Skip to main content

Phenolic Content Changes in Plants Under Salt Stress

  • Chapter
  • First Online:
Ecophysiology and Responses of Plants under Salt Stress

Abstract

Phenolics are one of the main group of plant secondary metabolites, including over 9,000 various compounds. They possess a wide range of biological functions in plants, such as protection from UV light, defense against pathogens, pigmentation to attract pollinators and protection from reactive oxygen species generated when aerobic or photosynthetic metabolism is impaired by various environmental stresses such as salt stress.

Soil salinity is a major environmental constraint to plant growth and productivity and is an especially serious problem in agricultural systems that rely heavily on irrigation. Salt stress causes an over-reduction of photosynthetic electron chain and promotes the production of reactive oxygen species (ROS) and therefore oxidative stress. Higher plants have developed different adaptive mechanisms to reduce oxidative damage resulting from salt stress, through the biosynthesis of a cascade of antioxidants. Among them, phenolic compounds such as phenolic acids, flavonoids and proanthocyanidins play an important role in scavenging free radicals.

The aim of this chapter is to discuss recent results on the phenolic compound changes in plants under salt stress. Phenolic content in plants, and their antioxidant activity, depend on biological factors (genotype, organ and ontogeny), as well as edaphic, and environmental conditions (temperature, salinity, water stress and light intensity). The reviewed results indicate the importance of plant tissue, species as well as salt doses, time of salinity exposure and initial levels of phenolics in determining phenolic response to salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullahil MB, Lee EJ, Paek KI (2010) Medium salt strength induced changes in growth, physiology and secondary metabolite content in adventitious roots of Morinda citrifolia: the role of antioxidant enzymes and phenylalanine ammonia lyase. Plant Cell Rep 29:685–694

    Article  CAS  Google Scholar 

  • Agastian P, Kingsley SJ, Vivekanandan M (2000) Effect of salinity on photosynthesis and biochemical characteristics in mulberry genotypes. Photosynthetica 38:287–290

    Article  CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants – a review. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmed S, Hahn EJ, Paek KY (2008) Aeration volume and photosynthetic photon flux affect cell growth and secondary metabolite contents in bioreactor cultures of M. citrifolia. J Plant Biol 51:209–212

    Article  CAS  Google Scholar 

  • Ali RM, Abbas HM (2003) Response of salt stressed barley seedlings to phenylurea. Plant Soil Environ 49:158–162

    Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  PubMed  CAS  Google Scholar 

  • Almela L, Sanchez-Munoz B, Fernandez-Lopez JA, Rocaa MJ, Virginia R (2006) Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J Chromatogr 7:221–229

    Google Scholar 

  • Amalesh S, Das G, Das SK (2011) Role of flavonoids in plants. Int J Pharm Sci Tech 6:12–35

    Google Scholar 

  • Amor NB, Jimenez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2006) Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol Plant 126:446–457

    Article  Google Scholar 

  • Arts IC, van de Putte B, Hollman PC (2000a) Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J Agric Food Chem 48:1746–1751

    Article  PubMed  CAS  Google Scholar 

  • Arts IC, van de Putte B, Hollman PC (2000b) Catechin contents of foods commonly consumed in The Netherlands. 2. Tea, wine, fruit juices, and chocolate milk. J Agric Food Chem 48:1752–1757

    Article  PubMed  CAS  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycinebetaine and proline. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf MA, Ashraf M, Ali AQ (2010) Response of two genetically diverse wheat cultivars to salt stress at different growth stages: leaf lipid peroxidation and phenolic contents. Pak J Bot 42:559–565

    CAS  Google Scholar 

  • Ayaz FA, Kadioglu A, Turgut R (2000) Water stress effects on the content of low molecular weight carbohydrates and phenolic acids in Ctenanthe setosa (Rose.) Eichler. Can J Plant Sci 80:373–378

    Article  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in Rhizosphere interactions with plants and other organisms. Ann Rev Plant Biol 57:233–266

    Article  CAS  Google Scholar 

  • Begum AA, Leibovitch S, Migner P, Zhang F (2001) Specific flavonoids induced nodes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environment. J Exp Bot 52:1537–1543

    Article  PubMed  CAS  Google Scholar 

  • Borkowski T, Szymusia H, Gliszczyńska-Świgło A, Rietjens IMCM, Tyrakowska B (2005) Radical scavenging capacity of wine anthocyanins is strongly pH-dependent. J Agric Food Chem 53:5526–5534

    Article  PubMed  CAS  Google Scholar 

  • Bors W, Heller W, Michel C (1998) The chemistry of flavonoids. In: Rice-Evans CA, Pecker L (eds) Flavonoids in health and disease. Marcel Dekker, New York, pp 11–136

    Google Scholar 

  • Bourchard P, Bilger W, Weissenbock G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultravioletinduced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380

    Article  Google Scholar 

  • Bourgou S, Bettaieb I, Saidani M, Marzouk B (2010) Fatty acids, essential oil, and phenolics modifications of black cumin fruit under NaCl stress conditions. J Agric Food Chem 58:12399–12406

    Article  CAS  Google Scholar 

  • Burns J, Yokota T, Ashihira H, Lean MEJ, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50:3337–3340

    Article  PubMed  CAS  Google Scholar 

  • Carlsen SCK, Understrup A, Fomsgaard IS, Mortensen AG, Ravnskov S (2008) Flavonoids in roots of white clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant Soil 302:33–43

    Article  CAS  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu J-K (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Chisari M, Todaro A, Barbagallo RN, Spagna G (2010) Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactuca sativa L. Cv. Duende). Food Chem 119:1502–1506

    Article  CAS  Google Scholar 

  • Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143–155

    Article  CAS  Google Scholar 

  • Chutipaijit S, Cha-Um S, Sompornpailin K (2009) Differential accumulations of proline and flavonoids in indica rice varieties against salinity. Pak J Bot 41:2497–2506

    CAS  Google Scholar 

  • Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Bot Res 41:1–62

    Article  CAS  Google Scholar 

  • Crifò T, Puglisi I, Petrone G, Recupero GR, Piero ARL (2011) Expression analysis in response to low temperature stress in blood oranges: implication of the flavonoid biosynthetic pathway. Gene 476:1–9

    Article  PubMed  CAS  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN (2006) Phenols, polyphenols and tannins: an overview. In: Crozier A, Ashihara H (eds) Plant secondary metabolites: occurrence, structure and role in the human diet. Blackwell, Oxford, pp 1–24

    Google Scholar 

  • Cvikrova M, Mala J, Hrubcova M, Eder J (2006) Soluble and cell wall-bound phenolics and lignin in Ascocalyx abietina infected Norway spruces. Plant Sci 170:563–570

    Article  CAS  Google Scholar 

  • Daiponmak W, Theerakulpisut P, Thanonkao P, Vanavichit A, Prathepha P (2010) Changes of anthocyanin cyanidin-3-glucoside content and antioxidant activity in Thai rice varieties under salinity stress. Sci Asia 36:286–291

    Article  CAS  Google Scholar 

  • Dajic Z (2006) Salt stress. In: Madhava RKV, Raghavendra AS, Janardhan RK (eds) Physiology and molecular biology of stress tolerance in plants. Kluwer, Dordrecht, pp 41–101

    Chapter  Google Scholar 

  • Danai-Tambhale S, Kumar V, Shriram V (2011) Differential response of two scented indica rice (Oryza sativa) cultivars under salt stress. J Stress Physiol Biochem 7:387–397

    Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Davis K, Shwinn K (2006) Molecular biology and biotechnology of flavonoid biosynthesis. In: Andersen OM, Markham KR (eds) Flavonoids. Chemistry, biochemistry and applications. CRC Press/Taylor and Francis, Boca Raton, pp 143–218

    Google Scholar 

  • Demiral MA, Aktas Uygun D, Uygun M, Kasirga E, Karagozler AA (2011) Biochemical response of Olea europaea cv. Gemlik to short-term salt stress. Turk J Biol 35:433–442

    CAS  Google Scholar 

  • Desikan R, Hancock J, Neil S (2005) Reactive oxygen species as signalling molecules. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 169–196

    Google Scholar 

  • Dicko MH, Gruppen H, Traoré AS, Voragen AGJ, van Berkel WJH (2006) Phenolic compounds and related enzymes as determinants of sorghum for food use. Biotechnol Mol Biol Rev 1:21–38

    Google Scholar 

  • Dkhil BB, Denden M (2010) Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus L. (Moench.) seeds. Afr J Agric Res 5:1412–1418

    Google Scholar 

  • Drzewiecka K, Mleczek M, Waśkiewicz A, Goliński P (2011) Oxidative stress and phytoremediation. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 425–449

    Google Scholar 

  • Eckardt NA (2006) The role of flavonoids in root nodule development and auxin transport in Medicago truncatula. Plant Cell 18:1539–1540

    Article  CAS  Google Scholar 

  • Ehlting J, Hamberger B, Million-Rousseau R, Werck-Reichhart D (2006) Cytochromes P450 in phenolic metabolism. Phytochem Rev 5:239–270

    Article  CAS  Google Scholar 

  • Ellouzi H, Hamed KB, Cela J, Munne-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–143

    Article  PubMed  CAS  Google Scholar 

  • Eryilmaz F (2006) The relationships between salt stress and anthocyanin content in higher plants. Biotechnol Biotechnol Equipment 20:47–52

    CAS  Google Scholar 

  • Estes M (2002) A review of salinity stress on plants. Available at: http://www.bio.davidson.edu/people/kabernd/seminar/2002/stress/Salinity%20Paper.htm. Accessed Dec 2011

  • Falleh H, Jalleli I, Ksouri R, Boulaaba M, Guyot S, Magné M, Abdely C (2012) Effect of salt treatment on phenolic compounds and antioxidant activity of two Mesembryanthemum edule provenances. Plant Physiol Biochem 52:1–8

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Flowers SA (2005) Why does salinity pose such a difficult problem for plant breeders? Agric Water Manag 78:15–24

    Article  Google Scholar 

  • Fofana B, Benhamou N, McNally DJ, Labbé C, Séguin A, Bélanger RR (2005) Suppression of induced resistance in cucumber through disruption of the flavonoid pathway. Phytopathology 95:114–123

    Article  PubMed  CAS  Google Scholar 

  • Fox JE, Starcevic M, Kow KY, Burow ME (2001) Nitrogen fixation: endocrine disrupters and flavonoid signalling. Nature 413:128–129

    Article  PubMed  CAS  Google Scholar 

  • Foyer CD, Changey RL, White MC (1997) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:11–566

    Google Scholar 

  • Frary A, Gol D, Keles D, Okmen B, Pinar H, Sigva HO, Yemenicioglu A (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. Plant Biol 10:58–73

    Google Scholar 

  • Goliński P, Krick TP, Blanchette RA, Mirocha CJ (1995) Chemical characterization of red pigment (5,8-dihydroxy-2,7-dimethoxy-1.4-naphthalenedione) produced by Arthrographis cuboidea in pink stained wood. Holzforschung 49:407–410

    Article  Google Scholar 

  • Gould KS, Lister C (2006) Flavonoid functions in plants. In: Andersen OM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press/Taylor and Francis, Boca Raton, pp 397–442

    Google Scholar 

  • Hernandez JA, Almansa MS (2002) Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves. Physiol Plant 115:251–257

    Article  PubMed  CAS  Google Scholar 

  • Hichem H, Mounir D, Naceur EA (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crops Prod 30:144–151

    Article  CAS  Google Scholar 

  • Huchzermeyer B, Hausmann N, Paquet-Durant F, Koyro H-W (2004) Biochemical and physiological mechanisms leading to salt tolerance. Tropic Ecol 45:141–150

    CAS  Google Scholar 

  • Joganath IB, Crozier A (2010) Dietary flavonoids and phenolic compounds. In: Fraga G (ed) Plant phenolics and human health. Wiley, Hoboken, pp 1–50

    Google Scholar 

  • Karolewski Z, Waśkiewicz A, Irzykowska L, Bocianowski J, Kostecki M, Golinski P, Knaflewski M, Weber Z (2011) Fungi presence and their mycotoxins distribution in asparagus spears. Pol J Environ Stud 20:911–919

    CAS  Google Scholar 

  • Kattab H (2007) Role of glutathione and polyadenylic acid on the oxidative defense systems of two different cultivars of canola seedlings grown under saline condition. Aust J Basic Appl Sci 1:323–334

    CAS  Google Scholar 

  • Keilig K, Ludwig-Müller J (2009) Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot Stud 50:311–318

    CAS  Google Scholar 

  • Kensuke K, Norihisa M, Kazuo S, Taizo H (2007) Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus. Mycorrhiza 17:563–570

    Article  CAS  Google Scholar 

  • Keutgen AJ, Paweltzik E (2008) Quality and nutritional value of strawberry fruit under long term salt stress. Food Chem 107:1413–1420

    Article  CAS  Google Scholar 

  • Khan TA, Mazid M, Mohammad F (2011) Status of secondary plant products under abiotic stress: an overview. J Stress Physiol Biochem 7:75–98

    Google Scholar 

  • Kiarostami Kh, Mohseni R, Saboora A (2010) Biochemical changes of Rosmarinus officinalis under salt stress. J Stress Physiol Biochem 6:114–122

    Google Scholar 

  • Kim H-J, Fonseca JM, Choi J-H, Kubota C, Kwon DY (2008) Salt in irrigation water affects the nutritional and visual properties of Romaine lettuce (Lactuca sativa L.). J Agric Food Chem 56:3772–3776

    Article  PubMed  CAS  Google Scholar 

  • Kirakosyan A, Kaufman P, Warber S, Zick S, Aaronson K, Bolling S, Chang SC (2004) Applied environmental stresses to enhance the levels of polyphenolics in leaves of hawthorn plants. Physiol Plant 121:182–186

    Article  PubMed  CAS  Google Scholar 

  • Koca M, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    Article  CAS  Google Scholar 

  • Kong C, Liang W, Xu X, Hu F, Wang P, Jiang Y (2004) Release and activity of allelochemicals from allelopathic rice seedlings. J Agric Food Chem 52:2861–2865

    Article  PubMed  CAS  Google Scholar 

  • Koyro H-W, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance 1 of plants in the era of climate change. Springer, New York, pp 1–28

    Chapter  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritime. Plant Physiol Biochem 45:244–249

    Article  PubMed  CAS  Google Scholar 

  • Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui M, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biologies 331:865–873

    Article  PubMed  CAS  Google Scholar 

  • Kumar V, Shriram V, Kavi Kishor PB, Jawali N, Shitole MG (2010) Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over expressing P5CSF129A gene. Plant Biotechnol Rep 4:37–48

    Article  Google Scholar 

  • Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato F (ed) Phytochemistry: Advances in Research. Research Signpost, Trivandrum, Kerala pp 23–67

    Google Scholar 

  • Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). Plant Physiol 158:735–747

    Google Scholar 

  • Lee T-T, Huang C-C, Shieh X-H, Chen C-L, Chen L-J, Yu B (2010) Flavonoid, phenol and polysaccharide contents of Echinacea Purpurea L. and its immunostimulant capacity in vitro. Int J Environ Sci Dev 1:5–9

    CAS  Google Scholar 

  • Lemańska K, Szymusiak H, Tyrakowska B, Zieliński R, Soffers A, Ritjens IMCM (2001) The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic Biol Med 31:869–881

    Article  PubMed  Google Scholar 

  • Levinsh G (2006) Biological basis of biological diversity: physiological adaptations of plants to heterogeneous habitats along a sea coast. Acta Univ Latv 710:53–79

    Google Scholar 

  • Li Z-H, Wang Q, Ruan X, Pan C-D, Jiang D-A (2010) Phenolics and plant allelopathy. Molecules 15:8933–8952

    Article  PubMed  CAS  Google Scholar 

  • Lilia E, Salah R, Hajer SA, Abderrazak D, Majida EH, Ismail EH (2005) Effect of salt treatment on the expression of phenolics and peroxidase activity assessed in two barley cultivars Acsad 1230 and Arig 8. J Agron 4:196–202

    Article  Google Scholar 

  • Lobo LT, da Silva GA, de Freitas MCC, Souza Filho APS, da Silva MN, Arruda AC, Guilhon GMSP, Santos LS, Santos AS, Arruda MSP (2010) Stilbenes from Deguelia rufescens var. urucu (Ducke) A. M. G. Azevedo leaves: effects on seed germination and plant growth. J Braz Chem Soc 21:1838–1844

    Article  CAS  Google Scholar 

  • Lopez-Berenguer C, del Carmen M, Martinez-Ballesta C, Moreno DA, Carvajal M, Garcia-Viguera C (2009) Growing hardier crops for better health: salinity tolerance and the nutritional value of broccoli. J Agric Food Chem 57:572–578

    Article  PubMed  CAS  Google Scholar 

  • Luthria DL, Mukhopadhyay S, Krizek DT (2006) Content of total phenolics and phenolic acids in tomato (Lycopersicon esculentum Mill.) fruits as influenced by cultivar and solar UV radiation. J Food Comp Anal 19:771–777

    Article  CAS  Google Scholar 

  • MacDonald MJ, D’Cunha GB (2007) A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 85:273–282

    Article  PubMed  CAS  Google Scholar 

  • Mahmoudi H, Huang J, Gruber MY, Kaddour R, Lachaal M, Ouerghi Z, Hannoufa A (2010) The impact of genotype and salinity on physiological function, secondary metabolite accumulation, and antioxidative responses in lettuce. J Agric Food Chem 58:5122–5130

    Article  PubMed  CAS  Google Scholar 

  • Mano J (2002) Early events in environmental stresses in plants. Induction mechanisms ofoxidative stress. In: Inze D, Van Montagu M (eds) Oxidative stress in plants. Taylor and Francis, London, pp 217–246

    Google Scholar 

  • Mattila P, Kumpulainen J (2007) Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. J Agric Food Chem 50:3660–3667

    Article  CAS  Google Scholar 

  • Mehrizi MH, Shariatmadari H, Khoshgoftarmanesh AH, Dehghani F (2012) Copper effects on growth, lipid peroxidation, and total phenolic content of rosemary leaves under salinity stress. J Agric Sci Tech 14:205–212

    CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15:523–530

    CAS  Google Scholar 

  • Misra N, Dwivedi UN (2004) Genotypic differences in salinity tolerance of green gram cultivars. Plant Sci 166:1135–1142

    Article  CAS  Google Scholar 

  • Mohamed AA, Aly AA (2008) Alterations of some secondary metabolites and enzymes activity by using exogenous antioxidant compound in onion plants grown under seawater salt stress. Am Eurasian J Sci Res 3:139–146

    Google Scholar 

  • Moss GP (2000) Nomenclature of lignans and neolignans (IUPAC recommendations 2000). Pure Appl Chem 72:1493–1523

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Munns R, Schachtman D, Condon A (1995) The significance of a two-phase growth response to salinity in wheat and barley. Aust J Plant physiol 22:561–569

    Article  CAS  Google Scholar 

  • Muzolf M, Szymusiak H, Gliszczyńska-Świgło A, Rietjens IM, Tyrakowska B (2008) pH-dependent radical scavenging capacity of green tea catechins. J Agric Food Chem 56:816–823

    Article  PubMed  CAS  Google Scholar 

  • Muzolf-Panek M, Gliszczyńska-Świgło A, de Haan L, Aarts JMMJG, Szymusiak H, Vervoort JM, Tyrakowska B, Rietjens IMCM (2008) Role of catechin quinones in the induction of EpRE-mediated gene expression. Chem Res Toxicol 21:2352–2360

    Article  PubMed  CAS  Google Scholar 

  • Navari-Lazzo F, Quartacci MF (2001) Phytoremedition of metals: tolerance mechanisms against oxidative stress. Minerva Biotechnol 13:73–83

    Google Scholar 

  • Navarro JM, Folres P, Garrido C, Martinez V (2006) Changes in the contents of antioxidant compounds in pepper fruits at different ripenning stages, as affected by salinity. Food Chem 96:66–73

    Article  CAS  Google Scholar 

  • Neves GYS, Marchiosi R, Ferrarese MLL, Siqueira-Soares C, Ferrarese-Filho O (2010) Root growth inhibition and lignification induced by salt stress in soybean. J Agron Crop Sci 196:467–473

    Article  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:623–647

    Article  CAS  Google Scholar 

  • Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. J Plant Physiol 166:1764–1774

    Article  PubMed  CAS  Google Scholar 

  • Oueslati S, Karray-Bouraoui N, da Attia H, Rabhi M, Ksouri R, Lachaal M (2010) Physiological and antioxidant responses of Mentha pulegium (Pennyroyal) to salt stress. Acta Physiol Plant 32:289–296

    Article  CAS  Google Scholar 

  • Parida AK, Das AB, Sanadac Y, Mohantyb P (2004) Effects of salinity on biochemical components of the mangrove, Aegiceras corniculatum. Aquat Bot 80:77–87

    Article  CAS  Google Scholar 

  • Pawlak-Sprada S, Arasimowicz-Jelonek M, Podgórska M, Deckert J (2011a) Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim Pol 58:211–216

    PubMed  CAS  Google Scholar 

  • Pawlak-Sprada S, Stobiecki M, Deckert J (2011b) Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part II. Profiling of isoflavonoids and their glycoconjugates induced in roots of lupine (Lutinus lupeus) seedling treated with cadmium and lead. Acta Biochim Pol 58:217–223

    PubMed  CAS  Google Scholar 

  • Petridis A, Therios I, Samouris G, Tananaki C (2012) Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ Exp Bot 79:37–43

    Article  CAS  Google Scholar 

  • Pinter J, Kosa E, Hadi G, Hegyi Z, Spitkó T, Tóth Z, Szigeti Z, Páldi E, Marton LC (2007) Effect of increased UV-B radiation on the anthocyanin content of maize (Zea mays L.) leaves. Acta Agronomica Hugarica 55:7–17

    Article  CAS  Google Scholar 

  • Ponce MA, Bompadre MJ, Scervino JM, Ocampo JA, Chaneton EJ, Godeas AM (2009) Flavonoids, benzoic acids and cinnamic acids isolated from shoots and roots of Italian rye grass (Lolium multiflorum Lam.) with and without endophyte association and arbuscular mycorrhizal fungus. Biochem Syst Ecol 37:245–253

    Article  CAS  Google Scholar 

  • Punyasiri PAN, Abeysinghe ISB, Kumar V, Treutter D, Duy D, Gosch C, Martens S, Forkmann G, Fischer TC (2004) Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431:22–30

    Article  PubMed  CAS  Google Scholar 

  • Rezazadeh A, Ghasemneshaz A, Barani M, Telmadarrehei T (2012) Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Res J Med Plant 6:245–252

    Article  Google Scholar 

  • Rice-Evans C, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956

    Article  PubMed  CAS  Google Scholar 

  • Richardson JE, Fay MF, Cronk QCB, Bowman D, Chase MW (2000) A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Am J Bot 87:1309–1324

    Article  PubMed  CAS  Google Scholar 

  • Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J Agric Food Chem 52:4713–4719

    Article  PubMed  CAS  Google Scholar 

  • Rivero R, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321

    Article  PubMed  CAS  Google Scholar 

  • Routaboul JM, Kerhoas L, Debeaujon I, Pourcel L, Caboche M, Einhorn J, Lepiniec L (2006) Flavonoid diversity and biosynthesis in seed of Arabidopsis thaliana. Planta 224:96–107

    Article  PubMed  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Salah IB, Mahmoudi H, Gruber M, Slatni T, Boulaaba T, Gandour M, Messedi D, Hamed KB, Ksouri B, Hannoufa A, Abdelly C (2011) Phenolic content and antioxidant activity in two contrasting Medicago ciliaris lines cultivated under salt stress. Biologia 66:813–820

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez E, Moreno DA, Ferreres F, Rubio-Wilhelmi Mdel M, Ruiz JM (2011) Differential responses of five cherry tomato varieties to water stress: changes on phenolic metabolites and related enzymes. Phytochemistry 72:723–729

    Article  PubMed  CAS  Google Scholar 

  • Sang S, Yang I, Buckley B, Ho C-T, Yang CS (2007) Autoxidative quinone formation in vitro and metabolite formation in vivo from tea polyphenol (−)-epigallocatechin-3-gallate: studies by real-time mass spectrometry combined with tandem mass ion mapping. Free Radic Biol Med 43:362–371

    Article  PubMed  CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Vierheilih H, Ocampo JA, Godeas A (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794

    Article  PubMed  CAS  Google Scholar 

  • Scervino JM, Ponce MA, Erra-Bassells R, Bompadre J, Vierheilig H, Ocampo J, Godeas A (2007) The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. Can J Microbiol 53:702–709

    Article  PubMed  CAS  Google Scholar 

  • Schleiff U (2008) Analysis of water supply of plants under saline soil conditions and conclusions for research on crop salt tolerance. J Agric Crop Sci 194:1–8

    Article  Google Scholar 

  • Schmidt TJ, Hemmati S, Fuss E, Alfermann AW (2006) A combined HPLC-UV and HPLC-MS method for the identification of lignans and its application to the lignans of Linum usitatissimum L and L. bienne Mill. Phytochem Anal 17:299–311

    Article  PubMed  CAS  Google Scholar 

  • Scognamiglio M, Esposito A, D’Abrosca B, Pacifico S, Fiumano V, Tsafantakis N, Monaco P, Fiorentino A (2012) Isolation, distribution and allelopathic effect of caffeic acid derivatives from Bellis perennis L. Biochem Syst Ecol 43:108–113

    Article  CAS  Google Scholar 

  • Sekmen AH, Ozdemir F, Turkan I (2004) Effects of salinity, light, and temperature on seed germination in a Turkish endangered halophyte, Kalidiopsis wagenitzii (Chenopodiaceae). Isr J Plant Sci 52:21–30

    Article  Google Scholar 

  • Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata BARK. Environ Exp Bot 77:63–76

    Article  CAS  Google Scholar 

  • Sharma I, Pati PK, Bhardwaj R (2010) Regulation of growth and antioxidant enzyme activities by 28-homobrassinolide in seedlings of Raphanus sativus L. under cadmium stress. Indian J Biochem Biophys 47:172–177

    PubMed  CAS  Google Scholar 

  • Shaw LJ, Morris P, Hooker JP (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880

    Article  PubMed  CAS  Google Scholar 

  • Single RS, Glenn EP, Squires V (1996) Growth performance of lambs fed mixed diets containing halophyte ingredients. Anim Feed Sci Technol 63:137–148

    Article  Google Scholar 

  • Smeds AI, Eklund PC, Sjöholm RE, Willför SM, Nishibe S, Deyama T, Holmbom BR (2007) Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. J Agric Food Chem 55:1337–1346

    Article  PubMed  CAS  Google Scholar 

  • Sonar BA, Desai Nivas M, Gaikwad DK, Chavan PD (2011) Assessment of salinity-induced antioxidative defense system in Colubrina asiatica brong. J Stress Physiol Biochem 7:193–200

    Google Scholar 

  • Soylu S (2006) Accumulation of cell-wall bound phenolic compounds and phytoalexin in Arabidopsis thaliana leaves following inoculation with pathovars of Pseudomonas syringae. Plant Sci 170:942–952

    Article  CAS  Google Scholar 

  • Sundaravarathan S, Kannaiyan S (2002) Role of plant flavonoids as signal molecules to Rhizobium. In: Kannaiyan S (ed) Biotechnology of biofertilizers. Kluwer, The Netherlands, pp 144–164

    Google Scholar 

  • Suzuki S, Umezawa T, Shimada M (2002) Stereochemical diversity in lignan biosynthesis of Arctium lappa L. Biosci Biotechnol Biochem 66:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    Article  PubMed  CAS  Google Scholar 

  • Telesiński A, Nowak J, Smolik B, Dubowska A, Skrzypiec N (2008) Effect of soil salinity on activity of antioxidant enzymes and content of ascorbic acid and phenols in bean (Pheseolus vulgaris L.) plants. J Elementol 13:401–409

    Google Scholar 

  • Tiwari JK, Munshi AD, Kumar R, Pandey RN, Arora A, Bhat JS, Sureja AK (2010) Effect of salt stress on cucamber: Na  +  − K  +  ratio, osmolyte concentration, phenols and chlorophyll content. Acta Physiol Plant 32:103–114

    Article  CAS  Google Scholar 

  • Togami J, Tamura M, Ishiguro K, Hirose C, Okuhara H, Ueyama Y, Nakamura N, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Suzuki K, Fukus Y, Kusumi T, Tanaka Y (2006) Molecular characterization of the flavonoid biosynthesis of Verbena hybrida and the functional analysis of verbena and Clitoria ternatea F3_5_H genes in transgenic verbena. Plant Biotechnol 23:5–11

    Article  CAS  Google Scholar 

  • Tsormpatsidis E, Henbest RGC, Davis FJ, Battey NH, Hadley P, Wagstaffe A (2008) UV irradiance as a major influence on growth, development and secondary products of commercial importance in Lollo Rosso lettuce ‘Revolution’ grown under polyethylene films. Environ Exp Bot 63:232–239

    Article  CAS  Google Scholar 

  • Umezawa T (2003) Diversity in lignan biosynthesis. Phytochem Rev 2:371–390

    Article  CAS  Google Scholar 

  • Uphoff RA, Van den Maagdenberg AM, Roon KI, Ferrari MD, Frantus RR (2001) The impact of pharmacogenetics for migraine. Eur J Pharmacol 9:1–10

    Article  Google Scholar 

  • Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Von Szent-Györgyi A (1928) Observations on the function of peroxidase systems and the chemistry of the adrenal cortex. Description of a new carbohydrate derivative. Biochem J 22:1387–1409

    PubMed  Google Scholar 

  • Wang MY, Brett JW, Jensen CJ, Nowicki D, Su C, Paul AK, Anderson G (2002) M. citrifolia (Noni): a literature review and recent advances in noni research. Acta Pharmacol Sin 23:1127–1141

    PubMed  CAS  Google Scholar 

  • Waris G, Ahsan H (2006) Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 5:14–22

    Article  PubMed  CAS  Google Scholar 

  • Waśkiewicz A, Irzykowska L, Bocianowski J, Karolewski Z, Kostecki M, Weber Z, Goliński P (2010) Occurrence of Fusarium fungi and mycotoxins in marketable asparagus spears. Pol J Environ Stud 49:367–372

    Google Scholar 

  • Weidenhamer JD, Romeo JT (2004) Allelochemicals of Polygonella myriophylla: chemistry and soil degradation. J Chem Ecol 20:1067–1082

    Article  Google Scholar 

  • Weir WL, Bais HP, Vivanco JM (2003) Intraspecific and interspecific interactions mediated by a phytotoxin, (−)-catechin, secreted by the roots of Centaurea maculosa (spotted knapweed). J Chem Ecol 29:2397–2412

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Yıldıztugay E, Sekmen AH, Turkan I, Kucukoduk M (2011) Elucidation of physiological and biochemical mechanisms of an endemic halophyte Centaurea tuzgoluensis under salt stress. Plant Physiol Biochem 49:816–824

    Article  PubMed  CAS  Google Scholar 

  • Yiu J-C, Tseng M-J, Liu C-J, Kuo C-T (2012) Modulation of NaCl stress in Capsicum annuum L. seedlings by catechin. Sci Hortic 134:200–209

    Article  CAS  Google Scholar 

  • Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H  +  antiporters in the salt stress response. Plant J 30:529–539

    Article  PubMed  CAS  Google Scholar 

  • Yuan G, Wang X, Guo R, Wang Q (2010) Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem 121:1014–1019

    Article  CAS  Google Scholar 

  • Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin LO (2006) Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. Plant Biol 6:26–44

    Google Scholar 

  • Zadernowski R, Naczk M, Nesterowicz J (2005) Phenolic acid profiles in some small berries. J Agric Food Chem 53:2118–2124

    Article  PubMed  CAS  Google Scholar 

  • Zahedi SM, Nabipour M, Azizi M, Gheisary H, Jalali M, Amini Z (2011) Effect of kinds of salt and its different levels on seed germination and growth of basil plant. World Appl Sci J 15:1039–1045

    CAS  Google Scholar 

  • Zhao J, Ren W, Zhi D, Wang L, Xia G (2007) Arabidopsis DREB1A/CBF3 bestowed transgenic tall rescue increased tolerance to drought stress. Plant Cell Rep 26:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49:5165–5170

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K (2007) Plant salt stress. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd West Sussex, pp 1–3

    Google Scholar 

  • Zrig A, Tounekti T, Vadel AM, Mohamed HB, Valero D, Serrano M, Chtara C, Khemira H (2011) Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiol Biochem 49:1313–1322

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Goliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Waśkiewicz, A., Muzolf-Panek, M., Goliński, P. (2013). Phenolic Content Changes in Plants Under Salt Stress. In: Ahmad, P., Azooz, M., Prasad, M. (eds) Ecophysiology and Responses of Plants under Salt Stress. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4747-4_11

Download citation

Publish with us

Policies and ethics