Skip to main content

Abstract

Saline water occupies 71% of the Earth area. It is thought that even a quarter of the whole pedosphere is affected by salts (Glenn and O’Leary, 1985), amounting to 950 x 106 ha (Flowers and Yeo, 1995), while 23 % of the 1.5 x 109 ha cultivated land is considered as saline (Rhoades and Loveday, 1990). Furthermore, about a half of all the existing irrigation systems of the world (3 x 108 ha) are under the influence of secondary salinization, alkalization and waterlogging, and about 10 x 106 ha of irrigated land are abandoned each year because of the unfavorable effects of secondary salinization and alkalization (Szabolcs, 1987). Such unfavorable soils of low fertility are generally unsuitable for agricultural production, causing unacceptable yield reduction, and in some cases, being far from any reasonable utilization. Because of the increased need for food production and increasing distribution of soils affected by salinity, research on plant responses to salinity has rapidly expanded in recent decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdalla, M.H., Vuong, T.D. and Harper, J.E. (1998). Genotypic differences in dinitrogen fixation response to NaCl stress in intact and grafted soybean. Crop Sci. 38, 72–77.

    Google Scholar 

  • Aharon, G.S., Apse, M.P., Duan, S.L., Hua, X.J. and Blumwald, E. (2003) Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant Soil. 253, 245–256.

    Article  CAS  Google Scholar 

  • Aldesuquy, H.S. and Ibrahim, A.H. (2002). Water relations, abscisic acid and yield of wheat plants in relation to the interactive effects of seawater and growth bioregulators. Agrochimica. 46, 190–201.

    CAS  Google Scholar 

  • Al-Khatib, M., Mc Neilly, T. and Collins, J.C. (1993). The potential of selection and breeding for improved salt tolerance in lucerne (Medicago saltiva L.). Euphytica. 65: 43–51.

    Article  Google Scholar 

  • Alsaeedi, A.H. and Elprince, A.M. (1999). Leaching requirement conceptual models for reactive salt. Plant Soil. 208, 73–86.

    Article  CAS  Google Scholar 

  • Altman, A. (2003) From plant tissue to the biotechnology: scientific revolutions, abiotic stress tolerance, and forestry. In Vitro Cell. Develop. Biol. – Plant. 39, 75–84.

    CAS  Google Scholar 

  • Amtmann, A., Fisher, M., Marsh, E.L., Stefanovic, A., Sanders, D. and Schachtman, D.P. (2001). The wheat cDNA LCT1 generates hypersensitivity to sodium in salt sensitive yeast strain. Plant Physiology. 126, 1061–1071.

    Article  PubMed  CAS  Google Scholar 

  • Amtmann, A. and Sanders, D. (1999). Mechanisms of Na+ uptake in plant cells. Adv. Bot. Res. 29, 75112.

    Google Scholar 

  • Amzallag, G.N., Lerner, H.R. and Poljakoff-Mayber, A. (1990). Induction of increased salt tolerance in Sorghum bicolor by NaCl pretreatment. J Exp. Bot. 41, 29–34.

    CAS  Google Scholar 

  • An, P., Inanaga, S., Cohen, Y., Kafkafi, U. and Sugimoto, Y. (2002). Salt tolerance in two soybean cultivars. J. Plant Nutr. 25, 407–423.

    Article  CAS  Google Scholar 

  • Apse, M.P. and Blumwald, E. (2002). Engineering salt tolerance in plants. Curr. Opin. Biotech. 13, 146–150.

    PubMed  CAS  Google Scholar 

  • Asch, F., Dingkuhn, M., Dorffling, K. and Miezan, K. (2000). Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica. 113, 109–118.

    Article  Google Scholar 

  • Asch, F., Dorffling, K. and Dingkuhn, M. (1995). Response of rice varieties to soil salinity and air humidity - a possible involvement of root-borne ABA. Plant Soil. 177, 11–19.

    Article  CAS  Google Scholar 

  • Ashraf, M. and Ahmad, S. (2000). Influence of sodium chloride on ion accumulation, yield components and fiber characteristics in salt tolerant and salt sensitive lines of cotton (Gossypium hirsutum L.). Field Crops Res. 66, 115–127.

    Article  Google Scholar 

  • Ashraf, M., Karim, F. and Rasul, E. (2002). Interactive effects of gibberellic acid (Ga(3)) and salt stress on growth, ion accumulation and photosynthetic capacity of two spring wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Plant Growth Regul. 36, 49–59.

    Article  CAS  Google Scholar 

  • Aslam, Z., Jeschke, W.D., Barrett-Lennard, E.G., Setter, T.L., Watkin, E. and Greenway, H. (1986). Effects of external NaCl on the growth of Atriplex amnicola and the ion relations and carbohydrate status of the leaves. Plant Cell Environ. 9, 571–580.

    CAS  Google Scholar 

  • Avsiankretchmer, O., Eshdat, Y., Guetadahan, Y. and Benhayyim, G. (1999). Regulation of stress induced phospholipid hydroperoxide glutathione-peroxidase expression in citrus. Planta. 209, 469–477.

    CAS  Google Scholar 

  • Ball, M.C. (1988). Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina. I. Water use in relation to growth, carbon partitioning, and salt balance. Aust. J. Plant Physiol. 15, 447–464.

    Google Scholar 

  • Banzai, T., Hershkovits, G., Katcoff, D.J., Hanagata, N., Dubinsky, Z. and Karube, I. (2002). Identification and characterization of messenger RNA transcripts differentially expressed in response to high salinity by means of differential display in the mangrove Bruguiera gymnorhiza. Plant Sci. 162, 499–505.

    Article  CAS  Google Scholar 

  • Barkla, B.J. and Pantoja, O. (1996). Physiology of ion transport across the tonoplast of higher plants. Annu. Rev. Plant Physiol. Mol. Biol. 47, 159–184.

    Article  CAS  Google Scholar 

  • Barkla, B.J., Veraestrella, R., Camachoemiterio, J. and Pantoja, O. (2002). Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Func. Plant Biol. 29, 1017–1024.

    CAS  Google Scholar 

  • Barkla, B.J., Veraestrella, R., Maldonadogama, M. and Pantoja, O. (1999). Abscisic acid induction of vacuolar H+-ATPase activity in Mesembryanthemum crystallinum is developmentally regulated. Plant Physiol. 120, 811–819.

    Article  PubMed  CAS  Google Scholar 

  • Bayuelo-Jimenez, J.S., Debouck, D.G. and Lynch, J.P. (2002). Salinity tolerance in Phaseolus species during early vegetative growth. Crop Sci. 42, 2184–2192.

    Google Scholar 

  • Bayuelo-Jimenez, J.S., Debouck, D.G. and Lynch, J.P. (2003). Growth, gas exchange, water relations and ion composition of Phaseolus species grown under saline conditions. Field Crops Res. 80, 207–222.

    Google Scholar 

  • Bernard, T., Pocard, J.A., Perroud, B. and Le Rudulier, D. (1986). Variations in the response of salt-stressed Rhizobium strains to betaines. Arch. Microbiol. 143, 359–364.

    Article  CAS  Google Scholar 

  • Berthomieu, P., Conejero, G., Nublat, A., Brackenbury, W.J., Lambert, C., Savio, C., et al. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. 22, 2004–2014.

    Article  PubMed  CAS  Google Scholar 

  • Bhandal, I.S. and Malik, C.P. (1988). Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Rev. Cytol. 110, 205–254.

    CAS  Google Scholar 

  • Binzel, M.L., Hess, F.D., Bressan, R.A., and Hassegawa, P.M. (1989). Mechanisms of adaptation to salinity in cultured glycophyte cells. In J.H. Cherry (Eds.), Biochemical and Physiological Mechanisms Associated with Environmental Stress Tolerance (pp. 139–157). Berlin: Springer-Verlag.

    Google Scholar 

  • Blaha, G., Stelzl, U., Spahn, C.M.T., Agrawal, R.K., Frank, J. and Nierhaus, K.H. (2000). Preparation of functional ribosomal complex and effects of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods Enzymol. 317, 292–309.

    PubMed  CAS  Google Scholar 

  • Blits, K.C. and Gallagher, J.L. (1990). Salinity tolerance of Kosteletzkya virginica: I. Shoot growth, ion and water relations. Plant Cell Environ. 13, 409–418.

    CAS  Google Scholar 

  • Blumwald, E., Aharon, G.S. and Apse, M.P. (2000). Sodium transport in plant cells. Biochim. Biophys. Acta. 1465, 140–151.

    PubMed  CAS  Google Scholar 

  • Bohnert, H.J. and Jensen, R.G. (1996). Metabolic engineering for increased salt tolerance - the next step. Aust. J. Plant Physiol. 23, 661–667.

    Google Scholar 

  • Bohnert, H.J., Nelson, D.E. and Jensen R.G. (1995). Adaptations to environmental stresses. Plant Cell. 7, 1099–1111.

    Article  PubMed  CAS  Google Scholar 

  • Bohnert, H.J. and Shen, B. (1999). Transformation and compatible solutes. Scient. Hortic. 78, 237260.

    CAS  Google Scholar 

  • Borsani, O., Valpuesta, V. and Botella, M.A. (2003). Developing salt tolerant plants in a new century: a molecular biology approach. Plant Cell Tissue Organ Cult. 73, 101–105.

    Article  CAS  Google Scholar 

  • BOSTID report (1990). Saline agriculture - Salt-tolerant plants for developing countries. In J.R. Goodin, E. Epstein, C.M. Mc Kell and J.W. O'Leary (Eds.), Report of a Panel of the Board on Science and Technology for International Development, Office of International Affairs, National Research Council. Washington: National Academy Press

    Google Scholar 

  • Bradley, P.M. and Morris, J.T. (1991). Relative importance of ion exclusion, secretion and accumulation in Spartina alerniflora Loisel. J. Exp. Bot. 42, 1525–1532.

    CAS  Google Scholar 

  • Braun, Y., Hassidim, M., Lener, H.R. and Reinhold, L. (1986). Studies on H+-translocating ATPases in plants of varying resistance to salinity. Plant Physiol. 81, 1050–1056.

    CAS  PubMed  Google Scholar 

  • Bray, E.A. (1997). Plant responses to water deficit. Trends Plant Sci. 2, 48–54.

    Article  Google Scholar 

  • Breckle, S.W., Freitas, H. and Reimann, C. (1990). Sampling Atriplex bladders: a comparison of methods. Plant Cell Environ. 13, 871–873.

    Google Scholar 

  • Bresler, E., Mc Neal, B.L. and Carter, D.L. (1982). Saline and Sodic Soils. Principles, Dynamics, Modeling. Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Bressan, R.A., Hasegawa, P.M. and Pardo, J.M. (1998). Plants use calcium to resolve salt stress. Trends Plant Sci. 3, 411–412.

    Article  Google Scholar 

  • Brownell, P.F. and Crossland, C.J. (1972). The requirement for sodium as a micronutrient by species having the C4 dicarboxylic photosynthetic pathway. Plant Physiol. 49, 794–797.

    CAS  PubMed  Google Scholar 

  • Campbell, S.A. and Close, T.J. (1997). Dehydrins: genes, proteins, and association with phenotypictraits. New Phytol. 137, 61–74.

    Article  CAS  Google Scholar 

  • Carter, D.L. (1975). Problems of salinity in agriculture. In A. Poljakoff-Mayber and J. Gale (Eds.), Plants in Saline Environment (pp. 25–35). Berlin: Springer-Verlag.

    Google Scholar 

  • Casas, A.M., Nelson, D.E., Raghothama, K.G., D'Urzo M.P., Singh, N.K., Bressan, R.A., et al. (1992). Expression of osmotin-like genes in the halophyte Atriplex nummularia L. Plant Physiol. 99, 329–337.

    CAS  PubMed  Google Scholar 

  • Cattivelli, L., Baldi, P., Crosatti, C., Difonzo, N., Faccioli, P., Grossi, M., et al. (2002). Chromosome regions and stress related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol. 48, 649–665.

    Article  CAS  Google Scholar 

  • Chapman, V.J. (1960). Salt Marshes and Salt Deserts of the World. London: Leonard Hill Books Ltd.

    Google Scholar 

  • Chen, C.C.S., and Plant, A.L. (1999). Salt induced protein synthesis in tomato roots - the role of ABA. J. Exp. Bot. 50, 677–687.

    Article  CAS  Google Scholar 

  • Chen, X., Kanokporn, T., Zeng, Q., Wilkins, T.A. and Wood, A.J. (2002). Characterization of the V-type H+-ATPase in the resurrection plant Tortula ruralis: accumulation and polysomal recruitment of the proteolipid c subunit in response to salt stress. J. Exp. Bot. 367, 225–232.

    Google Scholar 

  • Cheng, N.H., Pittman, J.K., Shigaki, T. and Hirschi, K.D. (2002). Characterization of CAX4, an Arabidopsis H+/cation antiporter. Plant Physiol. 128, 1245–1254.

    Article  PubMed  CAS  Google Scholar 

  • Clarkson, D.T. (1991). Root structure and sites of ion uptake. In Y. Waisel, A. Eshel and U. Kafkafi (Eds.), Plant Roots: The Hidden Half (pp. 417–453). New York: Marcel Dekker.

    Google Scholar 

  • Clipson, N.J.W., Lachno, D.R. and Flowers, T.J. (1988). Salt tolerance in the halophyte Suaeda maritima (L.) Dum.: Abscisic acid concentration in the response to constant and altered salinity. J. Exp. Bot. 39, 1381–1388.

    Google Scholar 

  • Clipson, N.J.W., Tomos, A.D., Flowers, T.J. and Wyn Jones, R.G. (1985). Salt tolerance in the halophyte Suaeda maritima (L.) Dum. The maintenance of turgor pressure and water potential gradients in plants growing at different salinities. Planta. 165, 392–396.

    Article  Google Scholar 

  • Cordovilla, M.D.P., Ligero, F. and Lluch, C. (1999). Effects of NaCl on growth and nitrogen fixation and assimilation of inoculated and KNO fertilized Vicia faba L. and Pisum sativum L. plants. Plant Sci. 140, 127–136.

    Google Scholar 

  • Cordovilla, M.P., Ligero, F. and Lluch, C. (1995). Influence of host genotypes on growth, symbiotic performance and nitrogen assimilation in faba bean (Vicia faba L.) under salt stress. Plant Soil. 172, 289–297.

    CAS  Google Scholar 

  • Cowan, A.K., Rose, P.D. and Horne, L.G. (1992). Dunaliella salina: A model system for studying the response of plant cell to stress. J. Exp. Bot. 43, 1535–1547.

    CAS  Google Scholar 

  • Cramer, G.R. (1992). Kinetics of maize leaf elongation. II. Responses of a Na-excluding cultivar and a Na-including cultivar to varying Na/Ca salinities. J. Exp. Bot. 43, 857–864.

    Google Scholar 

  • Crawford, R.M.M. (1989). Studies in plant survival. Oxford, London, Edinburgh, Boston, Palo Alto, Melbourne: Blackwell Scientific Publications.

    Google Scholar 

  • Cuartero, J., Yeo, A.R. and Flowers, T.J. (1992). Selection of donors for salt-tolerance in tomato using physiological traits. New Phytol. 121, 63–69.

    CAS  Google Scholar 

  • Cushman, J.C., DeRocher, E.J. and Bohnert, H.J. (1990b). Gene expression during adaptation to salt stress. In R. Kattermann (Eds.), Environmental Injury to Plants (pp. 173–203). New York: Academic Press.

    Google Scholar 

  • Cushman, J.C., Michalowski, C.M. and Bohnert, H.J. (1990a). Developmental control of Crassulacean acid metabolism inducibility by salt stress in the common ice plant. Plant Physiol. 94, 1137-1142.

    CAS  Google Scholar 

  • Dajic, Z. (1996). Ekoloska studija halofitske zajednice Puccinellietum limosae (Rapcs.) Wend. (Ecological study of halophytic community Puccinellietum limosae (Rapcs.) Wend.). Unpublished doctoral dissertation. Faculty of Biology, University of Belgrade, FRY.

    Google Scholar 

  • Dajic, Z., Pekic, S. and Mrfat-Vukelic, S. (1997a). Salinity problem and adaptations of plants grown in arid and semi-arid regions. In S. Jeftic and S. Pekic (Eds.), Drought and Plant Production (pp. 355–362). Belgrade: Agricultural Research Institute “Serbia”.

    Google Scholar 

  • Dajic, Z., Stajkovic, M. and Jakovljevic, M. (1997b). An ecophysiological study of Suaeda maritima (Chenopodiaceae) in Serbia. Bocconea. 5, 511–516.

    Google Scholar 

  • Dajic, Z., Stevanovic, B. and Ajder, S. (1998). The role of ions in osmotic adjustment of several euhalophytes grown in natural habitat. Ekologija (Belgrade). 33, 169–174.

    Google Scholar 

  • Dalton, F.N., Maggio, A. and Piccinni, G. (1997). Effect of root temperature on plant response functions for tomato: comparison of static and dynamic salinity stress indices. Plant Soil. 192, 307–319.

    Article  CAS  Google Scholar 

  • Dalton, F.N., Maggio, A. and Piccinni, G. (2000). Simulation of shoot chloride accumulation: separation of physical and biochemical processes governing plant salt tolerance. Plant Soil. 219, 111

    Article  Google Scholar 

  • Deal, K, R., Goyal, S. and Dvorak, J. (1999). Arm location of Lophopyrum elongatum genes affecting K+/Na+ selectivity under salt stress. Euphytica. 108, 193–198.

    Article  CAS  Google Scholar 

  • Dionisiosese, M.L. and Tobita, S. (1998). Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1–9.

    CAS  Google Scholar 

  • Dracup, M.N.H. and Greenway, H. (1985). A procedure for isolating vacuoles from leaves of the halophyte Suaeda maritima. Plant Cell Environ. 8, 149–154.

    Google Scholar 

  • Dschida, D.J., Platt-Aloia, K.A. and Thomson, W.W. (1992). Epidermal peels of Avicennia germinans (L.) Stearn: a useful system to study the function of salt glands. Ann. Bot. 70, 501–509.

    Google Scholar 

  • Dziadczyk, P., Bolibok, H., Tyrka, M. and Hortynski, J.A. (2003). In vitro selection of strawberry (Fragaria ananassa Duch.) clones tolerant to salt stress. Euphytica. 132, 49–55.

    Article  CAS  Google Scholar 

  • Echeverria, E. (2000). Vesicle-mediated solute transport between the vacuole and the plasma membrane. Plant Physiol. 123, 1217–1226.

    Article  PubMed  CAS  Google Scholar 

  • El-Haddad, S.H. and Noaman, M.M. (2001). Leaching requirement and salinity threshold for the yield and agronomic characteristics of halophytes under salt stress. J. Arid Environ. 49, 865-874.

    Article  Google Scholar 

  • El-Hamdaoui, A., Redondo-Nieto, M., Rivilla, R., Bonilla, I. and Bolanos, L. (2003). Effects of boron and calcium nutrition on the establishment of the Rhizobium leguminosarum-pea (Pisum sativum) symbiosis and nodule development under salt stress. Plant Cell Environ. 26, 1003-1011.

    Article  CAS  Google Scholar 

  • Ellis, R.P., Forster, B.P., Gordon, D.C., Handley, L.L., Keith, R.P., Lawrence, P., et al. (2002). Phenotype/genotype associations for yield and salt tolerance in a barley mapping population segregating for two dwarfing genes. J. Exp. Bot. 53, 1163–1176.

    Article  PubMed  CAS  Google Scholar 

  • Essa, T.A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merill) cultivars. J. Agron. Crop Sci. 188, 86–93.

    Article  CAS  Google Scholar 

  • Fitter, A.H. and Hay, R.K.M. (1989). Environmental Physiology of Plants. London, San Diego, New York, Boston, Sydney, Tokyo, Toronto: Academic Press.

    Google Scholar 

  • Flowers, T.J. (2004). Improving crop salt tolerance. J. Exp. Bot. 55, 307–319.

    Article  PubMed  CAS  Google Scholar 

  • Flowers, T.J. and Dalmond, D. (1992). Protein synthesis in halophytes: the influence of potassium, sodium and magnesium in vitro. Plant Soil. 146, 153–161.

    Article  CAS  Google Scholar 

  • Flowers, T.J. and Hajibagheri, M.A. (2001). Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil. 231, 1–9.

    Article  CAS  Google Scholar 

  • Flowers, T.J., Hajibagheri, M.A. and Yeo, A.R. (1991). Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ. 14, 319–325.

    Google Scholar 

  • Flowers, T.J., Koyama, M.L., Flowers, S.A., Chinta Sudhakar, Singh, K.P. and Yeo, A.R. (2000). QTL: their place in engineering tolerance of rice to salinity. J.Exp. Bot. 51, (MP Special Issue), 99–106.

    PubMed  CAS  Google Scholar 

  • Flowers, T.J., Troke, P.F. and Yeo, A.R. (1977). The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28, 89–121.

    Article  CAS  Google Scholar 

  • Flowers, T.J. and Yeo, A.R. (1988). Ion relations of salt tolerance. In D.A. Baker and J.L. Hall (Eds.), Solute Transport in Plant Cells and Tissues, Harlow: Longman Scientific and Technical. (pp. 392–416).

    Google Scholar 

  • Flowers, T.J. and Yeo, A.R. (1992). Solute Transport in Plants. Glasgow, Scotland: Blackie. 176 pp.

    Google Scholar 

  • Flowers, T.J. and Yeo, A.R. (1995). Breeding for salinity resistance in crop plants: where next? Aust. J. Plant Physiol. 22, 875–884.

    Google Scholar 

  • Foolad, M.R. and Jones, R.A. (1993). Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor. Appl. Genet. 87, 184–192.

    Article  CAS  Google Scholar 

  • Foolad, M.R., Zhang, L.P. and Lin, G.Y. (2001). Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome. 44, 444–454.

    Article  PubMed  CAS  Google Scholar 

  • Forment, J., Naranjo, M.A., Roldan, M., Serrano, R., and Vicente, O. (2002). Expression of Arabidopsis Sr-like splicing proteins confers salt tolerance in yeast and transgenic plants. Plant J. 30, 511-519.

    Article  PubMed  CAS  Google Scholar 

  • Fortmeier, R. and Schubert, S. (1995). Salt tolerance of maize (Zea mays L.): the role of sodium exclusion. Plant Cell Environ. 18, 1041–1047.

    CAS  Google Scholar 

  • Fougere, F., Le-Rudilier, D. and Streeter, J.G. (1991). Effects of salt stress on amino acid, organic acid and carbohydrate composition of roots, bacteroids and cytosol of alfalfa (Medicago sativa L.). Plant Physiol. 96, 1228–1236.

    CAS  PubMed  Google Scholar 

  • Francois, L.E. and Maas, E.V. (1994). Crop response and management of salt-affected soils. In M. Pessarakli (Eds.), Handbook of Plant and Crop Stress (pp. 169–201). New York: Marcel Dekker.

    Google Scholar 

  • Freitas, H. and Breckle, S.W. (1992). Importance of bladder hairs for the salt tolerance of field grown Atriplex species from a Portuguese salt marsh. Flora. 187, 283–297.

    Google Scholar 

  • Fukuda, A., Nakamura, A. and Tanaka, Y. (1999). Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim. Biophys. Acta. 1446, 149–155.

    PubMed  CAS  Google Scholar 

  • Garay-Arroyo, A., Colmenero-Flores, J.M., Garciarrubio, A. and Covarrubias, A.A. (2000). Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J. Biol. Chem. 275, 5668–5674.

    Article  PubMed  CAS  Google Scholar 

  • Garcia, A., Rizzo, C.A., Ud-Din, J., Bartos, S.L., Senadhira, D., Flowers, T.J., et al. (1997). Sodium and potassium transport to the xylem are inherited independently in ice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant Cell Environ. 20, 1167-1174.

    Article  CAS  Google Scholar 

  • Garcia, A., Senadhira, D., Flowers, T.J. and Yeo. A.R. (1995). The effects of selection for sodium transport and of selection for agronomic characteristics upon salt resistance in rice (Oryza sativa L.). Theor. Appl. Genet. 90, 1106–1111.

    Article  CAS  Google Scholar 

  • Garcia, A.B., Engler, J.D., Claes, B., Villarroel, R., Vanmontagu, M., Gerats, T., et al. (1998). The expression of salt-responsive gene salT from rice is regulated by hormonal and developmental cues. Planta. 207, 172–180.

    Article  PubMed  CAS  Google Scholar 

  • Garciadeblas, B., Senn, M.E., Banuelos, M.A. and Rodriguez-Navarro, A. (2003). Sodium transport and HKT transporters: the rice model. Plant J. 36, 788–801.

    Google Scholar 

  • Garg, A.K., Kim, J.K., Owens, T.G., Ranwala, A.P., Do Choi, Y., Kochian, L.V., et al. (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc. Nat. Acad. Sci. USA. 99, 15898–15903.

    Article  PubMed  CAS  Google Scholar 

  • Gaxiola, R., Li, J., Undurraga, S., Dang, L.M., Allen, S.L. and Fink, G.R. (2001). Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Nat. Acad. Sci. USA. 98, 11444–11449.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., Bagchi, S. and Majumder, A.L. (2001). Chloroplast fructose 1,6 bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. Plant Sci. 160, 1171–1181.

    Article  PubMed  CAS  Google Scholar 

  • Gimmler, H. (2000). Primary sodium plasma membrane ATPases in salt tolerant algae: facts and fictions. J. Exp. Bot. 51, 1171–1178.

    Article  PubMed  CAS  Google Scholar 

  • Ginzberg, I., Stein, H., Kapulnik, Y., Szabados, L., Strizhov, N., Schell, J., et al. (1999). Isolation and characterization of two different cDNAs of delta (1) pyrroline-5- carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol. Biol. 38, 755–764.

    Google Scholar 

  • Glenn, E.P., Brown, J.J. and Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Crit. Rev.Plant Sci. 18, 227–255.

    Google Scholar 

  • Glenn, E.P. and O'Leary, J.W. (1985). Productivity and irrigation requirements of halophytes grown with seawater in the Sonora Desert. J. Arid Environ. 9, 81–91.

    Google Scholar 

  • Gorham, J. (1990). Salt tolerance in Triticeae: K/Na discrimination in synthetic hexaploid wheats. J. Exp. Bot. 41, 623–627.

    CAS  Google Scholar 

  • Gouia, H., Ghorbal, H.G. and Touraine B. (1994). Effects of NaCl on flows of N and mineral ions and on NO3 - reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton. Plant Physiol. 105, 1409–1418.

    PubMed  CAS  Google Scholar 

  • Grabov, A. and Blatt, M.R. (1997). Parallel control of the inward-rectifier K+ channel by cytosolic free Ca2+ and pH in Vicia guard cells. Planta. 201, 84–95.

    Article  CAS  Google Scholar 

  • Grant, R.F. (1995). Salinity, water use and yield of maize: Testing of the mathematical model ecosys. Plant Soil. 172, 309–322.

    Article  CAS  Google Scholar 

  • Grant, R.F., Rochette, P. and Desjardins, R.L. (1993). Energy exchange and water use efficiency of crops in the field: Validation of a simulation model. Agron. J. 85, 916–928.

    Article  Google Scholar 

  • Greenway, H., and Munns, R. (1980). Mechanisms of salt tolerance in non-halophytes. Annu. Rev. Plant Physiol. 31, 149–190.

    Article  CAS  Google Scholar 

  • Greenway, H. and Osmond, C.B. (1972). Salt responses of enzymes from species differing in salt tolerance. Plant Physiol. 49, 256–259.

    CAS  PubMed  Google Scholar 

  • Grover, A., Pareek, A., Singla, S.L., Minhas, D., Katyar, S., Ghawana, S., et al. (1998). Engineering crops for tolerance against abiotic stresses through gene manipulation. Curr. Sci. 75, 689–696.

    Google Scholar 

  • Grover, A., Sahi, C., Sanan, N. and Grover, A. (1999). Taming abiotic stresses in plants through genetic engineering - current strategies and perspective. Plant Sci. 143, 101–111.

    Article  CAS  Google Scholar 

  • Gruwel, M.L.H., Rauw, V.L., Loewen, M. and Abrams, S.R. (2001). Effects of sodium-chloride on plant cells a P-31 and Na-23 NMR system to study salt tolerance. Plant Sci. 160, 785–794.

    Article  PubMed  CAS  Google Scholar 

  • Hajibagheri, M.A., Hall, J.L. and Flowers, T.J. (1984). Stereological analysis of leaf cell of the halophyte Suaeda maritima (L.) Dum. J. Exp. Bot. 35, 1547–1557.

    Google Scholar 

  • Halperin, S.J. and Lynch, J.P (2003). Effects of salinity on cytosolic Na+ and K+ in root hairs of Arabidopsis thaliana: in vivo measurements using the fluorescent dyes SBFI and PBFI. J. Exp. Bot. 54, 2035–2043.

    PubMed  CAS  Google Scholar 

  • Hamada, A., Shono, M., Xia, T., Ohta, M., Hayashi, Y., Tanaka, A., et al. (2001). Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol. Biol. 46, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa, P.M., Bressan, R.A., Zhu, J.-K. and Bohnert, H.J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51, 463–499.

    Article  PubMed  CAS  Google Scholar 

  • Hibino, T., Meng, Y.L., Kawamitsu, Y., Uehara, N., Matsuda, N., Tanak, Y., et al. (2001). Molecular cloning and functional characterization of two kinds of betaine-aldehyde dehydrogenase in betaine-accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol. Biol. 45, 353–363.

    Article  PubMed  CAS  Google Scholar 

  • Hill, B.S. and Hill, A.E. (1973). Enzymatic approaches to chloride transport in Limonium salt glad. In W.P. Anderson (Eds.), Ion Transport in Plants (pp. 379–384). New York, London: Academic Press.

    Google Scholar 

  • Holmström, K.O., Somersalo, S., Mandal, A., Palva, T.E. and Welin, B. (2000). Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. J. Exp. Bot. 51, 177–185.

    PubMed  Google Scholar 

  • Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S. and Shinmyo, A. (2001). Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J. 27, 129–138.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Hirji, R., Adam, L., Rozwadowski, K.L., Hammerlindl, J.K., Keller, W.A., et al. (2000). Genetic engineering of glycine betaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol. 122, 747–756.

    PubMed  CAS  Google Scholar 

  • Imhoff, J.F. (1986). Osmoregulation and compatible solutes in eubacteria. FEMS Microbiol. Rev. 39, 57–66.

    CAS  Google Scholar 

  • Ish-Shalom Gordon, N. and Dubinsky, Z. (1990). Possible modes of salt secretion in Avicennia marina in the Sinai (Egypt). Plant Cell Physiol. 31, 27–32.

    Google Scholar 

  • Isla, R., Royo, A. and Arägués, R. (1997). Field screening of barley cultivars to soil salinity using a sprinkler and a drip irrigation system. Plant Soil. 197, 105–117.

    Article  CAS  Google Scholar 

  • Iyer, S. and Caplan, A. (1998). Products of proline catabolism can induce osmotically regulated genes in rice. Plant Physiol. 116, 203–211.

    Article  CAS  Google Scholar 

  • Jacoby, B. (1979). Sodium recirculation and loss from Phaseolus vulgaris L. Ann. Bot. 43, 741–744.

    CAS  Google Scholar 

  • Jacoby, B. (1994). Mechanisms involved in salt tolerance of plants. In M. Pessarakli (Eds.), Handbook of Plant and Crop Stress (pp. 97–123). New York: Marcel Dekker.

    Google Scholar 

  • Jamieson, D.J. (1998). Oxidative stress responses of yeast Saccharomyces cerevisiae. Yeast. 14, 1511–1527.

    Article  PubMed  CAS  Google Scholar 

  • Jeschke, W.D. (1972). Wirkung von K+ auf die Fluxe und den Transport von Na+ in Gerstenwurzeln, K+-stimulierter Na+ -efflux in der Wurzelrinde. Planta. 106, 73–90.

    Article  CAS  Google Scholar 

  • Jeschke, W.D., and Hartung W. (2000). Root-shoot interactions in mineral nutrition. Plant Soil. 226, 57–69.

    Article  CAS  Google Scholar 

  • Jeschke, W.D. and Stelter, W. (1983). Ionic relation of Garden Orache, Atriplex hortensis L.: growth and ion distribution at moderate salinity and function of bladder hairs. J. Exp. Bot. 34, 795–810.

    CAS  Google Scholar 

  • Jia, G.X., Zhu, Z.Q., Chang, F.Q. and Li, Y.X. (2002). Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep. 21, 141–146.

    CAS  Google Scholar 

  • Kaminaka, H., Morita, S., Tokumoto, M., Masumura, T. and Tanaka, K. (1999). Differential gene expressions of rice superoxide-dismutase isoforms to oxidative and environmental stresses. Free Radical Res. 31, S219-S225.

    CAS  Google Scholar 

  • Kamphorst, A. and Bolt, G.H. (1976). Saline and sodic soils. In G.H. Bolt and M.G.M. Bruggenwert (Eds.), Soil Chemistry. A Basic Elements (pp. 171–191). Amsterdam, Oxford, New York: Elsevier Scientific Publishing Company.

    Google Scholar 

  • Katerji, N., Vanhoorn, J.W., Hamdy, A. and Mastrorilli, M. (2001). Response to soil salinity of two chickpea varieties differing in drought tolerance. Agric. Water Manage. 50, 83–96.

    Article  Google Scholar 

  • Kaur, S., Gupta, A.K. and Kaur, N. (1998). Gibberellin A(3) reverses the effect of salt stress in chickpea (Cicer arietinum L.) seedlings by enhancing amylase activity and mobilization of starch in cotyledons. Plant Growth Reg. 26, 85–90.

    CAS  Google Scholar 

  • Kerstiens, G., Tych, W., Robinson, M.F. and Mansfield, T.A. (2002). Sodium-related partial stomatal closure and salt tolerance of Aster tripolium. New Phytol. 153, 509–515.

    Article  CAS  Google Scholar 

  • Khan, M.A., Ungar, I.A. and Schowalter, A.M. (2000a). The effect of salinity on the growth, water status and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forsk. J. Arid Environ. 45, 73–84.

    Google Scholar 

  • Khan, M.A., Ungar, I.A. and Showalter, A.M. (2000b). Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithi var. stocksii. Ann. Bot. 85, 225–232.

    Article  CAS  Google Scholar 

  • Khan, M.A., Ungar, I.A., Showalter, A.M. and Dewald, H.D. (1998). NaCl induced accumulation of glycine betaine in four subtropical halophytes from Pakistan. Physiol. Plant. 102, 487–492.

    Article  CAS  Google Scholar 

  • Khatun, S., Rizzo, C.A., and Flowers, T.J. (1995). Genotypic variation in the effect of salinity on fertility in rice. Plant Soil. 173, 239–250.

    Article  CAS  Google Scholar 

  • Khavarinejad, R.A. and Chaparzadeh, N. (1998). The effects of NaCl and CaCl2on photosynthesis and growth of alfalfa plants. Photosyn. 35, 461–466.

    CAS  Google Scholar 

  • Kim, E.J., Kwak, J.M., Uozumi, N. and Schroeder, J.I. (1998). AtKUP1: An Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell. 10, 51–62.

    Article  PubMed  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W.L., Tena, G. and Sheen, J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc. Nat. Acad. Sci. USA. 97, 2940–2945.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, M.L., Levesley, A., Koebner, R.M.D., Flowers, T.J. and Yeo, A.R. (2001). Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol. 125, 406–422.

    Article  PubMed  CAS  Google Scholar 

  • Kreps, J.A., Wu, Y., Chang, H.S., Zhu, T., Wang, X. and Harper, J.F. (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol. 130, 2129–2141.

    Article  PubMed  CAS  Google Scholar 

  • Krol, E. and Trebacz, K. (2000). Ways of ion channel gating in plant cells. Ann. Bot. 86, 449–469.

    Article  CAS  Google Scholar 

  • Kuiper, D. and Steingrover, E. (1991). Responses of growth, shoot to root ratio and cytokinin concentration in root tissue of two barley varieties differing in their salt tolerance. Dev. Agric. Manage. For. Ecol. 24, 463–471.

    Google Scholar 

  • Lachaal, M, Grignon, C. and Hajji, M. (2002). Growth rate affects salt sensitivity in two lentil populations. J. Plant Nutr. 25, 2613–2625.

    CAS  Google Scholar 

  • Larcher, W. (1995). Physiological Plant Ecology (3rd edition). Berlin: Springer.

    Google Scholar 

  • Laurie, S., Feeney, K.A., Maathuis, F.J.M., Heard, P.J., Brown, S.J. and Leigh, R.A. (2002). A role for HKT1 in sodium uptake by wheat roots. Plant J. 32, 139–149.

    Article  PubMed  CAS  Google Scholar 

  • Lazof, D.B. and Bernstein, N. (1999). The NaCl induced inhibition of shoot growth: the case for disturbed nutrition with special consideration of calcium. Adv. Bot. Res. 29, 113–189.

    CAS  Google Scholar 

  • Lerner, H.R. (1999). Introduction to the response of plants to environmental stresses. In H.R. Lerner (Eds.) Plant responses to environmental stresses (pp. 1–26). New York, Basel: Marcel Dekker.

    Google Scholar 

  • Levitt, J. (1972). Responses of Plants to Environmental Stresses. New York, San Francisco, London: Academic Press.

    Google Scholar 

  • Lexer, C., Welch, M.E., Durphy, J.L. and Rieseberg, L.H. (2003). Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. Mol. Ecol. 12, 1225–1235.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Lee, Y.R. and Assmann, S.M. (1998). Guard cells possess a calcium-dependent protein kinase that phosphorylates the KAT1 potassium channel. Plant Physiol. 116, 785–795.

    PubMed  CAS  Google Scholar 

  • Li, Q.L., Gao, X.R., Yu, X.H., Wang, X.Z. and Jiaan, L.J. (2003a). Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol. Lett. 25, 1431–1436.

    CAS  Google Scholar 

  • Li, Q.L., Liu, D.W., Gao, X.R., Su, Q. and An, L.J. (2003b). Cloning of cDNA encoding choline monooxygenase from Suaeda liaotungensis and salt tolerance of transgenic tobacco. Acta Bot. Sinica. 45, 242–247.

    CAS  Google Scholar 

  • Lilley, J.M., Ludlow, M.M., McCouch, S.R. and O'Toole, J.C. (1996). Locating QTL for osmotic adjustment and dehydration tolerance in rice. J. Exp. Bot. 47, 1427–1436.

    CAS  Google Scholar 

  • Liu, J.P., Ishitani, M., Halfter, U., Kim, C.S. and Zhu, J.-K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein-kinase that is required for salt tolerance. Proc. Nat. Acad. Sci. USA. 97, 3730–3734.

    PubMed  CAS  Google Scholar 

  • Liu, Q., Kasuga, M., Sakuma, Y., Abe, A., Miura, S., Yamaguchi-Shinozaki, K., et al. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell. 10, 1391–1406.

    PubMed  CAS  Google Scholar 

  • Lohaus, G., Hussmann, M., Pennewiss, K., Schneider, H., Zhu, J.J. and Sattelmacher, B. (2000). Solute balance of a maize (Zea mays L.) source leaf as affected by a salt treatment with special emphasis on phloem retranslocation and ion leaching. J. Exp. Bot. 51, 1721–1732.

    Article  PubMed  CAS  Google Scholar 

  • Lüttge, U. (1993). The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. New Phytol. 125, 59–71.

    Google Scholar 

  • Lutts, S., Majerus, V. and Kinet, J.M. (1999). NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105, 450–458.

    Article  CAS  Google Scholar 

  • Maas, E.V. (1986). Plant tolerance of plants. Appl. Agric. Res. 1, 12–26.

    Google Scholar 

  • Maas, E.V. (1990). Crop salt tolerance. In K.K. Tanji (Eds.), Agricultural Salinity Assessment and Management (pp. 262–304). New York: American Society of Civil Engineers, ASCE Manuals and Reports on Engineering Practice, No 71.

    Google Scholar 

  • Maas, E.V. and Hoffman, G.J. (1977). Crop salt tolerance - current assessment. J. Irrigation Drainage Div. Amer. Soc. Civil Engn. 103, 115–134

    Google Scholar 

  • Maathuis, F. and Amtmann, A. (1999). K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann. Bot. 84, 123–133.

    Article  CAS  Google Scholar 

  • Maathuis, F.J.M., Filatov, V., Herzyk, P., Krijger, G.C., Axelsen, K.B., Chen, S., et al. (2003). Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J. 35, 675–692.

    Article  PubMed  CAS  Google Scholar 

  • Maathuis, F.J.M., Ichida, A., Sanders, D. and Schroeder, J.L. (1997). Roles of higher plant K+ channels. Plant Physiol. 114, 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Maggio, A., Hasegawa, P.M., Bressan, R.A. and Consiglio, M.F. (2001). Unraveling the functional relationship between root anatomy and stress tolerance. Austr. J. Plant Physiol. 28, 999–1004.

    Google Scholar 

  • Maggio, A., Reddy, M., P. and Joly, R.P. (2000). Leaf gas exchange and solute accumulation in the halophyte Salvadora persica grown at moderate salinity. Environ. Exp. Bot. 44, 31–38.

    Article  PubMed  CAS  Google Scholar 

  • Manchandia, A.M., Banks, S.W., Gossett, D.R., Bellaire, B.A., Lucas, M.C. and Millhollon, E.P. (1999). The influence of alpha-amanitin on the NaCl induced up-regulation of antioxidant enzyme activity in cotton callus tissue. Free Radical Res. 30, 429–438.

    CAS  Google Scholar 

  • Manetas, Y. (1990). A re-examination of sodium chloride effects on phosphoenolpyruvate carboxylase at high (physiological) enzyme concentrations. Physiol. Plant. 78, 225–229.

    Article  CAS  Google Scholar 

  • Mansour, M.M.F., Salama, K.H.A. and Al-Mutawa, M.M. (2003). Transport proteins and salt tolerance in plants. Plant Sci. 164, 891–900.

    Article  CAS  Google Scholar 

  • Marcum, K.B. and Murdoch, C.L. (1992). Salt tolerance of the coastal salt marsh grass, Sporobulus virginicus (L.) Kunth. New Phytol. 120, 281–288.

    CAS  Google Scholar 

  • Mc Cree, K.J. (1986). Whole-plant carbon balance during osmotic adjustment to drought and salinity stress. Austr. J. Plant Physiol. 13, 33–43.

    Google Scholar 

  • Medina, M.I., Quesada, M.A., Pliego, F., Botella, M.A. and Valpuesta, V. (1999). Expression of tomato peroxidase gene TPX1 in NaCl adapted and unadapted suspension cells. Plant Cell Rep. 18, 680–683.

    Article  CAS  Google Scholar 

  • Mendoza, I., Rubio, F., Rodriguez-Navarro, A. and Pardo, J.M. (1994). The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 269, 8792–8796.

    PubMed  CAS  Google Scholar 

  • Michalowski, C.B., Olson, S.W., Piepenbrock, M., Schmitt, J.M. and Bohnert, H.J. (1989). Time course of mRNA induction elicited by salt stress in the common ice plant (Mesembryanthemum crystallinum). Plant Physiol. 89, 811–816.

    CAS  PubMed  Google Scholar 

  • Michelet, B. and Boutry, M. (1995). The plasma membrane H+-ATPase. Plant Physiol. 108, 1–6.

    PubMed  CAS  Google Scholar 

  • Miflin, B. (2000). Crop improvement in the 21st century. J. Exp. Bot. 51 (MP Special Issue), 1–8.

    PubMed  CAS  Google Scholar 

  • Miller, A.J., Cookson, S.J., Smith, S.J. and Wells, D.M. (2001). The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J. Exp. Bot. 52, 541–549.

    Article  PubMed  CAS  Google Scholar 

  • Moeljopawiro, S. and Ikehashi, H. (1981). Inheritance of salt tolerance in rice. Euphytica. 30, 291-300.

    Article  Google Scholar 

  • Moghaieb, R.E.A., Tanaka, N., Saneoka, H. and Hussein, H.A. (2000). Expression of betaine aldehyde dehydrogenase gene in transgenic tomato hairy roots leads to the accumulation of glycine betaine and contributes to the maintenance of the osmotic potential under salt stress. Soil Sci. Plant Nutr. 46, 873–883.

    CAS  Google Scholar 

  • Montero, E., Cabot, C, Barcelo, J. and Poschenrieder, C. (1997). Endogenous abscisic acid levels are linked to decreased growth of bush bean plants treated with NaCl. Physiol. Plant. 101, 17–22.

    Article  CAS  Google Scholar 

  • Moya, J.L., Tadeo, F.R., Gomezcadenas, A., Primomillo, E. and Talon, M. (2002). Transmissible salt tolerance traits identified trough reciprocal grafts between sensitive Carizzo and tolerant Cleopatra citrus genotypes. J. Plant Physiol. 159, 991–998.

    Article  CAS  Google Scholar 

  • Mühling, K.H. and Läuchli, A. (2002a). Effect of salt stress on growth and cation compartmentation in leaves of two plant species differing in salt tolerance. J.Plant Physiol. 159, 137–146.

    Google Scholar 

  • Mühling, K.H. and Läuchli, A. (2002b). Determination of apoplastic Na+ in intact leaves of cotton by in vivo fluorescence ratio-imaging. Funct. Plant Biol. 29, 1491–1499.

    Google Scholar 

  • Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant Cell Environ. 16, 15–24.

    CAS  Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239-250.

    Article  PubMed  CAS  Google Scholar 

  • Munns, R., Cramer, G.R., and Ball, M.C. (1999). Interactions between rising CO2, soil salinity and plant growth. In Y. Luo and H.A. Mooney (Eds.), Carbon Dioxide and Environmental Stress (pp. 139–167). London: Academic Press.

    Google Scholar 

  • Munns, R., Fisher, D.B. and Tonnet, M.L. (1986). Na+ and Cl-transport in the phloem from leaves of NaCl-treated barley. Aust. J. Plant Physiol. 13, 757–766.

    CAS  Google Scholar 

  • Munns, R., Greenway, H. and Kirst, G.O. (1983). Halotolerant eukaryotes. In O.L. Lange, P.S. Nobel, C.B. Osmond and H.H. Ziegler(Eds.) Encyclopedia of Plant Physiology (New Series, Vol. 12C, pp. 59–135). Berlin: Springer-Verlag.

    Google Scholar 

  • Munns, R. and James, R.A. (2003). Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil. 253, 201–218.

    Article  CAS  Google Scholar 

  • Munns, R., Hare, R.A. James, R.A. and Rebetzke, G.J. (2000). Genetic variation for improving the salt tolerance of durum wheat. Aust. J. Agric. Res. 51, 69–74.

    Article  CAS  Google Scholar 

  • Munns, R., Husain, S., Rivelli, A.R., James, R.A., Condon, A.G., Lindsay, M.P., et al. (2002). Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil. 247, 93–105.

    Article  CAS  Google Scholar 

  • Munns, R., Tonnet, M.L., Shennan, C. and Gardner, A. (1988). Effect of high external NaCl concentrations on ion transport within the shoot of Lupinus albus. II. Ions in phloem sap. Plan Cell Environ. 11, 291–300.

    CAS  Google Scholar 

  • Muranaka, S., Shimizu, K. and Kato, M. (2002). Ionic and osmotic effects of salinity on single leaf photosynthesis in two wheat cultivars with different drought tolerance. Photosynthetica. 40, 201–207.

    CAS  Google Scholar 

  • Nair, S., Jha, P.K. and Babu, C.R. (1993). Induced salt-tolerant rhizobia, from extremely salt-tolerant Rhizobium gene pools, form reduced but effective symbiosis under non-saline growth conditions of legume host. Microbios. 74, 39–51.

    CAS  Google Scholar 

  • Nelson, D.E., Koukoumanos, M. and Bohnert, H.J. (1999). Myo-inositol dependent sodium uptake in ice plant. Plant Physiol. 119, 165–172.

    Article  PubMed  CAS  Google Scholar 

  • Nemoto, Y., Kawakami, N. and Sasakuma, T. (1999). Isolation of novel early salt responding genes from wheat (Triticum aestivum L.) by differential display. Theor. Appl. Genet. 98, 673–678.

    Article  CAS  Google Scholar 

  • Neumann, P. (1997). Salinity resistance and plant growth revisited. Plant Cell Environ. 20, 1193-1198.

    Article  CAS  Google Scholar 

  • Niu, X., Bressan, R.A., Hasegawa, P.M. and Pardo J.M. (1995). Ion homeostasis in NaCl stress environments. Plant Physiol. 109, 735–742.

    PubMed  CAS  Google Scholar 

  • Niu, X., Narasimhan, M.L., Salzman, R.A., Bressan, R.A. and Hasegawa, P.M. (1993). NaCl regulation of plasma membrane H+-ATPase gene expression in a glycophyte and a halophyte. Plant Physiol. 103, 713–718.

    Article  PubMed  CAS  Google Scholar 

  • Nogales, J., Campos, R., Benabdelkhalek, H., Olivares, J., Ljuch, C. and Sanjuan J. (2002). Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen fixing symbiosis with Phaseolus vulgaris. Mol. Plant Microbe Interact. 15, 225–232.

    PubMed  CAS  Google Scholar 

  • Nublat, A., Desplans, J., Casse, F. and Berthomieu, P. (2001). Sas1, an Arabidopsis mutant overaccumulating sodium in the shoot, shows deficiency in the control of the root radial transport of sodium. Plant Cell. 13, 125–137.

    Article  PubMed  CAS  Google Scholar 

  • Nuccio, M.L., Rhodes, D., McNeil, S.D. and Hanson, A.D. (1999). Metabolic engineering of plants for osmotic stress tolerance. Curr. Opin. Plant Biol. 2, 128–134.

    Article  PubMed  CAS  Google Scholar 

  • O'Leary, J.W. (1994). The agricultural use of native plants on problem soils. In A.R. Yeo and T.J. Flowers (Eds.), Soil Mineral Stresses: Approaches to Crop Improvement (pp. 127–143). Berlin: Springer-Verlag.

    Google Scholar 

  • Ochiai, K. and Matoh,T. (2001). Mechanism of salt tolerance in the grass species, Anneurolepidium chinense. I Growth response to salinity and osmotic adjustment. Soil Sci. Plant Nutr. 47, 579-585.

    CAS  Google Scholar 

  • Oertli, J.J. (1968). Extracellular salt accumulation, a possible mechanism of salt injury in plants. Agrochimica. 12, 461–469.

    Google Scholar 

  • Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, T., et al. (2002). Introduction of a Na+/H+ antiporter from Atriplex gmelini confers salt tolerance to rice. FEBS Lett. 532, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Okuma, E., Soeda, K., Fukuda, M., Tada, M. and Murata, Y. (2002). Negative correlation between the ratio of K+ to Na+ and proline accumulation in tobacco suspension cells. Soil Sci. Plant Nutrit. 48, 753–757.

    CAS  Google Scholar 

  • Olt, S., Krotz, E., Komor, E., Rokitta, M. and Haasa, A. (2000). Na-23 and H-1 microimaging of intact plants. J. Magn. Reson. 144, 297–304.

    Article  PubMed  CAS  Google Scholar 

  • Osmond, C.B., Bjorkman, O. and Anderson, D.J. (1980). Physiological Processes in Plant Ecology. Towards a synthesis with Atriplex. Berlin, Heidelberg, New York: Springer Verlag.

    Google Scholar 

  • Parks, G.E., Dietrich, M.A. and Schumaker, K.S. (2002). Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl. J. Exp. Bot. 53, 1055–1065.

    Article  PubMed  CAS  Google Scholar 

  • Pekic, S. and Quarrie, S. (1988). Abscisic acid in leaves of inbred lines and F1 hybrids of maize growing in the field and its relationship to diurnal and seasonal trends in leaf water potential. Ann. Bot. 75, 678–699.

    Google Scholar 

  • Pennewiss, K., Mühling, K.H., and Sattelmacher, B. (1997). Leaching from the leaf surface and its significance for apoplastic ion balance. In T. Ando et al. (Eds.), Plant nutrition - for Sustainable Food Production and environment (pp. 87–88). Japan: Kluwer Academic Publishers.

    Google Scholar 

  • Perez-Alfocea, F., Balibrea, M.E., Alarcon, J.J., and Bolarin, M.C. (2000). Composition of xylem and phloem exudates in relation to the salt-tolerance of domestic and wild tomato species. J. Plant Physiol. 156, 367–374.

    CAS  Google Scholar 

  • Pessarakli, M. and Szabolcs, I. (1994). Soil salinity and sodicity as particular plant/crop stress factors. In M. Pessarakli (Eds.), Handbook of Plant and Crop Stress. (pp. 1–15). New York: Marcel Dekker.

    Google Scholar 

  • Piao, H.L., Lim, J.H., Kim, S.J., Cheong, G.W. and Hwang, I. (2001). Constitutive over-expression of AtGSK1 induces NaCl stress responses in the absence of NaCl stress and results in enhanced NaCl tolerance in Arabidopsis. Plant J. 27, 305–314.

    Article  PubMed  CAS  Google Scholar 

  • Pilot, G., Gaymard, F., Mouline, K. Cherel, I. and Sentenac, H. (2003). Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol. Biol. 51, 773–787.

    Article  PubMed  CAS  Google Scholar 

  • Plaut, Z., Meinzer, F.C. and Federman, E. (2000). Leaf development, transpiration and ion uptake and distribution in sugarcane cultivars grown under salinity. Plant Soil. 218, 59–69.

    Article  CAS  Google Scholar 

  • Pollard, A. and Wyn Jones, R.G. (1979). Enzyme activities in concentrated solutions of glycine betaine and other solutes. Planta. 144, 291–298.

    Article  CAS  Google Scholar 

  • Popp, M. (1995). Salt resistance in herbaceous halophytes and mangroves. Prog. Bot. 56, 415–429.

    Google Scholar 

  • Porat, R., Pavoncello, D., Benhayim, G. and Lurie, S. (2002). A heat treatment induced the expression of a Na+/H+ antiport gene (cNHX1) in citrus fruit. Plant Sci. 162, 957–963.

    Article  CAS  Google Scholar 

  • Prabhavathi, V., Yadav, J.S., Kumar, P.A. and Rajam, M.V. (2002). Abiotic stress tolerance in transgenic eggplant (Solanum melongena L.) by introduction of bacterial mannitol phosphodehydrogenase gene. Mol. Breed. 9, 137–147.

    Article  CAS  Google Scholar 

  • Prasad, S. R., Bagali, P.G., Hittalmani, S. and Shashidhar, H.E. (2000a). Molecular mapping of quantitative trait loci associated with seedlings tolerance to salt stress in rice (Oryza sativa L.) Curr. Sci. 78, 162–164.

    CAS  Google Scholar 

  • Prasad, K.V.S.K., Sharmila, P., Kumar, P.A. and Saradhi, P.P. (2000b). Transformation of Brassica juncea (L.) Czern with bacterial codA gene enhances its tolerance to salt stress. Mol. Breed. 6, 489–499.

    Article  CAS  Google Scholar 

  • Qasim, M., Ashraf, M., Jamil, M.A., Ashraf, M.Y., Shafiq-Ur-Rehman, and Rha, E.S. (2003). Water relations and leaf gas exchange properties in some elite canola (Brassica napus) lines under salt stress. Ann. Appl. Biol. 142, 307–316.

    Google Scholar 

  • Qiu, Q.S., Guo, Y., Dietrich, M.A., Shumaker, K.S. and Zhu J.-K. (2002). Regulation of sos1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by sos2 and sos3. Proc. Nat. Acad Sci. USA. 99, 8436–8441.

    PubMed  CAS  Google Scholar 

  • Quesada, V., Garciamartinez, S, Piqueras, P., Ponce, M.R. and Micol, J.R. (2002). Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol. 130, 951–963.

    Article  PubMed  CAS  Google Scholar 

  • Quintero, F.J., Ohta, M., Shi, H.Z., Zhu, J.-K. and Pardo, J.M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc. Nat. Acad Sci USA. 99, 9061-9066.

    Article  PubMed  CAS  Google Scholar 

  • Ratajczak, R. (2000). Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim. Biophys. Acta. 1465, 17–36.

    PubMed  CAS  Google Scholar 

  • Ratajczak, R. and Wilkins, T.A. (2000). Energizing the tonoplast. In D.G. Robinson and J.C. Rogers (Eds.), Vacuolar Compartments (pp. 133–173). England : Sheffield Academic Press Ltd.

    Google Scholar 

  • Rathinasabapathi, B. (2000). Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann. Bot. 86, 709–716.

    Article  CAS  Google Scholar 

  • Rausell, A., Kanhonou, R., Yenush, L., Serrano, R. and Ros, R. (2003). The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants. Plant J. 34, 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Reid, R.J. and Smith, F.A. (2000). The limits of sodium/calcium interactions in plant growth. J. Plant Physiol. 27, 709–715.

    CAS  Google Scholar 

  • Reimann, C. (1992). Sodium exclusion by Chenopodium species. J. Exp. Bot. 43, 503–510.

    CAS  Google Scholar 

  • Rhoades, J.D. and Loveday, J. (1990). Salinity in irrigated agriculture. In B.A. Stewart and D.R. Nielsen (Eds.), American Society of Civil Engineers, Irrigation of Agricultural Crops. American Society of Agronomists, Monograph. 30: 1089–1142.

    Google Scholar 

  • Rhodes, D. and Hanson, A.D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 44, 357–384.

    Article  CAS  Google Scholar 

  • Richards, L.A. (1954). Diagnosis and improvement of saline and alkali soils. Agriculture Handbook, 60. US Department of Agriculture, USA.

    Google Scholar 

  • Rilke, S. and Reimann, C. (1996). Morphological and ecophysiological differences between the subspecies of Salsola kali L. in Europe: results of culture experiments. Flora. 191, 363–376.

    Google Scholar 

  • Rivelli, A.R., James, R.A., Munns, R. and Condon, A.G. (2002a). Effects of salinity on water relations and growth of wheat genotypes with contrasting sodium uptake. Funct. Plant Biol. 29, 1065–1074.

    CAS  Google Scholar 

  • Rivelli, A.R., Lovelli, S. and Perniola, M. (2002b). Effects of salinity on gas exchange, water relations and growth of sunflower (Helianthus annuus). Funct. Plant Biol. 29, 1405–1415.

    CAS  Google Scholar 

  • Rodriguezrosales, M.P., Kerkeb, L., Bueno, P. and Donaire, J.P. (1999). Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum Mill) calli. Plant Sci. 145, 83–91.

    Google Scholar 

  • Romero, L.C., Dominguez-Solis, J.R., Gutierrez-Alcala, G. and Gotor, C. (2001). Salt regulation of Oacetylserine (thiol) lyase in Arabidopsis thaliana and increased tolerance in yeast. Plant Physiol. Bioche. 39, 643–647.

    CAS  Google Scholar 

  • Romeroaranda, R., Soria, T. and Cuartero, J. (2001). Tomato plant water uptake and plant water relationships under saline growth conditions. Plant Sci. 160, 265–272.

    CAS  Google Scholar 

  • Rus, A.M., Estan, M.T., Gisbert, C., Garciasogo, B., Serrano, R., Caro, M., et al. (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ. 24, 875–880.

    Article  CAS  Google Scholar 

  • Saab, I.N., Sharp, R.E., Pritchard, J. and Voetberg, G.S. (1990). Increased endogenous absisic acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials. Plant Physiol. 93, 1329–1336.

    CAS  PubMed  Google Scholar 

  • Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K. and Izui, K. (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23, 319–327.

    Article  PubMed  CAS  Google Scholar 

  • Sairam, R.K., Rao, K.V. and Srivastava, G.C. (2002). Differential response of wheat genotypes to long-term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci. 163, 1037–1046.

    Article  CAS  Google Scholar 

  • Sakamoto, A. and Murata, N. (2000). Genetic engineering of glycine betaine synthesis in plants: current status and implications for enhancement of stress tolerance. J. Exp. Bot. 51, 81–88.

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto, A. and Murata, N. (2002). The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 25, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, D., Brownlee, C. and Harper, J.F. (1999). Communicating with calcium. Plant Cell. 11, 691-706.

    Article  PubMed  CAS  Google Scholar 

  • Saneoka, H., Shiota, K., Kurban, H., Chaudhary, M.I., Premachandra, G.S. and Fujita, K. (1999). Effects of salinity on growth and solute accumulation in two wheat lines differing in salt tolerance. Soil Sci. Plant Nutr. 45, 873–880.

    CAS  Google Scholar 

  • Santa-Maria, G., Rubio, F., Dubcovsky, J. and Rodriguez-Navarro, A. (1997). The HAK1 gene of barley is a member of a large gene family and encodes a high affinity potassium transporter. Plant Cell. 9, 2281–2289.

    Article  PubMed  CAS  Google Scholar 

  • Savoure, A., Thorin, D., Davey, M., Hua, X.J., Mauro, S., Vanmontagu, M., et al. (1999). NaCl and CuSO4 treatments trigger distinct oxidative defense mechanisms in Nicotiana plumbaginifolia L. Plant Cell Environ. 22, 387–396.

    Article  CAS  Google Scholar 

  • Sawahel, W.A. and Hassan, A.H. (2002). Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol. Lett. 24, 721–725.

    Article  CAS  Google Scholar 

  • Schachtman, D.P. (2000). Molecular insights into the structure and function of plant K+ transport mechanisms. Biochim. Biophys. Acta. 1465, 127–139.

    PubMed  CAS  Google Scholar 

  • Schachtman, D.P., Kumar, R., Schroeder, J.I. and Marsch, E.L. (1997). Molecular and functional characterization of a novel low-affinity cation transporter (LCT1) in higher plants. Proc. Nat. Acad. Sci. USA. 94, 11079–11084.

    Article  PubMed  CAS  Google Scholar 

  • Schachtman, D.P. and Schroeder, J.I. (1994). Structure and transport mechanism of a high affinity potassium uptake transporter from higher plants. Nature. 370, 655–658.

    Article  PubMed  CAS  Google Scholar 

  • Schachtman, D.P., Tyerman, S.D. and Terry, B.R. (1991). The K+/Na+ selectivity of a cation channel in the plasma membrane of root cells does not differ in salt-tolerant and salt-sensitive wheat species. Plant Physio. 97, 598–605.

    CAS  Google Scholar 

  • Serraj, R. and Drevon, J.J. (1998). Effects of salinity and nitrogen source on growth and nitrogen fixation in alfalfa. J. Plant Nutr. 21, 1805–1818.

    CAS  Google Scholar 

  • Shabala, S.N., Shabala, S.I., Martynenko, A.I., Babourina, O. and Newman I. (1998). Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. Aust. J. Plant Physiol. 25, 609–616.

    Article  CAS  Google Scholar 

  • Shah, S.H., Tobita, S. and Shono, M. (2002). Cation co-tolerance phenomenon in cell cultures of Oryza sativa adapted to LiCl and NaCl. Plant Cell Tissue Organ Cult. 71, 95–101.

    Article  CAS  Google Scholar 

  • Shalata, A. and Tal, M. (1998). The effect of salt stress on lipid peroxidation and antioxidants in the leaf on the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii. Physiol. Plant. 104, 169–174.

    Article  CAS  Google Scholar 

  • Sheen, J. (1996). Ca2+-dependent protein kinases and stress signal transduction in plants. Science. 274, 1900–1902.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y.G., Du, B.X., Zhang, W.K., Zhang, J.S. and Chen, S.Y. (2002). AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theor. Appl. Genet. 105, 815–821.

    Article  PubMed  CAS  Google Scholar 

  • Shen, Y.G., Yan, D.Q., Zhang, W.K., Du, B.X., Zhang, J.S., Liu, Q., et al. (2003). Novel halophyte EREBP/A2-type DNA binding protein improves salt tolerance in transgenic tobacco. Acta Bot. Sinica. 45, 82–87.

    CAS  Google Scholar 

  • Shi, H.Z., Ishitani, M., Kim, C. and Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Nat. Acad. Sci. USA. 97, 6896–6901.

    PubMed  CAS  Google Scholar 

  • Shi, H.Z., Quintero, F.J., Pardo, J.M. and Zhu, J.-K. (2002a). The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell. 14, 465–477.

    CAS  Google Scholar 

  • Shi, H.Z., Xiong, L.M., Stevenson, B., Lu, T.G. and Zhu, J.-K. (2002b). The Arabidopsis salt overly sensitive-four mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell. 14, 575–588.

    CAS  Google Scholar 

  • Shi, H.Z. and Zhu, J.-K. (2002). Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHX1 by salt stress and abscisic acid. Plant Mol. Biol. 50, 543–550.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki, K. and Yamaguchi-Shinozaki, K. (1997). Gene expression and signal transduction in water-stress response. Plant Physiol. 115, 327–334.

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui, N.U., Chung, H.J., Thomas, T.L. and Drew, M.C. (1998). Abscisic acid dependent and abscisic acid independent expression of the carrot late embryogenesis abundant class gene Dc3 in transgenic tobacco seedlings. Plant Physiol. 118, 1181–1190.

    Article  PubMed  CAS  Google Scholar 

  • Singleton, P.W. and Bohlool, B.B. (1984). Effect of salinity on nodule formation by soybean. Plant Physiol. 74, 72–76.

    CAS  PubMed  Google Scholar 

  • Smekens, M.J. and Vantienderen, P.H. (2001). Genetic variation and plasticity of Plantago coronopus under saline conditions. Acta Oecologica - Int. J. Ecol. 22, 187–200.

    Google Scholar 

  • Speer, M. and Keiser, W.M. (1991). Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiol. 97, 990–997.

    CAS  PubMed  Google Scholar 

  • Steppuhn, H., Volkmar, K.M. and Miller, P.R. (2001). Comparing canola, field pea, dry bean and durum wheat crops grown in saline media. Crop Sci. 41, 1827–1833.

    Article  Google Scholar 

  • Stewart, G.R. and Lee, J.A. (1974). The role of proline accumulation in halophytes. Planta. 120, 279–289.

    Article  CAS  Google Scholar 

  • Storey, R., Schachtman, D.P. and Thomas, M.R. (2003). Root structure and cellular chloride, sodium and potassium distribution in salinized grapevines. Plant Cell Environ. 26, 789–800.

    Article  PubMed  CAS  Google Scholar 

  • Strogonov, B.P. (1964). Physiological Basis of Salt Tolerance in Plants. New York: Academy of Science USSR and Davey and Co.

    Google Scholar 

  • Strogonov, B.P. (1973). Metabolizm rastenij v uslovijah zasolenija(Metabolism of plants under salinity conditions). Moskva: Izdatelstvo Nauka.

    Google Scholar 

  • Stumpf, D.K. (1984). Quantification and purification of quaternary ammonium compounds from halophyte tissue. Plant Physiol. 75, 273–274.

    CAS  PubMed  Google Scholar 

  • Subbarao, G.V. and Johansen, C. (1994). Strategies and scope for improving salinity tolerance in crop plants. In M. Pessarakli (Eds.), Handbook of Plant and Crop Stress(pp. 1069–1087). New York: Marcel Dekker.

    Google Scholar 

  • Subbarao, G.V., Wheeler, R.M., Levine, L.H. and Stutte, G.W. (2001). Glycine betaine accumulation, ionic and water relations of red beet at contrasting levels of sodium supply. J. Plant Physiol. 158, 767–776.

    Article  PubMed  CAS  Google Scholar 

  • Sun, S.B., Shen, Q.R., Wan, J.M. and Liu, Z.P. (2003). Induced expression of the gene for NADP-malic enzyme in leaves of Aloe vera L. under salt stress. Acta Biochim Biophys Sinica. 35, 423-429.

    CAS  Google Scholar 

  • Szabolcs, I. (1987). The global problems of salt-affected soils. Acta Agron. Hungarica. 36, 159–172.

    Google Scholar 

  • Szabolcs, I. (1989). Salt-affected soils, Boca Raton: CRC Press.

    Google Scholar 

  • Sze, H., Li, X. and Palmgren, M.G. (1999). Energization of plant cell membranes by H+-pumping ATPases: regulation and biosynthesis. Plant Cell. 11, 677–689.

    Article  PubMed  CAS  Google Scholar 

  • Tanksley, S.D., Young, N.D., Paterson, A.H. and Bonierbale, M.W. (1989). RFLP mapping in plant breeding: new tools for an old science. Biotechnology. 7, 257–264.

    CAS  Google Scholar 

  • Taybi, T. and Cushman, J.C. (1999). Signaling events leading to Crassulacean acid metabolism induction in the common ice plant. Plant Physiol. 121, 545–555.

    Article  PubMed  CAS  Google Scholar 

  • Tester, M. and Davenport, D. (2003). Na+tolerance and Na+transport in higher plants. Ann. Bot. 91, 503–527.

    Article  PubMed  CAS  Google Scholar 

  • Thiyagarajah, M., Fry, S.C. and Yeo, A.R. (1996). In vitro salt tolerance of cell wall enzymes from halophytes and glycophytes. J. Exp. Bot. 47, 1717–1724.

    CAS  Google Scholar 

  • Thomas, J.C., De Armond, R.L. and Bohnert, H.J. (1992). Influence of NaCl on growth, proline and phosphoenolpyruvate carboxylase levels in Mesembryanthemum crystallinum suspension cultures. Plant Physiol. 98, 626–631.

    CAS  PubMed  Google Scholar 

  • Thomson, W.W., Faraday, C.C. and Oross, J.W. (1988). Salt glands. In D.A. Baker and J.A. Hall (Eds.), Solute Transport in Plant Cells(pp. 498). Essex, UK: Longman.

    Google Scholar 

  • Tukey, H.B. (1970). The leaching of substances from plants. Ann. Rev. Plant Physiol. 21, 305–324.

    CAS  Google Scholar 

  • Ueda, A., Shi, W., Nakamura, T. and Takabe, T. (2002). Analysis of salt-inducible genes in barley roots by differential display. J. Plant Res. 115, 119–130.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa, T., Shimizu, K., Kato, M. and Ueda T. (2000). Enhancement of salt tolerance in soybean with NaCl pretreatment. Physiol Plant. 110, 59–63.

    Article  CAS  Google Scholar 

  • Ungar, I.A. (1991). Ecophysiology of Vascular Halophytes. Boca Raton: CRC Press.

    Google Scholar 

  • Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S. Tsuboi, A., et al. (2000). The Arabidopsis HKT1 gene homolog mediates inward Na+currents in Xenopus laevis oocytes and Na+uptake in Saccharomyces cerevisiae. Plant Physiol. 122, 1249–1259.

    Article  PubMed  CAS  Google Scholar 

  • van der Pijl, L. (1969). Principles of Dispersal in Higher Plants. Berlin: Springer Verlag.

    Google Scholar 

  • Vernon, D.R. and Bohnert, H.J. (1992). Increased expression of a myo-inositol methyl transferase in Mesembryanthemum crystallinum is part of a stress response distinct from Crassulacean acid metabolism induction. Plant Physiol. 99, 1695–1698.

    Article  CAS  PubMed  Google Scholar 

  • Vitart, V., Baxter, I., Doerner, P. and Harper, J.F. (2001). Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant J. 27, 191, 201.

    Article  PubMed  CAS  Google Scholar 

  • Voznesenskaya, E.V., Franceschi, V.R., Pyankov, V.I. and Edwards, G.E. (1999). Anatomy, chloroplast structure and compartmentation of enzymes relative to photosynthetic mechanisms in leaves and cotyledons of species in the tribe Salsoleae(Chenopodiaceae). J. Exp. Bot. 50, 1779–1795.

    Article  CAS  Google Scholar 

  • Waisel, Y. (1972). Biology of Halophytes. Academic Press, New York and London.

    Google Scholar 

  • Wang, B.S., Lüttge, U. and Ratajczak, R. (2001). Effects of salt treatment and osmotic stress on V-ATPase and V-Ppase in leaves of the halophyte Suaeda salsa. J. Exp. Bot. 52, 2355–2365.

    Article  PubMed  CAS  Google Scholar 

  • Wegner, L.H. and Raschke, K. (1994). Ion channels in the xylem parenchyma of barley roots. Plant Physiol. 105, 799–813.

    PubMed  CAS  Google Scholar 

  • Wei, W.X., Bilsborrow, P.E., Hooley, P., Fincham, D.A., Lombi, E. and Forster, B.P. (2003). Salinity induced differences in growth, ion growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant Soil. 250, 183–191.

    Article  CAS  Google Scholar 

  • Weigel, P., Weretilnyk, E.A. and Hanson, A.D. (1986). Betaine aldehyde oxidation by spinach chloroplasts. Plant Physiol.82, 753–759.

    CAS  PubMed  Google Scholar 

  • Weiglin, C. and Winter, E. (1991). Leaf structures of xerohalophytes from an East Jordanian Salt Pan. Flora. 185, 405–424.

    Google Scholar 

  • White, P.J. (1999). The molecular mechanism of sodium influx to root cells. Trends Plant Sci. 4, 245–246.

    Article  PubMed  Google Scholar 

  • White, P.J, Biskup, B., Elzenga J.T.M., Homann, U., Thiel, G., Wissing, F., et al. (1999). Advanced patch-clamp techniques and single-channel analysis. J. Exp. Bot. 50, 1037–1054.

    Article  CAS  Google Scholar 

  • White, P.J. and Broadley, M.R. (2001). Chloride in soils and its uptake and movement within the plant - a review. Ann. Bot. 88, 967–988.

    Article  CAS  Google Scholar 

  • Winicov, I. (1998). New molecular approaches to improving salt tolerance in crop plants. Ann. Bot. 82, 703–710.

    Article  CAS  Google Scholar 

  • Winter, E. (1982). Salt tolerance of Trifolium alexandrinum L. III. Effects of salt on ultra-structure of phloem and xylem transfer cells in petioles and leaves. Aust. J. Plant Physiol. 9, 239–250.

    CAS  Google Scholar 

  • Winter, K. and Lüttge, U. (1979). C3-Photosynthese und Crassulaceen-Säuerstoffwechsel bei Messembryanthemum crystallinum L. Ber Deuts. Bot. Gesell. 92, 117–132.

    CAS  Google Scholar 

  • Wu, S., Ding, L. and Zhu, J.-K. (1996). SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell. 8, 617–627.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L., Schumaker, K.S. and Zhu, J.-K. (2002). Cell signaling during cold, drought, and salt stress. Plant Cell(Supplement 2002), 165–183.

    Google Scholar 

  • Xiong, L. and Zhu, J.-K. (2002). Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ. 25, 131–139.

    Article  PubMed  CAS  Google Scholar 

  • Xiong, L. and Zhu, J.-K. (2003). Regulation of abscisic acid biosynthesis. Plant Physiol. 133, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Yadav, R., Flowers, T.J. and Yeo, A.R. (1996). The involvement of the transpirational bypass flow in sodium uptake by high- and low-sodium-transporting lines of rice developed through intravarietal selection. Plant Cell Environ. 19, 329–336.

    CAS  Google Scholar 

  • Yancey, P.H., Clark, M.E., Hand, S.C., Bowlus, R.D. and Somero, G.N. (1982). Living with water stress: Evolution of osmolyte systems. Science. 217, 1214–1222.

    PubMed  CAS  Google Scholar 

  • Yang, W.J., Rich, P.J., Axtell, J.D., Wood, K.V., Bonham, C.C., Ejeta, G., et al. (2003). Genotypic variation for glycine betaine in sorghum. Crop Sci. 43, 162–169.

    CAS  Google Scholar 

  • Yeo, A.R. (1998). Molecular biology of salt tolerance in the context of whole-plant physiology. J. Exp. Bot. 49, 915–929.

    Article  CAS  Google Scholar 

  • Yeo, A.R. and Flowers, T.J. (1980). Salt tolerance in the halophyte Suaeda maritima L. Dum.: evaluation of the effect of salinity upon growth. J. Exp. Bot. 31, 1171–1183.

    CAS  Google Scholar 

  • Yeo, A.R., Flowers, S.A., Rao, G., Welfare, K., Senanayake, N. and Flowers, T.J. (1999). Silicon reduces sodium uptake in rice (Oryza sativa L.) in saline conditions and this is accounted for a reduction in the transpirational bypass flow. Plant Cell Environ. 22, 559–565.

    Article  CAS  Google Scholar 

  • Yokoi, S., Bressan, R.A., and Hassegawa, P.M. (2002a). Salt stress tolerance of plants. JIRCAS Working Report, 25–33.

    Google Scholar 

  • Yokoi, S., Quintero, F.J., Cubero, B., Ruiz, M.T., Bressan, R.A., Hasegawa, P.M., et al. (2002b). Differential expression and function of Arabidopsis thaliana NHX Na+/H+antiporters in the salt stress response. Plant J. 30, 529–539.

    Article  CAS  Google Scholar 

  • Yoshida, K. (2002). Plant biotechnology - genetic engineering to enhance plant salt tolerance. J. Biosci. Bioeng. 94, 585–590.

    PubMed  CAS  Google Scholar 

  • Yoshida, K., Kaothien, P., Matsui, T., Kawaoka, A. and Shinmyo, A. (2003). Molecular biology and application of plant peroxidase genes. Appl. Micro. Biotech. 60, 665–670.

    CAS  Google Scholar 

  • Yupsanis, T., Kefalas, P.S., Elefteriou, P. and Kotinis, K. (2001). RNAse and DNAse activities in the alfalfa and lentil grown in isoosmotic solutions of NaCl and mannitol. J. Plant Physiol. 158, 921-927.

    Article  CAS  Google Scholar 

  • Yurekli, F., Turkan, I., Porgali, Z.B. and Topcuoglu, S.F. (2001). Indoleacetic acid, gibberellic acid, zeatin and abscisic acid levels in NaCl treated tomato species. Israel J. Plant Sci. 49, 269–277.

    CAS  Google Scholar 

  • Zair, I., Chlyah, A., Sabounji, K., Tittahsen, M. and Chlyah, H. (2003). Salt tolerance improvement in some wheat cultivars after application of in vitro selection pressure. Plant Cell Tissue Organ Cult. 73, 237–244.

    Article  CAS  Google Scholar 

  • Zeng, L.H., Shannon, M.C. and Grieve, C.M. (2002). Evaluation of salt tolerance in rice genotypes by multiple agronomic parameters. Euphytica. 127, 235–245.

    Article  CAS  Google Scholar 

  • Zeng, L.H., Poss, J.A., Wilson, C., Draz, A.S.E., Gregorio, G.B. and Grieve, C.M. (2003). Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica. 129, 281–292.

    Article  CAS  Google Scholar 

  • Zhang, G.Y., Guo, Y., Chen, S.L., and Chen, S.Y. (1995). RFLP tagging of a salt tolerance gene. Plant Sci. 110, 227–234.

    Article  CAS  Google Scholar 

  • Zhang, J., Gowing, D.J. and Davies, W.J. (1989). ABA as a root signal in root to shoot communication of soil drying. In W.J. Davies and B. Jeffcoat (Eds.), Importance of Root to Shoot Communication in the Responses to Environmental Stress(pp. 163–174). Bristol: British Society for Plant Growth Regulation.

    Google Scholar 

  • Zhang, J.S., Xie, C., Li, Z.Y. and Chen, S.Y. (1999). Expression of the plasma membrane H+-ATPase gene in response to salt stress in rice salt-tolerance mutant and its original variety. Theor. Appl. Genet. 99, 1006–1011.

    Article  CAS  Google Scholar 

  • Zhang, L., Ma, X.L., Zhang, Q., Ma, C.L., Wang, P.P., Sun, Y.F., et al (2001). Expressed sequence tags from a NaCl treated Suaeda salsa cDNA library. Gene. 267, 193–200.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X.N., Lin, C.F., Chen, H.Y., Wang, H., Qu, Z.C., Zhang, H.W., et al. (2003). Cloning of a NaCl-induced fructose-1,6-diphosphate aldolase cDNA from Dunaliella salina and its expression in tobacco. Sci. China Series C-Life Sci. 46, 49–57.

    CAS  Google Scholar 

  • Zhao, F.G., Sun, C., Liu, Y.L. and Zhang, W.H. (2003). Relationship between polyamine metabolism in roots and salt tolerance of barley seedlings. Acta Bot. Sinica. 45, 295–300.

    CAS  Google Scholar 

  • Zhifang, G. and Loescher, W.H. (2003). Expression of a celery mannose 6-phosphate reductase in Arabidopsis thaliana enhances salt tolerance and induces biosynthesis of both mannitol and a glucosyl-mannitol dimer. Plant Cell Environ. 26, 275–283.

    Article  CAS  Google Scholar 

  • Zhu, J.-K. (2000). Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124, 941–948.

    PubMed  CAS  Google Scholar 

  • Zhu, J.-K. (2001). Plant salt tolerance. Trends Plant Sci. 6, 66–71.

    PubMed  CAS  Google Scholar 

  • Zhu, J.-K., Hasegawa, P.M. and Bressan, R.A. (1997). Molecular aspects of osmotic stress in plants. Crit. Rev. Plant Sci. 16, 253–277.

    CAS  Google Scholar 

  • Ziegler, H. and Lüttge, U. (1967). Die Salzdrussen von Limonium vulgare. II. Mitteilung: Die Lokalisierung des Chlorids. Planta. 74, 1–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

DAJIC, Z. (2006). SALT STRESS. In: Madhava Rao, K., Raghavendra, A., Janardhan Reddy, K. (eds) Physiology and Molecular Biology of Stress Tolerance in Plants. Springer, Dordrecht. https://doi.org/10.1007/1-4020-4225-6_3

Download citation

Publish with us

Policies and ethics