY, Liu QY, Zhu YG, Tong YP, Li JM, Jing RL, Li B, Li ZS (2006) Mapping QTLs for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant Soil 284:73–84

    Article  CAS  Google Scholar 

  • Ceotto E (2005) The issues of energy and carbon cycle: new perspectives for assessing the environmental impact of animal waste utilization. Bioresour Technol 96:191–196

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Clárk RB (1983) Plant genotype differences in the uptake, translocation, accumulation, and use of mineral elements required for plant growth. Plant Soil 72:175–196

    Article  Google Scholar 

  • Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA (2009) The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nat Geosci 2:659–662

    Article  CAS  Google Scholar 

  • De Groot CC, Marcelis LFM, van den Boogaard R, Kaiser WM, Lambers H (2003a) Interaction of nitrogen and phosphorus nutrition in determining growth. Plant Soil 248:257–268

    Article  Google Scholar 

  • De Groot CC, van den Boogaard R, Marcelis LFM, Harbinson J, Lambers H (2003b) Contrasting effects of N and P deprivation on regulation of photosynthesis in tomato plants in relation to feedback limitation. J Exp Bot 54:1957–1967

    Article  PubMed  Google Scholar 

  • Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3:43–52

    Article  PubMed  CAS  Google Scholar 

  • Fontaine JX, Ravel C, Pageau K, Heumez E, Dubois F, Hirel B, Le Gouis J (2009) A quantitative genetic study for elucidating the contribution of glutamine synthetase, glutamate dehydrogenase and other nitrogen-related physiological traits to the agronomic performance of common wheat. Theor Appl Genet 119:645–662

    Article  PubMed  CAS  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  PubMed  CAS  Google Scholar 

  • Giles J (2005) Nitrogen study fertilizes fears of pollution. Nature 433:791

    Article  PubMed  CAS  Google Scholar 

  • Habash DZ, Bernard S, Schondelmaier J, Weyen J, Quarrie SA (2007) The genetics of nitrogen use in hexaploid wheat: N utilisation, development and yield. Theor Appl Genet 114:403–419

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Leigh RA (2006) Genetic mapping of natural variation in potassium concentrations in shoots of Arabidopsis thaliana. J Exp Bot 57:953–960

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Bertin P, Quilleré I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:32

    Google Scholar 

  • Janssen BH (1998) Efficient use of nutrients: an art of balancing. Field Crop Res 56:197–201

    Article  Google Scholar 

  • Kjeldahl JGC (1883) A new method for the determination of nitrogen in organic matter. Z Anal Chem 22:366–372

    Article  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis1. Crop Sci 25:192–194

    Article  Google Scholar 

  • Laperche A, Devienne-Barret F, Maury O, Le Gouis J, Ney B (2006) A simplified conceptual model of carbon/nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet 113:1131–1146

    Article  PubMed  CAS  Google Scholar 

  • Laperche A, Brancourt-Hulmel M, Heumez E, Gardet O, Hanocq E, Devienne-Barret F, Le Gouis J (2007) Using genotype × nitrogen interaction variables to evaluate the QTL involved in wheat tolerance to nitrogen constraints. Theor Appl Genet 115:399–415

    Article  PubMed  CAS  Google Scholar 

  • Laperche A, Le Gouis J, Hanocq E, Brancourt-Hulmel M (2008) Modelling nitrogen stress with probe genotypes to assess genetic parameters and genetic determinism of winter wheat tolerance to nitrogen constraint. Euphytica 161:259–271

    Article  CAS  Google Scholar 

  • Le Gouis J, Béghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilization efficiencies in winter wheat. Eur J Agron 12:163–173

    Article  CAS  Google Scholar 

  • Li SS, Jia JZ, Wei XY, Zhang XC, Chen HM, Sun HY, Fan YD, Li LZ, Zhao XH, Lei TD, Xu YF, Jiang FS, Wang HG, Li LH (2007a) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178

    Article  Google Scholar 

  • Li ZX, Ni ZF, Peng HR, Liu ZY, Nie XL, Xu SB, Liu G, Sun QX (2007b) Molecular mapping of QTLs for root response to phosphorus deficiency at seedling stage in wheat (Triticum aestivum L.). Prog Nat Sci 17:1177–1184

    Article  CAS  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DJ, Lukow O (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL 4452 × AC ‘Domain’. Genome 48:870–883

    Article  PubMed  CAS  Google Scholar 

  • Ozturk L, Eker S, Torun B, Cakmak I (2005) Variation in phosphorus efficiency among 73 bread and durum wheat genotypes grown in a phosphorus-deficient calcareous soil. Plant Soil 269:69–80

    Article  CAS  Google Scholar 

  • Peleg Z, Cakmak I, Ozturk L, Yazici A, Jun Y, Budak H, Korol AB, Fahima T, Saranga Y (2009) Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population. Theor Appl Genet 119:353–369

    Article  PubMed  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Quarrie SA, Quarrie SP, Radosevic R, Rancic D, Kaminska A, Barnes JD, Leverington M, Ceoloni C, Dodig D (2006) Dissecting a wheat QTL for yield present in a range of environments: from the QTL to candidate genes. J Exp Bot 57:2627–2637

    Article  PubMed  CAS  Google Scholar 

  • Rengel Z, Damon PM (2008) Crops and genotypes differ in efficiency of potassium uptake and use. Physiol Plantarum 133:624–636

    Article  CAS  Google Scholar 

  • Rengel Z, Marschner P (2005) Nutrient availability and management in the rhizosphere: exploiting genotypic differences. New Phytol 168:305–312

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Shin R (2007) Nutrient sensing and signaling: NPKS. Annu Rev Plant Biol 58:47–69

    Article  PubMed  CAS  Google Scholar 

  • Siddiqi M, Glass A (1981) Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr 4:289–302

    Article  Google Scholar 

  • Stoll M, Kwitek-Black AE, Cowly AW Jr, Harris EL, Harrap SB, Krieger JE, Printz MP, Provoost AP, Sassard J, Jacob HJ (2000) New target regions for human hypertension via comparative genomics. Genome Res 10:473–482

    Article  PubMed  CAS  Google Scholar 

  • Su JY, Xiao YM, Li M, Liu QY, Li B, Tong YP, Jia JZ, Li ZS (2006) Mapping QTLs for phosphorus-deficiency tolerance at wheat seedling stage. Plant Soil 281:25–36

    Article  CAS  Google Scholar 

  • Su JY, Zheng Q, Li HW, Li B, Jing RL, Tong YP, Li ZS (2009) Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Sci 176:824–836

    Article  CAS  Google Scholar 

  • ter Steege MW, den Ouden FM, Lambers H, Stam P, Peeters AJ (2005) Genetic and physiological architecture of early vigor in Aegilops tauschii, the D-genome donor of hexaploid wheat. A quantitative trait loci analysis. Plant Physiol 139:1078–1094

    Article  PubMed  CAS  Google Scholar 

  • Tesfaye M, Liu J, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144:594–603

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wang YY, Sun XY, Zhao Y, Kong FM, Guo Y, Zhang GZ, Pu YY, Wu K, Li SS (2011) Enrichment of a common wheat genetic map and QTL mapping of genes for fatty acid content in grain. Plant Sci 181:65–75

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    Article  CAS  Google Scholar 

  • White PJ, Hammond JP, King GJ, Bowen HC, Hayden RM, Meacham MC, Spracklen WP, Broadley MR (2010) Genetic analysis of potassium use efficiency in Brassica oleracea. Ann Bot 105:1199–1210

    Article  PubMed  CAS  Google Scholar 

  • Xu GH, Magen H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition of plants. Adv Agron 68:97–150

    Article  CAS  Google Scholar 

  • Zhang HC, Cao ZH, Shen QR, Wang MH (2003) Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region: I. Effect of phosphate fertilizer rate on P losses from paddy soil. Chemosphere 50:695–701

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technologies R&D Program (Grant No. 2011BAD35B03) and the Creation and Utilization of Agriculture-Biology Resource of Shandong Province, China. The authors regret that, owing to space limitations, not all of the individuals who participated in the relevant work could be listed. We thank Gui-zhi Zhang, Zhao-liang Qi, Xi-yang Fu and Shui-mei Liang for their assistance with the experimental work and Min-Min Xu, Yi-Han Li, Wen-Liang Yang and De-Yan Peng for measuring the N, P and K concentrations of the tested materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-shen Li.

Additional information

Communicated by A. Charcosset.

Y. Guo and F. M. Kong contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4750 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Y., Kong, Fm., Xu, Yf. et al. QTL mapping for seedling traits in wheat grown under varying concentrations of N, P and K nutrients. Theor Appl Genet 124, 851–865 (2012). https://doi.org/10.1007/s00122-011-1749-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1749-7

Keywords

Navigation