Skip to main content

Abstract

Plants are more and more affected by environmental stresses, especially by the devastating consequences of desertification and water scarcity which can be seen and felt all over the world. About 3.6 billion of the world’s 5.2 billion hectares of dryland used for agriculture have already suffered erosion, soil degradation, and salinization. Desertification can hinder efforts for sustainable development and introduces new threats to human health, ecosystems, and national economies. This problem is catalyzed by global climate change which exacerbates desertification and salinization. Therefore, solutions are desperately needed, such as the improvement of drought and salinity tolerance of crops, which in turn requires a detailed knowledge about tolerance mechanisms in plants. These mechanisms comprise a wide range of responses on molecular, cellular, and whole plant levels, which include amongst others the synthesis of compatible solutes/osmolytes and radical scavenging mechanisms. Regarding global change, elevated atmospheric CO2 concentrations can enhance salt and drought tolerance because oxidative stress is alleviated and more energy can be provided for energy-dependent tolerance mechanisms such as the synthesis of compatible solutes and antioxidants, thus increasing the suitability of plants as crops in future. A detailed knowledge of the physiological and biochemical basis of drought and salt tolerance and its interaction with elevated CO2 concentration can provide a basis for the cultivation of suitable plants in regions threatened by desertification and water scarcity under sustainable culture conditions. Even the drylands could offer tangible economic and ecological opportunities.

The aim of this chapter is to uncover how compatible solutes and antioxidants alleviate environmental stress, especially drought and salt stress, and the role elevated CO2 concentrations can play in this context, so that early indicators allowing successful breeding can be identified and the potential of plants as crops in a CO2 rich world can be assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Nasser LE, Abdel-Aal AE (2002) Effect of ­elevated CO2 and drought on proline metabolism and growth of saf-flower (Carthamus mareoticus L.) seedlings without improving water status. Pak J Biol Sci 5:523–528

    Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    PubMed  CAS  Google Scholar 

  • Adams MA, Richter A, Hill AK, Colmer TD (2005) Salt tolerance in Eucalyptus spp.: identity and response of putative osmolytes. Plant Cell Environ 28:772–787

    CAS  Google Scholar 

  • Agarwal S, Pandey V (2003) Stimulation of stress-related antioxidative enzymes in combating oxidative stress in Cassia seedlings. Ind J Plant Physiol 8:264–269

    CAS  Google Scholar 

  • Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588

    CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-­biochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010a) Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russ J Plant Physiol 57:509–517

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010b) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    PubMed  CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicylic acid. S Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patrón M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    PubMed  Google Scholar 

  • Ali G, Srivastava PS, Iqbal M (1999) Proline accumulation, protein pattern and photosynthesis in regenerants grown under NaCl stress. Biol Planta 42:89–95

    CAS  Google Scholar 

  • Amthor JS (1999) Increasing atmospheric CO2 concentration, water use and water stress: scaling up from the plant to the landscape. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic, San Diego, pp 33–59

    Google Scholar 

  • Anderson JA (2002) Catalase activity, hydrogen peroxide content and thermotolerance of pepper leaves. Sci Hortic 95:277–284

    CAS  Google Scholar 

  • Arora N, Bhardwaj R, Sharma P, Arora HK (2008) Effects of 28-homobrassinolide on growth, lipid peroxidation and antioxidative enzyme activities in seedlings of Zea mays L under salinity stress. Acta Physiol Plant 30:833–839

    CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166:3–16

    CAS  Google Scholar 

  • Ashraf M, Hameed M, Arshad M, Ashraf Y, Akhtar K (2006) Salt tolerance of some potential forage grasses from Cholistan Desert of Pakistan. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. tasks for vegetation science, vol 40. Springer, Dordrecht, pp 31–54

    Google Scholar 

  • Azevedo-Neto AD, Prisco JT, EnasFilho J, Braga de Abreu CE, GomesFilho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt tolerant and salt sensitive maize genotypes. Environ Exp Bot 56:87–94

    Google Scholar 

  • Babiychuk E, Kushnir S, Belles-Boix E, Van Montagu M, Inzé D (1995) Arabidopsis thaliana NADPH oxido-reductase homologs confer tolerance of yeasts towards the thiol-oxidizing drug diamide. J Biol Chem 270:26224–26231

    PubMed  CAS  Google Scholar 

  • Baczek-Kwinta R, Kościelniak J (2003) Anti-oxidative effect of elevated CO2 concentration in the air on maize hybrids subjected to severe chill. Photosynthetica 41:161–165

    CAS  Google Scholar 

  • Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, Tanaka K, Tanaka K (2004) Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Sci 166:919–928

    Google Scholar 

  • Baker A, Graham I (2002) Plant peroxisomes, biochemistry, cell biology and biotechnological applications. Kluwer, Dordrecht

    Google Scholar 

  • Ball MC, Munns R (1992) Plant responses to salinity under elevated atmospheric concentrations of CO2. Aust J Bot 40:515–525

    CAS  Google Scholar 

  • Basu U, Good AG, Taylor GJ (2001) Transgenic  Brassica napus  plants overexpressing aluminium-induced mitochondrial manganese superoxide dismutase cDNA are resistant to aluminium. Plant Cell Environ 24:1269–1278

    CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    PubMed  CAS  Google Scholar 

  • Bohnert HJ, Jensen RG (1996) Strategies for engineering water stress tolerance in plants. Trends Biotechnol 14:89–97

    CAS  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    PubMed  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    CAS  Google Scholar 

  • Bray EA, Bailey-Serres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1158–1203

    Google Scholar 

  • Cabuslay GS, Ito O, Alejal AA (2002) Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Sci 163:815–827

    CAS  Google Scholar 

  • Cannon RE, White JA, Scandalios JG (1987) Cloning of cDNA for maize superoxide dismutase (SOD-2). Proc Natl Acad Sci USA 84:179–183

    CAS  Google Scholar 

  • Carvalho LC, Amâncio S (2002) Antioxidant defence system in plantlets transferred from in vitro to ex vivo: effects of increasing light intensity and CO2 concentration. Plant Sci 162:33–40

    CAS  Google Scholar 

  • Chen Q, Yang L, Ahmad P, Wan X, Hu X (2011) Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation. Planta 233:593–609

    Google Scholar 

  • Conn EE, Vennesland B (1951) Glutathione reductase of wheat germ. J Biol Chem 192:17–28

    PubMed  CAS  Google Scholar 

  • Contour-Ansel D, Torres-Franklin M, Carvalho MHC, D’arcy-Lameta A, Zuily-Fodil Y (2006) Glutathione reductase in leaves of cowpea: cloning of two cDNAs, expression and enzymatic activity under progressive drought stress, desiccation and abscisic acid treatment. Ann Bot 98:1279–1287

    PubMed  CAS  Google Scholar 

  • Creissen GP, Mullineaux PM (1995) Cloning and characterisation of glutathione reductase cDNAs and identification of two genes encoding the tobacco enzyme. Planta 197:422–425

    PubMed  CAS  Google Scholar 

  • Creissen G, Edwards EA, Enard C, Wellbern A, Mullineaux P (1991) Molecular characterization of glutathione reductase cDNAs from pea (Pisum ­sativum L). Plant J 2:129–131

    Google Scholar 

  • da Silva JM, Arrabaca MC (2004) Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata: a comparison between rapidly and slowly imposed water stress. J Plant Physiol 161:551–555

    PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    PubMed  CAS  Google Scholar 

  • Davey MW, Montagu MV, Inze D, Sanmartin M, Kanellis A, Smirnoff N, Benzie IJJ, Strain JJ, Favell D, Fletcher J (2000) Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric 80:825–860

    CAS  Google Scholar 

  • Davis DG, Swanson HR (2001) Activity of stress-related enzymes in the perennial weed leafy spurge (Euphorbia esula L.). Environ Exp Bot 46:95–108

    CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281

    PubMed  CAS  Google Scholar 

  • del Río LA, Corpas FJ, Sandalio LM, Palma JM, Gómez M, Barroso JB (2002) Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J Exp Bot 53:1255–1272

    PubMed  Google Scholar 

  • Demiral T, Turkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    CAS  Google Scholar 

  • Demiral T, Türkan I (2006) Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environ Exp Bot 56:72–79

    CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova ZP, Feller U (2006) Cadmium stress in barley: growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. J Plant Nutr 29:451–468

    CAS  Google Scholar 

  • Drake BG, Gonzalez-Meler MA, Long SP (1997) More efficient plants. a consequence of rising atmospheric CO2? Annu Rev Plant Physiol 48:609–639

    CAS  Google Scholar 

  • Dubey RS (1997) Photosynthesis in plants under stressful conditions. In: Pessarakli M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 859–875

    Google Scholar 

  • Dubey RS, Singh AK (1999) Salinity induces accumulation of soluble sugars and alters the activity of sugar metabolizing enzymes in rice plants. Biol Planta 42:233–239

    CAS  Google Scholar 

  • Edwards EA, Rawsthorne S, Mullineaux PM (1990) Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L.). Planta 180:278–284

    CAS  Google Scholar 

  • Ericson J, Freudenberger M, Boege E (1999) Population dynamics, migration, and the future of the Calakmul Biosphere Reserve. American Association for the Advancement of Science, Washington

    Google Scholar 

  • Evans LT (2005) Is crop improvement still needed? J Crop Improv 14:1–7

    Google Scholar 

  • Falk J, Andersen G, Kernebeck B, Krupinska K (2003) Constitutive overexpression of barley 4-hydroxyphenylpyruvate dioxygenase in tobacco results in elevation of the vitamin E content in seeds but not in leaves. FEBS Lett 540:35–40

    PubMed  CAS  Google Scholar 

  • Fangmeier A, Jäger HJ (2001) Wirkungen erhöhter CO2-Konzentrationen. In: Guderian R (ed) Handbuch der Umweltveränderungen und Ökotoxikologie. Volume 2a: Terrestrische Ökosysteme: Immissionsökologische Grundlagen – Wirkungen auf Boden – Wirkungen auf Pflanzen. Springer, Berlin, pp 382–433

    Google Scholar 

  • Feng Z, Guo A, Feng Z (2003) Amelioration of chilling stress by triadimefon in cucumber seedlings. Plant Growth Regul 39:277–283

    CAS  Google Scholar 

  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25:327–342

    CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    PubMed  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Pereira GJG, Molina SMG, Smith RJ, Lea PJ, Azevedo RA (2002) Cadmium stress in sugar cane callus cultures: Effect on antioxidant enzymes. Plant Cell Tissue Org Cult 71:125–131

    CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    PubMed  CAS  Google Scholar 

  • Franceschi VR, Tarlyn NM (2002) L-Ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol 130:649–656

    PubMed  CAS  Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycinebetaine on Vicia faba responses to salt stress. Biol Plant 42:249–257

    CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2009a) Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ Exp Bot 65:220–231

    CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2009b) Elevated atmospheric CO2 concentration ameliorates effects of NaCl salinity on photosynthesis and leaf structure of Aster tripolium L. J Exp Bot 60:137–151

    PubMed  CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2010) Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta 231:583–594

    PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33

    PubMed  CAS  Google Scholar 

  • Gleeson D, Lelu-Walter MA, Parkinson M (2005) Overproduction of proline in transgenic hybrid larch (Larix x leptoeuropaea (Dengler)) cultures renders them tolerant to cold, salt and frost. Mol Breed 15:21–29

    CAS  Google Scholar 

  • Gleick PH (1994) Water, war, and peace in the Middle East. Environment 36:7–41

    Google Scholar 

  • Gleick PH (1998) Water in crisis: Paths to sustainable water use. Ecol Appl 8:571–579

    Google Scholar 

  • Gleick PH (2000) The World’s Water 2000–2001. The Biennial Report on Freshwater Recources. Island Press, Washington

    Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    PubMed  CAS  Google Scholar 

  • Guo YP, Zhou HF, Zhang L (2006) Photosynthetic characteristics and protective mechanisms against photooxidation during high temperature stress in two citrus species. Sci Hortic 108:260–267

    CAS  Google Scholar 

  • Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci USA 90:1629–1933

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (2000) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Hancock RD, Chudek JA, Walker PG, Pont SDA, Viola R (2008) Ascorbic acid conjugates isolated from the phloem of Cucurbitaceae. Phytochemistry 69:1850–1858

    PubMed  CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    PubMed  CAS  Google Scholar 

  • Hertwig B, Streb P, Feierabend J (1992) Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol 100:1547–1553

    PubMed  CAS  Google Scholar 

  • Hikosaka K, Onoda Y, Kinugasa T, Nagashima H, Anten NPR, Hirose T (2005) Plant responses to elevated CO2 concentration at different scales: leaf, whole plant, canopy, and population. Ecol Res 20:243–253

    CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997a) Antioxidant enzyme responses to chilling stress in differentially sensitive inbred maize lines. J Exp Bot 48:1105–1113

    CAS  Google Scholar 

  • Hodges DM, Andrews CJ, Johnson DA, Hamilton RI (1997b) Antioxidant enzyme and compound responses to chilling stress and their combining abilities in differentially sensitive maize hybrids. Crop Sci 37:857–863

    CAS  Google Scholar 

  • Hoque MA, Banu MNA, Okuma E, Amako K, Nakamura Y, Shimoishi Y, Murata Y (2007) Exogenous proline and glycinebetaine increase NaCl-induced ascorbate-glutathione cycle enzyme activities, and proline improves salt tolerance more than glycinebetaine in tobacco Bright Yellow-2 suspension cultured cells. J Plant Physiol 164:1457–1468

    PubMed  CAS  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    PubMed  CAS  Google Scholar 

  • Hossain Z, Mandal AKA, Datta SK, Biswas AK (2006) Isolation of a NaCl tolerant mutant of Chrysanthemum morifolium by gamma radiation: in vitro mutagenesis and selection by salt stress. Funct Plant Biol 33:91–101

    CAS  Google Scholar 

  • Hsiao TC, Jackson RB (1999) Interactive effects of water stress and elevated CO2 on growth, photosynthesis, and water use efficiency. In: Luo Y, Mooney HA (eds) Carbon dioxide and environmental stress. Academic, San Diego, pp 3–31

    Google Scholar 

  • Hsu YT, Kao CH (2007) Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil 291:27–37

    CAS  Google Scholar 

  • Huang J, Hijri R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    PubMed  CAS  Google Scholar 

  • Huchzermeyer B, Koyro HW (2005) Salt and drought stress effects on photosynthesis. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. CRC, Boca Raton, pp 751–777

    Google Scholar 

  • Ignatova LK, Novichkova NS, Mudrik VA, Lyubimov VY, Ivanov BN, Romanova AK (2005) Growth, photosynthesis, and metabolism of sugar beet at an early stage of exposure to elevated CO2. Russ J Plant Physiol 52:158–164

    CAS  Google Scholar 

  • Im YJ, Ji M, Lee A, Killens R, Grunden AM, Boss WF (2009) Expression of  Pyrococcus furiosus  superoxide reductase in Arabidopsis enhances heat tolerance. Plant Physiol 151:893–904

    PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate change 2007. The physical science basis. contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, NY

    Google Scholar 

  • Ishikawa T, Dowdle I, Smirnoff N (2006) Progress in manipulating ascorbic acid biosynthesis and accumulation in plants. Physiol Plant 126:343–355

    CAS  Google Scholar 

  • Jagendorf AT, Takabe T (2001) Inducers of glycinebetaine synthesis in barley. Plant Physiol 127:1827–1835

    PubMed  CAS  Google Scholar 

  • Jaleel CA, Manivannan P, Kishorekumar A, Sankar B, Gopi R, Somasundaram R, Panneerselvam R (2007a) Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit. Colloids Surf B Biointerfaces 59:150–157

    PubMed  CAS  Google Scholar 

  • Jaleel CA, Sankar B, Murali PV, Gomathinayagam M, Lakshmanan GMA, Panneerselvam R (2008) Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloids Surf B Biointerfaces 62(1):105–111

    PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    PubMed  CAS  Google Scholar 

  • John R, Ahmad P, Gadgil K, Sharma S (2009) Cadmium and lead-induced changes in lipid peroxidation, antioxidative enzymes and metal accumulation in Brassica juncea L. at three different growth stages. Arch Agron Soil Sci 55:395–405

    CAS  Google Scholar 

  • Kamauchi S, Nakatani H, Nakano C, Urade R (2005) Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J 272:3461–3476

    PubMed  CAS  Google Scholar 

  • Kant S, Kant P, Raveh E, Barak S (2006) Evidence that differential gene expression between the halophyte, Thellungiella halophila, and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in ­T. halophila. Plant Cell Environ 29:1220–1234

    PubMed  CAS  Google Scholar 

  • Kavi Kishor PB, Sangam S, Amrutha RN, Laxmi PS, Naidu KR, Rao KRSS, Reddy KJ, Theriappan P, Sreenivasulu N (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438

    Google Scholar 

  • Khan N, Samiullah A, Singh S, Nazar R (2007) Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. J Agron Crop Sci 193:435–444

    CAS  Google Scholar 

  • Kiani SP, Maury P, Sarrafi A, Grieu P (2008) QTL ­analysis of chlorophyll fluorescence parameters in ­sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175:565–573

    Google Scholar 

  • Kim YH, Kim CY, Song WK, Park DS, Kwon SY, Lee HS, Bang JW, Kwak SS (2008) Overexpression of sweetpotato swpa4 peroxidase results in increased hydrogen peroxide production and enhances stress ­tolerance in tobacco. Planta 227:867–881

    PubMed  CAS  Google Scholar 

  • Kirschbaum MUF (2004) Direct and indirect climate change effects on photosynthesis and transpiration. Plant Biol 6:242–253

    PubMed  CAS  Google Scholar 

  • Koca M, Bor M, Ozdemir F, Turkan I (2007) The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot 60:344–351

    CAS  Google Scholar 

  • Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of  Arabidopsis thaliana  to stress combination. J Biol Chem 283:34197–34203

    PubMed  CAS  Google Scholar 

  • Koyro HW (2006) Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environ Exp Bot 56:136–146

    CAS  Google Scholar 

  • Kreeb KH (1996) Salzstreß. In: Brunold C, Rüegsegger A, Brändle R (eds) Streß bei Pflanzen. UTB, Bern, pp 149–172

    Google Scholar 

  • Kusaka M, Ohta M, Fujimura T (2005) Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiol Plant 125:474–489

    CAS  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav 2:250–251

    Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    PubMed  CAS  Google Scholar 

  • Larcher W (2001) Ökophysiologie der Pflanzen, 5th edn. Eugen Ulmer-Verlag, Stuttgart

    Google Scholar 

  • Lederer B, Böger P (2003) Antioxidative responses of tobacco expressing a bacterial glutathione reductase. Z Naturforsch 58:843–849

    CAS  Google Scholar 

  • Lee G, Carrow RN, Duncan RR, Eiteman MA, Rieger MW (2008) Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum. Environ Exp Bot 63:19–27

    CAS  Google Scholar 

  • Lee YP, Baek KH, Lee HS, Kwak SS, Bang JW, Kwon SY (2010) Tobacco seeds simultaneously over-expressing Cu/Zn-superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J Exp Bot 61:2499–2506

    PubMed  CAS  Google Scholar 

  • Li JH, Dugas WA, Hymus GJ, Johnson DP, Hinkle CR, Drake BG, Hungate BA (2003) Direct and indirect effects of elevated CO2 on transpiration from Quercus myrtifolia in a scrub-oak ecosystem. Glob Change Biol 9:96–105

    Google Scholar 

  • Liu X, Duan D, Li W, Tadano T, Khan A (2006) A comparative study on responses of growth and solute composition in halophytes Suaeda salsa and Limonium bicolor to salinity. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Tasks for vegetation science, vol 40. Springer, Dordrecht, pp 135–143

    Google Scholar 

  • Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: Growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802

    PubMed  CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    PubMed  CAS  Google Scholar 

  • Lopez-Huertas E, Charlton WL, Johnson B, Graham IA, Baker A (2000) Stress induces peroxisome biogenesis genes. EMBO J 19:6770–6777

    PubMed  CAS  Google Scholar 

  • Lowlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Google Scholar 

  • Lu Z, Liu D, Liu S (2007) Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic. Arabidopsis 26:1909–1917

    CAS  Google Scholar 

  • Maddison J, Lyons T, Plochl M, Barnes J (2002) Hydroponically cultivated radish fed 1-galactono-1,4-lactone exhibit increased tolerance to ozone. Planta 214:383–391

    PubMed  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses an over view. Arch Biochem Biophys 444:139–158

    PubMed  CAS  Google Scholar 

  • Mäkelä P, Kärkkäinen J, Somersalo S (2000) Effect of glycinebetaine on chloroplast ultrastructure, chlorophyll and protein content, and RUBISCO activities in tomato grown under drought or salinity. Biol Plant 43:471–475

    Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Changes in antioxidant metabolism of Vigna unguiculata (L.) Walp. By propiconazole under water deficit stress. Colloids Surf B Biointerfaces 57:69–74

    PubMed  CAS  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43:491–500

    CAS  Google Scholar 

  • Mapson LW, Goddard DR (1951) The reduction of glutathione by plant tissues. Biochem J 49:592–601

    PubMed  CAS  Google Scholar 

  • Marabottini R, Schraml C, Paolacci AR, Sorgona A, Raschi A, Rennenberg H, Badiani M (2001) Foliar antioxidant status of adult Mediterranean oak species (Quercus ilex L. and Q. pubescens Willd.) exposed to permanent CO2-enrichment and to seasonal water stress. Environ Pollut 113:413–423

    Google Scholar 

  • Marchi S, Tognetti R, Vaccari FP, Lanini M, Kaligarič M, Miglietta F, Raschi A (2004) Physiological and morphological responses of grassland species to elevated atmospheric CO2 concentrations in FACE-systems and natural CO2 springs. Funct Plant Biol 31:181–194

    CAS  Google Scholar 

  • Martinez JP, Silva H, Ledent JF, Pinto M (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). Eur J Agron 26:30–38

    Google Scholar 

  • Massacci A, Nabiev SM, Pietrosanti L, Nematov SK, Chernikova TN, Thor K, Leipner J (2008) Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging. Plant Physiol Biochem 46:189–195

    PubMed  CAS  Google Scholar 

  • Megdiche W, Ben Amor N, Debez A, Hessini K, Ksouri R, Zuily-Fodil Y, Abdelly C (2007) Salt tolerance of the annual halophyte Cakile maritima as affected by the provenance and the developmental stage. Acta Physiol Plant 29:375–384

    CAS  Google Scholar 

  • Meldrum NU, Tarr HLA (1935) The reduction of glutathione by the Warburg-Christian system. Biochem J 29:108–115

    PubMed  CAS  Google Scholar 

  • Messedi D, Slama I, Labidi N, Ghnaya T, Savouré A, Soltani A, Abdelly C (2006) Proline metabolism in Sesuvium portulacastrum under salinity and drought. In: Öztürk M, Waisel Y, Khan MA, Görk G (eds) Biosaline agriculture and salinity tolerance in plants. Birkhäuser, Basel, pp 65–72

    Google Scholar 

  • Meyer A, Hansen DB, Gomes CSG, Hobley TJ, Thomas ORT, Franzreb M (2005) Demonstration of a strategy for product purification by high-gradient magnetic fishing: recovery of superoxide dismutase from unconditioned whey. Biotechnol Prog 21:244–254

    PubMed  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govidarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. J Plant Physiol Biochem 44:25–37

    CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    PubMed  CAS  Google Scholar 

  • Mittler R, Poulos TL (2005) Ascorbate peroxidase. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, pp 87–100

    Google Scholar 

  • Mittler R, Hallak-Herr E, Orvar BL, Camp WV, Willekens H, Inzé D, Ellis BE (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyper responsive to pathogen infection. Proc Natl Acad Sci USA 96:14165–14170

    PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    PubMed  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    PubMed  CAS  Google Scholar 

  • Moench M (2002) Water and the potential for social instability: livelihoods, migration and the building of society. Nat Resour Forum 26:195–204

    Google Scholar 

  • Mohanty P, Hayashi H, Papageorgiou GC, Murata N (1993) Stabilization of the Mn-cluster of the oxygen-evolving complex by glycinebetaine. Biochim Biophys Acta 1144:92–96

    CAS  Google Scholar 

  • Monneveux P, Sánchez C, Beck D, Edmeades GO (2006) Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci 46:180–191

    Google Scholar 

  • Morgan JA, Lecain DR, Mosier AR, Milchunas DG (2001) Elevated CO2 enhances water relations and productivity and affects gas exchange in C3 and C4 grasses of the Colorado shortgrass steppe. Glob Change Biol 7:451–466

    Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    PubMed  CAS  Google Scholar 

  • Munne-Bosch S, Algere L (2003) Drought induced changes in the redox state of α-tocopherol, ascorbate and the diterpene carnosic acid in the chloroplasts of labiatae species differing in carnosic acid contents. Plant Physiol 131:1816–1825

    PubMed  CAS  Google Scholar 

  • Murata N, Mohanthy PS, Hayashi H, Papageorgiou GC (1992) Glycinebetaine stabilizes the association of extrinsic proteins with the photosynthetic oxygen involving PS-II complex against the inhibitory effects of NaCl. FEBS Lett 296:187–189

    PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K (2003) Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol 44:541–548

    PubMed  CAS  Google Scholar 

  • Nayyar H, Gupta D (2006) Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. Environ Exp Bot 58:106–113

    CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    PubMed  CAS  Google Scholar 

  • Nordberg J, Arner ESJ (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    PubMed  CAS  Google Scholar 

  • Oksanen E, Riikonen J, Kaakinen S, Holopainen T, Vapaavuori E (2005) Structural characteristics and chemical composition of birch (Betula pendula) leaves are modified by increasing CO2 and ozone. Glob Change Biol 11:732–748

    Google Scholar 

  • Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424:1037–1042

    PubMed  CAS  Google Scholar 

  • Pan XY, Wang GX, Yang HM, Wei XP (2003) Effect of water deficits on within-plot variability in growth and grain yield of spring wheat in north west china. Field Crop Res 80:195–205

    Google Scholar 

  • Panchuk II, Volkov RA, Schoffl F (2002) Heat stress and heat shock transcription factor dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol 129:838–853

    PubMed  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349

    PubMed  CAS  Google Scholar 

  • Park EJ, Jeknic Z, Chen THH (2006) Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol 47:706–714

    PubMed  Google Scholar 

  • Pastori GM, Foyer CH (2002) Common components, networks, and pathways of cross- tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468

    PubMed  CAS  Google Scholar 

  • Pastori GM, Mullineaux PM, Foyer CH (2000) Post transcriptional regulation prevents accumulation of glutathione reductase protein and activity in the bundle sheath cells of maize. Implication on the sensitivity of maize to temperatures. Plant Physiol 122:667–675

    PubMed  CAS  Google Scholar 

  • Penna S (2003) Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci 8:355–357

    PubMed  CAS  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Muňoz-Rueda A, Navari-Izzo F, Mena-Petite A (2009) The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2. Physiol Plant 135:29–42

    PubMed  Google Scholar 

  • Pérez-López U, Robredo A, Lacuesta M, Sgherri C, Muňoz-Rueda A, Mena-Petite A (2010) Atmospheric CO2 concentration influences the contributions of osmolyte accumulation and cell wall elasticity to salt tolerance in barley cultivars. J Plant Physiol 167:15–22

    PubMed  Google Scholar 

  • Petropoulos SA, Daferera D, Polissiou MG, Passam HC (2008) The effect of water deficit stress on the growth, yield and composition of essential oils of parsley. Sci Hortic 115:393–397

    CAS  Google Scholar 

  • Petrusa LM, Winicov I (1997) Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. Plant Physiol Biochem 35:303–310

    CAS  Google Scholar 

  • Pilon-Smith EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: Effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460

    Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34:187–203

    PubMed  CAS  Google Scholar 

  • Polle A (1996) Protection from oxidative stress in trees as affected by elevated CO2 and environmental stress. In: Koch G, Mooney H (eds) Terrestrial ecosystem response to elevated CO2. Academic, New York, pp 299–315

    Google Scholar 

  • Polle A, Eiblmeier M, Sheppard L, Murray M (1997) Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant Cell Environ 20:1317–1321

    CAS  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide ­dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    PubMed  CAS  Google Scholar 

  • Rao MV, Hale BA, Ormrod DP (1995) Amelioration of ozone-induced oxidative damage in wheat plants grown under high carbon dioxide. Plant Physiol 109:421–432

    PubMed  CAS  Google Scholar 

  • Raven EL (2003) Understanding functional diversity and substrate specificity in haem peroxidases; what can we learn from ascorbate peroxidase? Nat Prod Rep 20:367–381

    PubMed  CAS  Google Scholar 

  • Raza SH, Athar HR, Ashraf M, Hameed A (2007) Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot 60:368–376

    CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Rhee HJ, Kim EJ, Lee JK (2007) Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 11:685–703

    PubMed  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    CAS  Google Scholar 

  • Rhodes D, Nadolska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. In: Läuchli A, Lüttge U (eds) Salinity: environment – plants – molecules. Kluwer, Dordrecht, pp 181–204

    Google Scholar 

  • Robredo A, Pérez-López U, de la Maza HS, González-Moro B, Lacuesta M, Mena-Petite A, Muňos-Rueda A (2007) Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environ Exp Bot 59:252–263

    CAS  Google Scholar 

  • Rodriguez P, Torrecillas A, Morales MA, Ortuno MF, Blanco MJS (2005) Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimus plants. Environ Exp Bot 53:113–123

    CAS  Google Scholar 

  • Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Cornic G, Dermody O, Dohleman FG, Heaton EA, Mahoney J, Zhu XG, Delucia EH, Ort DR, Long SP (2004) Leaf photosynthesis and carbohydrate dynamics of soybeans grown throughout their life-cycle under Free-Air Carbon Dioxide Enrichment. Plant Cell Environ 27:449–458

    CAS  Google Scholar 

  • Romero-Puertas MC, Corpas FJ, Sandalio LM, Leterrier M, Rodríguez-Serrano M, del Río LA, Palma JM (2006) Glutathione reductase from pea leaves: response to abiotic stress and characterization of the peroxisomal isozyme. New Phytol 170:43–52

    PubMed  CAS  Google Scholar 

  • Rozema J (1993) Plant responses to atmospheric carbon dioxide enrichment: Interactions with some soil and atmospheric conditions. Vegetatio 104(105):173–190

    Google Scholar 

  • Russell BL, Rathinasabapathi B, Hanson AD (1998) Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiol 116:859–865

    PubMed  CAS  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2004) A trip to the ER: Coping with stress. Trends Cell Biol 14:20–28

    PubMed  CAS  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Sairam RK, Srivastava GC, Agarwal S, Meena RC (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    CAS  Google Scholar 

  • Samarah NH (2005) Effects of drought stress on growth and yield of barley. Agron Sustain Dev 25:145–149

    Google Scholar 

  • Sanità di Toppi LS, Marabottini R, Badiani M, Raschi A (2002) Antioxidant status in herbaceous plants growing under elevated CO2 in mini-FACE rings. J Plant Physiol 159:1005–1013

    Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007a) Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids Surf B Biointerfaces 60:229–235

    PubMed  CAS  Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundaram R, Panneerselvam R (2007b) Drought induced biochemical modifications and praline metabolism in Abelmoschus esculentus (L.) Moench. Acta Bot Croat 66:43–56

    CAS  Google Scholar 

  • Savoure A, Thorin D, Davey M et al (1999) NaCl and CuSO4 treatments trigger distinct oxidative defense mechanisms in Nicotiana plumbaginifolia. Plant Cell Environ 22:387–396

    CAS  Google Scholar 

  • Scandalios JG, Acevedo A, Ruzsa S (2000) Catalase gene expression in response to chronic high temperature stress in maize. Plant Sci 156:103–110

    PubMed  CAS  Google Scholar 

  • Schulze ED, Beck E, Müller-Hohenstein K (2002) Pflanzenökologie. Spektrum Akademischer, Heidelberg

    Google Scholar 

  • Schwanz P, Polle A (2001) Differential stress responses of antioxidative systems to drought in pendunculate oak (Quercus robur) and maritime pine (Pinus pinaster) grown under high CO2 concentrations. J Exp Bot 52:133–143

    PubMed  CAS  Google Scholar 

  • Schwanz P, Picon C, Vivin P, Dreyer D, Guehl J, Polle A (1996) Responses of antioxidative systems to drought stress in pendunculate oak and maritime pine as modulated by elevated CO2. Plant Physiol 110:393–402

    PubMed  CAS  Google Scholar 

  • Selote DS, Khanna-Chopra R (2004) Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol Plant 121:462–471

    CAS  Google Scholar 

  • Selote DS, Khanna-Chopra R (2006) Drought acclimation confers oxidative stress tolerance by inducing co-ordinated antioxidant defense at cellular and subcellular level in leaves of wheat seedlings Physiol. Plant 127:494–506

    CAS  Google Scholar 

  • Sgherri CLM, Salvateci P, Menconi M, Raschi A, Navari-Izzo F (2000) Interaction between drought and elevated CO2 in the response of alfalfa plants to oxidative stress. J Plant Physiol 156:360–366

    CAS  Google Scholar 

  • Shah K, Ritambhara GK, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    CAS  Google Scholar 

  • Sharma P, Dubey RS (2005) Drought induced oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46:209–221

    CAS  Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1980) Metabolism of hydrogen peroxide in Euglena gracilis  Z by L-ascorbic acid peroxidase. Biochem J 186:377–380

    PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    PubMed  CAS  Google Scholar 

  • Shim IS, Momose Y, Yamamoto A, Kim DW, Usui K (2003) Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul 39:285–292

    CAS  Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul 39:137–141

    CAS  Google Scholar 

  • Singh BG, Verma DPS (2001) Glutathione: An antioxidant to withstand oxidative stress in transgenic lines of tobacco. Ind J Plant Physiol 6:229–232

    CAS  Google Scholar 

  • Slama I, Ghnaya T, Hssini K, Messedi D, Savouré A, Abdelly C (2007a) Comparative study of mannitol and PE osmotic stress effects on growth, and solute accumulation in Sesuvium portulacastrum. Environ Exp Bot 61:10–17

    CAS  Google Scholar 

  • Slama I, Ghnaya T, Messedi D, Hssini K, Labidi N, Savoure A, Abdelly C (2007b) Effect of sodium chloride on the response of the halophyte species Sesuvium portulacastrum grown in mannitol-induced water stress. J Plant Res 120:291–299

    PubMed  CAS  Google Scholar 

  • Slama I, Ghnaya T, Savouré A, Abdelly C (2008) Combined effects of long-term salinity and soil drying on growth water relations, nutrient status and proline accumulation of Sesuvium portulacastrum. C R Biol 331:442–451

    PubMed  CAS  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phyotochemistry 28:1057–1060

    CAS  Google Scholar 

  • Srivalli B, Chinnusamy V, Khanna-Chopra R (2003) Antioxidant defense in response to abiotic stresses in plants. J Plant Biol 30:121–139

    Google Scholar 

  • Stevens RG, Creissen GP, Mullineaux PM (2000) Characterization of pea cytosolic glutathione reductase expressed in transgenic tobacco. Planta 211:537–545

    PubMed  CAS  Google Scholar 

  • Streb P, Tel-Or E, Feierabend J (1997) Light stress effects and antioxidative protection in two desert plants. Funct Ecol 11:416–424

    Google Scholar 

  • Stroinski A, Kubis J, Zielezinska M (1999) Effect of ­cadmium on glutathione reductase in potato tubers. Acta Physiol Plant 21:201–207

    CAS  Google Scholar 

  • Takagi M, El-Shemy H, Sasaki S, Toyama S, Kanai S, Saneoka H, Fujita K (2009) Elevated CO2 concentration alleviates salinity stress in tomato plant. Acta Agric Scand B Soil Plant 59:87–96

    CAS  Google Scholar 

  • Tan Y, Liang Z, Shao H, Du F (2006) Effect of water deficits on the activity of anti-oxidative enzymes and osmoregulation among three different genotypes of Radix Astragali at seeding stage. Colloids Surf B Biointerfaces 49:60–65

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    CAS  Google Scholar 

  • Tassoni A, Franceschetti M, Bagni N (2010) Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem 46:607–613

    Google Scholar 

  • Tewari RK, Kumar P, Sharma PN (2006) Antioxidant responses to enhanced generation of superoxide anion radical and hydrogen peroxide in the copper-stressed mulberry plants. Planta 223:1145–1153

    PubMed  CAS  Google Scholar 

  • Tsai YC, Hong CY, Liu LF, Kao CH (2005) Expression of ascorbate peroxidase and glutathione reductase in roots of rice seedlings in response to NaCl and H2O2. J Plant Physiol 162:291–299

    PubMed  CAS  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in  Arabidopsis thaliana seedlings. Plant Cell 47:346–354

    CAS  Google Scholar 

  • Türkan I, Demiral T (2009) Recent developments in understanding salinity tolerance. Environ Exp Bot 67:2–9

    Google Scholar 

  • Turkan I, Bor M, Ozdemir F, Koca H (2005) Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant P. acutifolius Gray and drought sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Sci 168:223–231

    Google Scholar 

  • Urade R (2007) Cellular response to unfolded proteins in the endoplasmic reticulum of plants. FEBS J 274:1152–1171

    PubMed  CAS  Google Scholar 

  • Urban O (2003) Physiological impacts of elevated CO2 concentration ranging from molecular to whole plant responses. Photosynthetica 41:9–20

    CAS  Google Scholar 

  • Vaidyanathan H, Sivakumar P, Chakrabarty R, Thomas G (2003) Scavenging of reactive oxygen species in NaCl stressed rice (Oryza sativa) differential response in salt tolerant and sensitive varieties. Plant Sci 165:1411–1418

    CAS  Google Scholar 

  • Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35:753–759

    PubMed  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    CAS  Google Scholar 

  • Vernon DM, Bohnert HJ (1992) A novel methyltransferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J 11:2077–2085

    PubMed  CAS  Google Scholar 

  • Vernon DM, Taraczynski MC, Jensen RG, Bohnert HJ (1993) Cyclitol production in transgenic tobacco. Plant J 4:199–205

    CAS  Google Scholar 

  • Vertovec M, Sakcali S, Ozturk M, Salleo S, Giacomich P, Feoli E, Nardini A (2001) Diagnosing plant water status as a tool for quantifying water stress on a regional basis in Mediterranean drylands. Ann For Sci 58:113–125

    Google Scholar 

  • Vinocur B, Altman A (2005) Cellular basis of salinity tolerance in plants. Environ Exp Bot 52:113–122

    Google Scholar 

  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Photochem 57:701–710

    CAS  Google Scholar 

  • Vranova E, Inze D, Van Brensegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    PubMed  CAS  Google Scholar 

  • Waditee R, Bhuiyan NH, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycine betaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102:1318–1323

    PubMed  CAS  Google Scholar 

  • Walker MA, McKersie BD (1993) Role of ascorbate-­glutathione antioxidant system in chilling resistance of tomato. J Plant Physiol 141:234–239

    CAS  Google Scholar 

  • Walters DR (2003a) Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol 159:109–115

    CAS  Google Scholar 

  • Walters DR (2003b) Polyamines and plant disease. Phytochem 64:97–107

    CAS  Google Scholar 

  • Wang HY, Huang YC, Chen SF, Yeh KW (2003a) Molecular cloning, characterization and gene expression of a water deficiency and chilling induced proteinase inhibitor I gene family from sweet potato (Ipomoea batatas Lam.) leaves. Plant Sci 165:191–203

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003b) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    PubMed  CAS  Google Scholar 

  • Wang Y, Ying Y, Chen J, Wang XC (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167:671–677

    CAS  Google Scholar 

  • Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    PubMed  CAS  Google Scholar 

  • Wu QS, Zou YN, Xia RX (2006) Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur Soil Biol 42:166–172

    CAS  Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2-implications for water-limited environments. Plant Cell Environ 25:319–331

    PubMed  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925

    PubMed  CAS  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC, Boca Raton, pp 81–109

    Google Scholar 

  • Yang Y, Han C, Liu Q, Lin B, Wang J (2008) Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol Plant 30:433–440

    CAS  Google Scholar 

  • Youn HD, Kim EJ, Hah YC, Kang SO (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318:889–896

    PubMed  CAS  Google Scholar 

  • Zhang X, Schmidt RE (2000) Hormone containing products impact on antioxidant status of tall fescue and creeping bent grass subjected to drought. Crop Sci 40:1344–1349

    CAS  Google Scholar 

  • Zhang M, Duan L, Tian X, He Z, Li J, Wang B, Li Z (2007) Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system. J Plant Physiol 164:709–717

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Jürgen Franz, Mr. Wolfgang Stein, Mr. Gerhard Mayer, Mrs. Angelika Bölke, Prof. Dr. Edwin Pahlich, PD Dr. Christian Zörb, Mrs. Anneliese Weber (Giessen University), and Mr. Steffen Pahlich (Zürich University) for technical assistance and scientific advice regarding the experiments with Aster tripolium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Werner Koyro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koyro, HW., Ahmad, P., Geissler, N. (2012). Abiotic Stress Responses in Plants: An Overview. In: Ahmad, P., Prasad, M. (eds) Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0815-4_1

Download citation

Publish with us

Policies and ethics