Skip to main content
Log in

Mapping QTL for agronomic traits in breeding populations

  • Review
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Detection of quantitative trait loci (QTL) in breeding populations offers the advantage that these QTL are of direct relevance for the improvement of crops via knowledge-based breeding. As phenotypic data are routinely generated in breeding programs and the costs for genotyping are constantly decreasing, it is tempting to exploit this information to unravel the genetic architecture underlying important agronomic traits in crops. This review characterizes the germplasm from breeding populations available for QTL detection, provides a classification of the different QTL mapping approaches that are available, and highlights important considerations concerning study design and biometrical models suitable for QTL analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA et al (2011) Detection of segregation distortion loci in triticale (× Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380

    Article  PubMed  CAS  Google Scholar 

  • Bauer AM, Hoti F, von Korff M, Pillen K, Léon J et al (2009) Advanced backcross-QTL analysis in spring barley (H. vulgare ssp. spontaneum) comparing a REML versus a Bayesian model in multi-environmental field trials. Theor Appl Genet 119:105–123

    Article  PubMed  CAS  Google Scholar 

  • Bernardo R (2008) Molecular marker and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664

    Article  Google Scholar 

  • Bink MCAM, Uimari P, Sillanpää MJ, Janss LLG, Jansen RC (2002) Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theor Appl Genet 104:751–762

    Article  PubMed  CAS  Google Scholar 

  • Bink MCAM, Boer MP, ter Braak CJF, Jansen J, Voorrips RE et al (2008) Bayesian analysis of complex traits in pedigreed plant populations. Euphytica 161:85–96

    Article  Google Scholar 

  • Blanc G, Charcosset A, Mangin B, Gallais A, Moreau L (2006) Connected populations for detecting quantitative trait loci and testing for epistasis: an application in maize. Theor Appl Genet 113:206–224

    Article  PubMed  CAS  Google Scholar 

  • Bradbury P, Parker T, Hamblin MT, Jannink JL (2011) Assessment of power and false discovery rate in genome-wide association studies using the BarleyCAP germplasm. Crop Sci 51:52–59

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ et al (2009) The genetic architecture of maize flowering time. Science 325:714–718

    Article  PubMed  CAS  Google Scholar 

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  PubMed  CAS  Google Scholar 

  • Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184:799–822

    Article  PubMed  CAS  Google Scholar 

  • Dekkers JCM, Hospital F (2002) Multifactorial genetics: the use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  PubMed  CAS  Google Scholar 

  • Dudley JW, Johnson GR (2009) Epistatic models improve prediction of performance in corn. Crop Sci 49:763–770

    Article  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Addison Wesley Longman, Harlow

    Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  • Ganal MW, Altmann T, Röder MS (2009) SNP identification in crop plants. Curr Opin Plant Biol 12:211–217

    Article  PubMed  CAS  Google Scholar 

  • Gasbarra D, Pirinen M, Sillanpää MJ, Arjas E (2009) Bayesian quantitative trait locus mapping based on reconstruction of recent genetic histories. Genetics 183:709–721

    Article  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L, Brutnell TP, Bermudez Kandianis C et al (2008) Natural genetic variation in epsilon lycopene cyclase tapped for maize biofortification. Science 319:300–333

    Article  Google Scholar 

  • Heckenberger M, Maurer HP, Melchinger AE, Frisch M (2008) The plabsoft database: a comprehensive database management system for integrating phenotypic and genomic data in academic and commercial plant breeding programs. Euphytica 161:173–179

    Article  Google Scholar 

  • Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  PubMed  CAS  Google Scholar 

  • Jannink JL, Bink M, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342

    Article  PubMed  CAS  Google Scholar 

  • Jansen RC (2007) Quantitative trait loci in inbred lines. In: Handbook of Statistical Genetics, 3rd edn. Wiley, New York. ISBN: 978-0-470-05830-5

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Jansen RC, Jannink JL, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 43:829–834

    Article  CAS  Google Scholar 

  • Lander ES, Schork NJ (1994) Genetic dissection of complex traits. Science 265:2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Li L, Paulo MJ, Van Eeuwijk F, Gebhardt C (2010) Statistical epistasis between candidate gene alleles for complex tuber traits in an association mapping population of tetraploid potato. Theor Appl Genet 121:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Li H, Bradbury P, Ersoz E, Buckler ES, Wang J (2011) Joint QTL linkage mapping for multiple-cross mating design sharing one common parent. PLoS ONE 6(3):e17573. doi:10.1371/journal.pone.0017573

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Gowda M, Steinhoff J, Maurer HP, Würschum T et al (2011) Association mapping in an elite maize breeding population. Theor Appl Genet 123:847–858

    Article  PubMed  Google Scholar 

  • Liu W, Maurer HP, Reif JC, Cossic F, Würschum T (2012a) Optimum design of family structure and allocation of resources in association mapping with lines from multiple crosses (in review)

  • Liu W, Reif JC, Cossic F, Würschum T (2012b) Comparison of biometrical approaches for QTL detection in multiple segregating populations. Theor Appl Genet (accepted)

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Assoc, Sunderland

    Google Scholar 

  • Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  PubMed  CAS  Google Scholar 

  • Malosetti M, Van der Linden CG, Vosman B, Van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175:879–889

    Article  PubMed  CAS  Google Scholar 

  • Malosetti M, Van Eeuwijk FA, Boer MP, Casas AM, Elía M et al (2011) Gene and QTL detection in a three-way barley cross under selection by a mixed model with kinship information using SNPs. Theor Appl Genet 122:1605–1616

    Article  PubMed  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Dill-Macky R et al (2011) Genome-wide association mapping of fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breeding 27:439–454

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  CAS  Google Scholar 

  • Melchinger AE, Orsini E, Schön CC (2012) QTL mapping under truncation selection in homozygous lines derived from biparental crosses. Theor Appl Genet 124:543–553

    Google Scholar 

  • Meuwissen THE, Karlsen A, Lien S, Olsaker I, Goddard ME (2002) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373–379

    PubMed  CAS  Google Scholar 

  • Miedaner T, Wilde F, Korzun V, Ebmeyer E, Schmolke M et al (2009) Marker selection for Fusarium head blight resistance based on quantitative trait loci (QTL) from two European sources compared to phenotypic selection in winter wheat. Euphytica 166:219–227

    Article  CAS  Google Scholar 

  • Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2011) Association mapping for Fusarium head blight resistance in soft European winter wheat. Mol Breed 28:647–655

    Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z et al (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723

    Article  PubMed  CAS  Google Scholar 

  • Parisseaux B, Bernardo R (2004) In silico mapping of quantitative trait loci in maize. Theor Appl Genet 109:508–514

    Article  PubMed  CAS  Google Scholar 

  • Phillips PC (2008) Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9:855–867

    Article  PubMed  CAS  Google Scholar 

  • Powell JE, Visscher PM, Goddard ME (2010) Reconciling the analysis of IBD abd IBS in complex trait studies. Nat Rev Genet 11:800–805

    Article  PubMed  CAS  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA et al (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  PubMed  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T et al (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292

    Article  PubMed  Google Scholar 

  • Steinhoff J, Liu W, Maurer HP, Würschum T, Longin FH et al (2011) Multiple-line cross QTL-mapping in European elite maize. Crop Sci 51:2505–2516

    Google Scholar 

  • Steinhoff J, Liu W, Reif JC, Ranc N, Würschum T (2012) Detection of QTL for flowering time in multiple families of elite maize (in review)

  • Thornsberry JM, Goodman MM, Doebley H, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Van Eeuwijk FA, Boer M, Totir LR, Bink M, Wright D et al (2010a) Mixed model approaches for the identification of QTLs within a maize hybrid breeding program. Theor Appl Genet 120:429–440

    Article  PubMed  Google Scholar 

  • Van Eeuwijk FA, Bink MCAM, Chenu K, Chapman SC (2010b) Detection and use of QTL for complex traits in multiple environments. Cur Opin Plant Biol 13:193–205

    Article  Google Scholar 

  • Van Inghelandt D, Reif JC, Dhillon BS, Flament P, Melchinger AE (2011) Extent and genome-wide distribution of linkage disequilibrium in commercial maize germplasm. Theor Appl Genet 123:11–20

    Article  PubMed  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven KJF, Jannink JL, McIntyre LM (2006) Using mating designs to uncover QTL and the genetic architecture of complex traits. Heredity 96:139–149

    Article  PubMed  CAS  Google Scholar 

  • Von der Ohe C, Ebmeyer E, Korzun V, Miedaner T (2010) Agronomic and quality performance of winter wheat backcross populations carrying non-adapted Fusarium head blight resistance QTL. Crop Sci 50:2283–2290

    Article  Google Scholar 

  • Wang H, Smith KP, Combs E, Blake T, Horsley RD et al (2011) Effect of population size and unbalanced data sets on QTL detection using genome-wide association mapping in barley breeding germplasm. Theor Appl Genet. doi:10.1007/s00122-011-1691-8

    Google Scholar 

  • Wu R, Zheng ZB (2001) Joint linkage and linkage disequilibrium mapping in natural populations. Genetics 157:899–909

    PubMed  CAS  Google Scholar 

  • Würschum T, Maurer HP, Kraft T, Janssen G, Nilsson C et al (2011a) Genome-wide association mapping of agronomic traits in sugar beet. Theor Appl Genet 123:1121–1131

    Article  PubMed  Google Scholar 

  • Würschum T, Maurer HP, Schulz B, Möhring J, Reif JC (2011b) Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet. Theor Appl Genet 123:109–118

    Article  PubMed  Google Scholar 

  • Würschum T, Maurer HP, Dreyer F, Reif JC (2012a) Effect of inter- and intragenic epistasis on the heritability of complex traits (in review)

  • Würschum T, Liu W, Gowda M, Maurer HP, Fischer S et al (2012b) Comparison of biometrical models for joint linkage association mapping. Heredity 108:332–340

  • Würschum T, Liu W, Maurer HP, Abel S, Reif JC (2012c) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124:153–161

    Google Scholar 

  • Yu J, Arbelbide M, Bernardo R (2005) Power of in silico QTL mapping from phenotypic, pedigree, and marker data in a hybrid breeding program. Theor Appl Genet 110:1061–1067

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Yu LX, Lorenz A, Rutkoski J, Singh RP, Bhavani S et al (2011) Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor Appl Genet. doi:10.1007/s00122-011-1664-y

    Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  PubMed  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C et al (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Jochen Reif, H. Friedrich Utz, and Matthew R. Tucker for helpful discussions and critically reading the manuscript and greatly appreciates the helpful comments and suggestions of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Würschum.

Additional information

Communicated by R. Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Würschum, T. Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125, 201–210 (2012). https://doi.org/10.1007/s00122-012-1887-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1887-6

Keywords

Navigation