Skip to main content

Molecular Mapping, Marker-Assisted Selection And MAP-Based Cloning In Tomato

  • Chapter
Genomics-Assisted Crop Improvement

Abstract

Significant progress has been made in molecular marker research in tomato, Lycopersicon esculentum Mill., including generation of markers, development of maps, mapping of genes and QTLs, and fine-mapping, characterization and map-based cloning of genes and QTLs. Numerous types of molecular markers have been developed in tomato, including RFLPs, RAPDs, AFLPs, SSRs, CAPS, ESTs, COSs and SNPs. Several molecular maps of tomato have been developed based on different interspecific populations, including the saturated linkage map based on a L. esculentum × L. pennellii cross. Markers and maps have been utilized extensively to map genes and QTLs controlling agriculturally and biologically important traits and for marker-assisted improvement of many simple-inherited traits such as disease resistance. Marker information also has been used for fine mapping and map-based cloning of several major genes and QTLs. Comparatively, little progress has been made in improving complex traits via marker-assisted selection. However, rapid advances in developing more efficient and resolving markers and in refining QTL positions are expected to lead to a greater use of marker technology for crop improvement in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aarts JMMJG, Hontelez JGJ, Fischer P, Verkerk R, van Kammen A, Zabel P (1991) Acid phosphatase-11, a tightly linked molecular marker for root-knot nematode resistance in tomato: from protein to gene, using PCR and degenerate primers containing dexoyinosine. Plant Mol Biol 16:647–661

    Article  PubMed  CAS  Google Scholar 

  • Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, Kerlavage AR, McCombie WR, Venter JC (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Adkins S (2000) Tomato spotted wilt virus – positive steps towards negative success. Mol Plant Pathol 1:151–157

    Article  CAS  PubMed  Google Scholar 

  • Alpert KB, Tanksley S (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2 – a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA 93:15503–15507

    Article  PubMed  CAS  Google Scholar 

  • Alpert KB, Grandillo S, Tanksley SD (1995) fw 2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000

    Article  Google Scholar 

  • Ammiraju JSS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484

    PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Azanza F, Kim D, Tanksley SD, Juvik JA (1995) Genes from Lycopersicon chmielewskii affecting tomato quality during fruit ripening. Theor Appl Genet 91:495–504

    Article  CAS  Google Scholar 

  • Bai Y, Huang CC, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003) QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact 16:169–176

    Article  PubMed  CAS  Google Scholar 

  • Balint-Kurti PJ, Dixon MS, Jones DA, Norcott KA, Jones JDG (1994) RFLP linkage analysis of the Cf-4 and Cf-9 genes for resistance to Cladospsorium fulvum in tomato. Theor Appl Genet 88:691–700

    Article  CAS  Google Scholar 

  • Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O, Ganal M, Lahaye T, Bonas U (2001) Genetic mapping and functional analysis of the tomato Bs-4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria. Mol Plant Microbe Interact 14:629–638

    Article  PubMed  CAS  Google Scholar 

  • Barone A (2005) Molecular marker-assisted selection for pyramiding resistance genes in tomato. Adv Hort Sci 19:147–152

    Google Scholar 

  • Behare J, Laterrot H, Sarfatti M, Zamir D (1991) RFLP mapping of the Stemphylium resistance gene in tomato. Mol Plant Microbe Interact 4:489–492

    CAS  Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: Linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    PubMed  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bernatzky R (1993) Genetic mapping and protein product diversity of the self-incompatibility locus in wild tomato (Lycopersicon peruvianum). Bioch Genet 31:173–184

    Article  CAS  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    PubMed  CAS  Google Scholar 

  • Blauth SL, Steffiens JC, Churchill GA, Mutschler MM (1999) Identification of QTLs controlling acylsugar fatty acid composition in an intraspecific population of Lycopersicon pennellii (Corr) D’Arcy. Theor Appl Genet 99:373–381

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    PubMed  CAS  Google Scholar 

  • Breto MP, Asins MJ, Carbonell EA (1994) Salt tolerance in Lycopersicon species: III. Detection of quantitative trait loci by means of molecular markers. Theor Appl Genet 88:395–401

    Article  CAS  Google Scholar 

  • Brommenschenkel SH, Tanksley SD (1997) Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol Gen Genet 256:121–126

    Article  Google Scholar 

  • Brommenschenkel SH, Frary A, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact 2000:1130–1138

    Article  Google Scholar 

  • Brouwer DJ, St Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs. Theor Appl Genet 108:628–638

    Article  PubMed  CAS  Google Scholar 

  • Brouwer DJ, Jones ES, St Clair DA (2004) QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome 47:475–492

    Article  PubMed  CAS  Google Scholar 

  • Budiman MA, Chang S-B, Lee S, Yang TJ, Zhang H-B, de Jong H, Wing RA (2004) Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor Appl Genet 108:190–196

    Article  PubMed  CAS  Google Scholar 

  • Butler L (1968) Linkage summary. Rep Tomato Genet Coop 18:4–6

    Google Scholar 

  • Carmel-Goren L, Liu Y-S, Lifschitz E, Zamir D (2003) The SELF-PRUNING gene family in tomato. Plant Mol Biol 52:1215–1222

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffé P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevaller C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  PubMed  CAS  Google Scholar 

  • Chagué V, Mercier JC, Guénard M, de Courcel AGL, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677

    Article  Google Scholar 

  • Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103

    Article  CAS  Google Scholar 

  • Chen K-Y, Tanksley SD (2004) High-resolution mapping and functional analysis of se2.1: A major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563–1573

    Article  PubMed  CAS  Google Scholar 

  • Chen FQ, Foolad MR, Hyman J, Clair DA St, Beelman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    Article  CAS  Google Scholar 

  • Chetelat RT (2002) Revised list of monogenic stocks. Rep Tomato Genet Coop 52:41–62

    Google Scholar 

  • Chunwongse J, Bunn TB, Crossman C, Jinag J, Tanksley SD (1994) Chromosomal localization and molecular-marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor Appl Genet 89:76–79

    Article  CAS  Google Scholar 

  • Chunwongse J, Chunwongse C, Black L, Hanson P (1998) Mapping of Ph-3 gene for late blight from L. pimpinellifolium L3708. Rep Tomato Genet Coop 48:13–14

    Google Scholar 

  • Coaker GL, Francis DM (2004) Mapping, genetic effects, and epistatic interaction to two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor Appl Genet 108:1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Danesh D, Aarons S, Mcgill GE, Young ND (1994) Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol Plant Microbe Interact 7:464–471

    PubMed  CAS  Google Scholar 

  • de Giovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48

    Article  CAS  Google Scholar 

  • de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Dellapenna D, Alexandert DC, Bennett AB (1986) Molecular cloning of tomato fruit polygalacturonase: analysis of polygalacturonase mRNA levels during ripening. Proc Natl Acad Sci USA 83:6420–6424

    Article  PubMed  CAS  Google Scholar 

  • Diwan N, Fluhr R, Ehsed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98:315–319

    Article  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–459

    Article  PubMed  CAS  Google Scholar 

  • Doganlar S, Dodson J, Gabor B, Beck-Bunn T, Crossman C, Tanksley SD (1998) Molecular mapping of the py-1 gene for resistance to corky root rot (Pyrenochaeta lycopersici) in tomato. Theor Appl Genet 97:784–788

    Article  CAS  Google Scholar 

  • Doganlar S, Tanksley SD, Mutschler MA (2000) Identification and molecular mapping of loci controlling fruit ripening time in tomato. Theor Appl Genet 100:249–255

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Ku HM, Tanksley SD (2002) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Duvick DN (1996) Plant breeding, an evolutionary concept. Crop Sci 36:539–548

    Article  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • FAOSTAT (2005) FAO Statistical Databases. Food and agriculture organization of the United Nations, Statistics Division

    Google Scholar 

  • Foolad MR (1999a) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42:727–734

    Article  CAS  Google Scholar 

  • Foolad MR (1999b) Genetics of salt tolerance and cold tolerance in tomato: quantitative analysis and QTL mapping. Plant Biotechnol 16:55–64

    CAS  Google Scholar 

  • Foolad MR (2000) Genetic bases of salt tolerance and cold tolerance in tomato. Curr Top Plant Biol 2:35–49

    CAS  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell, Tissue Org Cult 76:101–119

    Article  CAS  Google Scholar 

  • Foolad MR (2005) Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) abiotic stresses: plant resistance through breeding and molecular approaches. The Haworth Press, New York, pp 613–684

    Google Scholar 

  • Foolad MR, Chen FQ (1998) RAPD markers associated with salt tolerance in an Interspecific cross of tomato (Lycopersicon esculentum ¥ L. pennellii}). Plant Cell Rep 17:306–312

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ (1999) RFLP mapping of QTLs conferring salt tolerance during vegetative stage in tomato. Theor Appl Genet 99:235–243

    Article  CAS  Google Scholar 

  • Foolad MR, Jones RA (1991) Genetic analysis of salt tolerance during germination in Lycopersicon. Theor Appl Genet 81:321–326

    Google Scholar 

  • Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192

    Article  CAS  Google Scholar 

  • Foolad MR, Jones RA, Rodriguez RL (1993) RAPD markers for constructing intraspecific tomato genetic maps. Plant Cell Rep 12:293–297

    Article  CAS  Google Scholar 

  • Foolad MR, Stoltz T, Dervinis C, Rodriguez RL, Jones RA (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breed 3:269–277

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998a) RFLP mapping of QTLs conferring cold tolerance during seed germination in an interspecific cross of tomato. Mol Breed 4:519–529

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998b) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144

    Article  CAS  Google Scholar 

  • Foolad MR, Lin GY, Chen FQ (1999) Comparison of QTLs for seed germination under non-stress, cold stress and salt stress in tomato. Plant Breed 118:167–173

    Google Scholar 

  • Foolad MR, Zhang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Zhang L, Khan A, Niño-Liu D, Lin GY (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum ¥ L. hirsutum cross. Theor Appl Genet 104:945–958

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Zhang L, Subbiah P (2003a) Genetics of drought tolerance during seed germination in tomato: inheritance and QTL mapping. Genome 46:536–545

    Google Scholar 

  • Foolad MR, Zhang LP, Subbiah P (2003b) Relationships among cold, salt and drought tolerance during seed germination in tomato: inheritance and QTL mapping. Acta Hort 618:47–57

    CAS  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J-P, Meller J, Elber R, Alpert KB, Tanksley S (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Doganlar S, Fulton TM, Uhlig J, Yates H, Tanksley SD (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Fritz LA, Tanksley SD (2004a) A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theor Appl Genet 109:523–533

    Article  Google Scholar 

  • Frary A, Fulton TM, Zamir D, Tanksley S (2004b) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  CAS  Google Scholar 

  • Frary A, Xu Y, Liu JP, Mitchell S, Tedeschi E, Tanksley SD (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genomics 266:821–826

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Carrari F, Liu Y-S, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgrssions. Science 305:786–789

    Article  CAS  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparison with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton AJ, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD (2002) Identification, analysis, and utilizatioin of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Ganal MW, Simon R, Brommonschenkel S, Tanksley SD, Kumar A (1995) Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol Plant Microbe Interact 8:886–891

    PubMed  CAS  Google Scholar 

  • Ganal MW, Czihal R, Hannappel U, Kloos D-U, Polley A, Ling H-Q (1998) Sequencing of DNA clones from the genetic map of tomato (Lycopersicon esculentum). Genome Res 8:842–847

    PubMed  CAS  Google Scholar 

  • Georgelis N, Scott JW, Baldwin EA (2004) Relationship of tomato fruit sugar concentration with physical and chemical traits and linkage of RAPD markers. J Am Soc Hort Sci 129:839–845

    CAS  Google Scholar 

  • Gerster H (1997) The potential role of lycopene for human health. J Am Coll Nutr 16:109–126

    PubMed  CAS  Google Scholar 

  • Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Phys Plant Mol Biol 52:725–749

    Article  CAS  Google Scholar 

  • Giovannoni JJ, Noensie EN, Ruezinsky DM, Lu X-H, Tracy SL, Ganal MW, Martin GB, Pillen K, Alpert KB, Tanksley SD (1995) Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes. Mol Gen Genet 248:195–206

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ, Yen H, Shelton B, Miller S, Vrebalov J, Kannan P, Tieman D, Hackett R, Grierson D, Klee H (1999) Genetic mapping of ripening and ethylene-related loci in tomato. Theor Appl Genet 98:1005–1013

    Article  CAS  Google Scholar 

  • Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer; Review of the epidemiologic literature. J Natl Cancer Inst 91:317–331

    Article  PubMed  CAS  Google Scholar 

  • Goggin FL, Williamson VM, Ullrich SE (2001) Variability in the response of Macrosiphum euphorbiae and Myzux persicae (Himiptera: Aphididae) to the tomato resistance gene Mi. Environ Entomol 30:101–106

    Article  Google Scholar 

  • Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from Lycopersicon esculentum × Lycopersicon cheesmanii cross. Theor Appl Genet 90:925–932

    Article  Google Scholar 

  • Graham EB, Frary A, Kang JJ, Jones CM, Gardener RG (2004) A recombinant inbred line mapping population derived from a Lycopersicon esculentum × L pimpinellifolium cross. Rep Tomato Genet Coop 54:22–25

    Google Scholar 

  • Grandillo S, Tanksley SD (1996a) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1996b) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Article  CAS  Google Scholar 

  • Grandillo S, Ku J, Tanksley SD (1996) Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Mol Breed 2:251–260

    Article  CAS  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Grierson D, Tucker GA, Keen J, Ray J, Bird CR, Schuch W (1986) Sequencing and identification of a cDNA clone for tomato polygalacturonase. Nucl Acids Res 14:8595–8603

    Article  PubMed  CAS  Google Scholar 

  • Griffiths PD, Scott JW (2001) Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. J Am Soc Hort Sci 126:462–467

    CAS  Google Scholar 

  • Gu Y-Q, Martin GB (1998) Molecular mechanisms involved in bacterial speck disease resistance of tomato. Phil Trans R Soc Lond 353:1455–1461

    Article  CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unsused natural variation can lift yield barriers in plant breeding. PLoS Biol 2:1610–1615

    Article  CAS  Google Scholar 

  • Gur A, Semel Y, Cahaner A, Zamir D (2004) Real time QTL of complex phenotypes of tomato interspecific introgression lines. Trends Plant Sci 9:107–109

    Article  PubMed  CAS  Google Scholar 

  • Haanstra JPW, Wye C, Verbaked H, Meijer-Dekens F, Berg Pvd, Odinot P, Heusden AWv, Tanksley S, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennellii F2 population. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniy-Appa V (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hort Sci 125:15–20

    CAS  Google Scholar 

  • He C, Poysa V, Yu K (2003) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106:363–373

    PubMed  CAS  Google Scholar 

  • Huang CC, Cui YY, Weng CR, Zabel P, Lindhout P (2000) Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor Appl Genet 101:918–924

    Article  CAS  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of B-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  PubMed  CAS  Google Scholar 

  • Ito P, Currence TM (1964) A linkage test involving c sp B+ md in chromosome 6. Rep Tomato Genet Coop 14:14–15

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in human DNA. Nature 314:67–73

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS, Jones JDG (1993) Two complex resistance loci revealed in tomato by classical and RFLP mapping of Cf-2, Cf-4, Cf-5, and Cf-9 genes for resistance to Cladosporium fulvum. Mol Plant Microbe Interact 6:348–357

    CAS  Google Scholar 

  • Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510

    Article  PubMed  CAS  Google Scholar 

  • Kaloshian I, Yaghoobi J, Liharska T, Hontelez J, Hanson D, Hogan P, Jesse T, Wijbrandi J, Simons G, Vos P, Zabel P, Williamson VM (1998) Genetic and physical localization of the root-knot nematode resistance locus Mi in tomato. Mol Gen Genet 257:376–385

    Article  PubMed  CAS  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR (1998) Development of sequence characterized DNA markers linked to a dominant verticillium wilt resistance gene in tomato. Genome 41:91–95

    Article  PubMed  CAS  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98:6511–6515

    Article  PubMed  CAS  Google Scholar 

  • Kinzer SM, Schwager SJ, Mutschler MA (1990) Mapping of ripening-related or – specific cDNA clones of tomato (Lycopersicon esculentum). Theor Appl Genet 79:489–496

    Article  CAS  Google Scholar 

  • Knapp S, Bohs L, Nee M, Spooner DM (2004) Solanaceae – a model for linking genomics with biodiversity. Comp Funct Genom 5:285–291

    Article  CAS  Google Scholar 

  • Kohler GR, Clair DA St (2005) Variation for resistance to aphids (Homoptera: Aphididae) among tomato inbred backcross lines derived from wild Lycopersicon species. J Econ Entomol 98:988–995

    PubMed  Google Scholar 

  • Konieczny A, Ausubel FA (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  PubMed  CAS  Google Scholar 

  • Ku H-M, Doganlar S, Chen K-Y, Tanksley SD (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 99:844–850

    Article  CAS  Google Scholar 

  • Ku H-M, Grandillo S, Tanksley S (2000) fs8.1, a major QTL, sets the pattern of tomto carpel shape well before anthesis. Theor Appl Genet 101:873–878

    Article  CAS  Google Scholar 

  • Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breed 16:343–349

    Article  CAS  Google Scholar 

  • Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1994) The Never Ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521–530

    Article  PubMed  CAS  Google Scholar 

  • Landegren U, Nilsson M, Kwok PY (1998) Reading bits of genetic information: Methods for single-nucleotide polymorphism analysis. Genome Res 8:769–776

    PubMed  CAS  Google Scholar 

  • Langella A, Ercolano MR, Monti lM, Frusciante l, Barone A (2004) Molecular marker assisted transfer of resistance to TSWV in tomato elite lines. J Hort Sci Biotechnol 79:806–810

    CAS  Google Scholar 

  • Lauge R, Dmitriev AP, Joosten MHA, De Wit PJGM (1998) Additional resistance gene(s) against Cladosporium fulvum present on the Cf-9 introgression segment are associated with strong PR protein accumulation. Mol Plant Microbe Interact 11:301–308

    Article  CAS  Google Scholar 

  • Lawson DM, Lunde CF, Mutschler MA (1997) Marker-assisted transfer of acylsugar-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycopersicon esculentum. Mol Breed 3:307–317

    Article  CAS  Google Scholar 

  • Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  PubMed  CAS  Google Scholar 

  • Levesque H, Vedel F, Mathieu C, de Courcel AGL (1990) Identification of a short rDNA spacer sequence highly specific of a tomato line containing Tm-1 gene introgressed from Lycopersicon hirsutum. Theor Appl Genet 80:602–608

    Article  CAS  Google Scholar 

  • Levin I, Gilboa N, Shen S, Schaffer AA (2000) Fgr, a major locus that modulates the fructose to glucose ratio in mature fruits. Theor Appl Genet 100:256–262

    Article  CAS  Google Scholar 

  • Ling H-Q, Koch G, Båumlein H, Ganal MW (1999) Map-based cloning of chloronerva, a gene involved in iron uptake of higher plants encoding nicotianamine synthase. Proc Natl Acad Sci USA 96:7098–7130

    Article  PubMed  CAS  Google Scholar 

  • Linnaeus C (1753) Species Planatarium, 1st ed edn. Holmiae, Stockholm, Sweden

    Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422

    PubMed  CAS  Google Scholar 

  • Liu JP, Cong B, Tanksley SD (2003a) Generation and analysis of an artificial gene dosage series in tomato to study the mechanisms by which the cloned quantiative trait locus fw2.2 controls fruit size. Plant Physiol 132:292–299

    Article  CAS  Google Scholar 

  • Liu JP, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  PubMed  CAS  Google Scholar 

  • Liu Y-S, Gur A, Ronen G, Causse M, Damidaux R, Duffe P, Buret M, Hirschberg J, Zamir D (2003b) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotech J 1:195–207

    Article  CAS  Google Scholar 

  • MacArthur JW (1934) Linkage groups in the tomato. J Genet 29:123–133

    Google Scholar 

  • Mangin B, Thoquet P, Grimsley NH (1999) Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172

    PubMed  CAS  Google Scholar 

  • Mao L, Begum D, Chuang H-W, Budlman MA, Szymkowlak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MAD-box gene controlling tomato flower absicission zone development. Nature 406:910–913

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Begum D, Goff SA, Wing RA (2001) Sequence and analysis of the tomato JOINTLESS locus1. Plant Physiol 126:1331–1340

    Article  PubMed  CAS  Google Scholar 

  • Martin B, Nienhuis J, King G (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243:1725–1728

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993a) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  CAS  Google Scholar 

  • Martin GB, Frary A, Wu T, Brommonschenkel S, Chunwongse J (1994) A member of the Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6:1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Martin GB, Vicente MCd, Tanksley SD (1993b) High-resolution linkage analysis and physical chraracterization of the Pto bacterial resistance locus in tomato. Mol Plant Microbe Interact 6:26–34

    CAS  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Worsch R, Fraley R (1986) Leaf disk transformation of cultivated tomato (L. esculentum) using Agrobacterium tumifaciens. Plant Cell Rep 5:81–84

    Article  CAS  Google Scholar 

  • Medina-Filho H (1980) Linkage of Aps-1, Mi and other markers on chromosome 6. Rep Tomato Genet Coop 30:26–28

    Google Scholar 

  • Mesbah LA, Kneppers RJA, Takken FLW, Laurent P, Hille J, Nijkamp HJJ (1999) Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum). Mol Gen Genet 261:50–57

    Article  PubMed  CAS  Google Scholar 

  • Miller P (1754) The gardeners dictionary, 4th ed, London, UK

    Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  Google Scholar 

  • Monforte AJ, Tanksley S (2000a) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    Article  CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000b) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

    Article  CAS  Google Scholar 

  • Moore S, Vrebalov J, Payton P, Giovannoni J (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53:2023–2030

    Article  PubMed  CAS  Google Scholar 

  • Moreau P, Thoquet P, Olivier J, Laterrot H, Grimsley NH (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol Plant Microbe Interact 11:259–268

    Article  CAS  Google Scholar 

  • Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–157

    Article  PubMed  CAS  Google Scholar 

  • Mutschler MA, Doerge RW, Liu SC, Kuai JP, Liedl BE, Shapiro JA (1996) QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTLs controlling acylsugar level and composition. Theor Appl Genet 92:709–718

    Article  CAS  Google Scholar 

  • Ohmori T, Murata M, Motoyoshi F (1996) Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor Appl Genet 92:151–156

    Article  CAS  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85:985–993

    Article  CAS  Google Scholar 

  • Paran I, Zamir D (1997) QTL analysis of morpholocial traits in a tomato recombinant inbred line population. Genome 40:242–248

    Article  PubMed  CAS  Google Scholar 

  • Paran I, Goldman I, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548

    Article  CAS  Google Scholar 

  • Parrella G, Ruffel S, Moretti A, Morel C, Palloix A, Caranta C (2002) Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes. Theor Appl Genet 105:855–861

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Peters JL, Széll M, Kendrick RE (1998) The expression of light-regulated genes in the high-pigment-1 muatnt of tomato. Plant Physiol 117:797–807

    Article  PubMed  CAS  Google Scholar 

  • Pierce LC (1971) Linkage test with Ph conditioning resistance to race 0. Rep Tomato Genet Coop 21:30

    Google Scholar 

  • Pillen K, Pineda O, Lewis C, Tanksley SD (1996) Status of genome mapping tools in the taxon Solanaceae. In: Paterson A (ed) Genome mapping in plants. RG Landes, Austin, TX, pp 281–308

    Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal J, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFl1. Development 125:1979–1989

    PubMed  CAS  Google Scholar 

  • Rick CM (1973) Potential genetic resources in tomato species: clues from observation in native habitats. In: Srb AM (ed) Genes, enzymes, and populations. Plenum Press, New York, pp 255–269

    Google Scholar 

  • Rick CM (1975) The tomato. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 247–280

    Google Scholar 

  • Rick CM (1976a) Natural variability in wild species of Lycopersicon and its bearing on tomato breeding. Genet Agraria 30:249–259

    Google Scholar 

  • Rick CM (1976b) Tomato, Lycopersicon esculentum (Solanaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, pp 268–273

    Google Scholar 

  • Rick CM (1978) The Tomato. Sci Am 23:76–87

    Article  Google Scholar 

  • Rick CM (1979a) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JC, Lester RN, Skelding AD (eds) The biology and taxnomy of the solanaceae. Academic Press, New York, pp 667–678

    Google Scholar 

  • Rick CM (1979b) Potential improvement of tomatoes by controlled introgression of genes from wild speies. Proceedings of the Conference of Broadening Genetic Base of Crops. Pudoc, Wageningen, pp 167–173

    Google Scholar 

  • Rick CM (1980) Tomato. Hybridization of crop plants. Am Soc Agron/Crop Sci Soc Am, Madison, WI, pp 669–680

    Google Scholar 

  • Rick CM (1991) Tomato paste: a concentrated review of genetic highlights from the beginnings to the advent of molecular genetics. Genetics 128:1–5

    Google Scholar 

  • Rick CM, Fobes JF (1974) Association of an allozyme with nematode resistance. Rep Tomato Genetic Coop 24:25

    Google Scholar 

  • Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bul Torrey Bot Club 102:376–384

    Article  Google Scholar 

  • Rick CM, Gill BS (1973) Reproductive errors in aneuploids: generation of variant extra-chromosomal types by tomato primary trisomics. Can J Genet Cytol 15:299–308

    Google Scholar 

  • Rivers BA, Bernatzky R, Robinson SJ, Jahnen-Dechent W (1993) Molecular diversity at the self-incompatibility locus is a salient feature in natural populations of wild tomato (Lycopersicon peruvianum). Mol Gen Genet 238:419–427

    Article  PubMed  CAS  Google Scholar 

  • Robert VJM, West MAL, Inai S, Caines A, Arntzen L, Smith JK, Clair DA St (2001) Marker-assisted introgression of blackmold QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233

    Article  CAS  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosyntheis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  PubMed  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to beta-carotene formation in plant chloroplast discovered by map-based cloning of Beta and old-gold color muation in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  PubMed  CAS  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  PubMed  CAS  Google Scholar 

  • Rousseaux MC, Jones CM, Adams D, Chetelat RT, Bennett AB, Powell AA (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408

    Article  PubMed  CAS  Google Scholar 

  • Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40

    Article  PubMed  CAS  Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomatol. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D, Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded withing the Pto kinase gene cluster. Cell 86:123–133

    Article  PubMed  CAS  Google Scholar 

  • Sandbrink JM, van-Ooijen JW, Purimahua CC, Vrielink M, Verkerk R, Zabel P, Lindhout P (1995) Localization of genes for bacterial cancer resistance in Lycopersicon peruvianum using RFLPs. Theor Appl Genet 90:444–450

    Article  CAS  Google Scholar 

  • Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 80:22–26

    Google Scholar 

  • Schornack S, Ballvora A, Gürlebeck D, Peart J, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37:46–60

    Article  PubMed  CAS  Google Scholar 

  • Scott JW, Agrama HA, Jones JP (2004) RFLP-based analysis of recombination among resistance genes to fusarium wilt races 1, 2 and 3 in tomato. J Am Soc Hort Sci 129:394–400

    CAS  Google Scholar 

  • Simons G, Groenendijk J, Wijbrandi J, Reijans M (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Slater A, Maunders MJ, Edwards K, Schuch W, Grierson D (1985) Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol Biol 5:137–147

    Article  CAS  Google Scholar 

  • Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes and pepinos (Solanaceae). Am J Bot 80:676–688

    Article  CAS  Google Scholar 

  • Stamova BS, Chetelat RT (2000) Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theor Appl Genet 101:527–537

    Article  CAS  Google Scholar 

  • Stevens MA, Rick CM (1986) Genetics and breeding. In: Atherton JG, Rudich J (eds) The tomato crop. Chapman and Hall, New York, pp 35–109

    Google Scholar 

  • Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw-5 locus for tomato spotted wild virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456

    Article  CAS  Google Scholar 

  • Stommel JR, Zhang YP (1998) Molecular markers linked to quantitative trait loci for anthracnose resistance in tomato (Abstract). Hort Science 33:514

    Google Scholar 

  • Suliman-pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLP, SSRs, and SNPs in Lycopersicon esculentum. Cell Mol Biol Letts 7:583–597

    CAS  Google Scholar 

  • Tanksley SD (1993) Linkage map of the tomato (Lycopersicon esculentum) (2N = 24). In: O’Brian SJ (ed) Genetic maps: locus maps of complex genomes, 6th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp6.3–6.15

    Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  Google Scholar 

  • Tanksley SD, Loaiza-Figueroa F (1985) Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Proc Natl Acad Sci USA 82:5093–5096

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Medina-Filho H, Rick CM (1982) Use of naturally-occuring enzyme variation to detect and map genes controlling quantitative traits in an interspecific cross of tomato. Heredity 49:11–25

    Google Scholar 

  • Tanksley SD, Rick CM (1980) Isozyme gene linkage map of tomato: applications in genetics and breeding. Theor Appl Genet 57:161–170

    Article  CAS  Google Scholar 

  • Tanksley SD, Rick CM, Vallejos CE (1984) Tight linkage between a nuclear male-sterile locus and an enzyme marker in tomato. Theor Appl Genet 68:109–113

    Article  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de-Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Thompson AE, Tomes ML, Erickson HT, Wann EV, Armstrong RJ (1967) Inheritance of crimson fruit color in tomatoes. Proc Am Soc Hort Sci 91:495–504

    Google Scholar 

  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Grimsley NH (1996) Quantitative trati loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol Plant Microbe Interact 9:826–836

    CAS  Google Scholar 

  • Tigchelaar EC (1986) Tomato breeding. In: Bassett MJ (ed) Breeding for vegetable crops. AVI Publishing Co., Westport, CT, pp 135–171

    Google Scholar 

  • Tør M, Manning K, King GJ, Thompson AJ, Jones GH, Seymour GB, Armstrong SJ (2002) Genetic analysis and FISH mapping of the Clourless non-ripening locus of tomato. Theor Appl Genet 104:165–170

    Article  PubMed  Google Scholar 

  • Truco MJ, Randall LB, Bloom AJ, Clair DA St (2000) Detection of QTL associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum × L. hirsutum. Theor Appl Genet 101:1082–1092

    Article  CAS  Google Scholar 

  • USDA (2005) Agricultural statistics 2005. United State Department of Agtriculture, National Agricultural Staticstics Service

    Google Scholar 

  • Vakalounakis DJ, Laterrot H, Moretti A, Ligoxigakis EK, Smardas K (1997) Linkage between Fr1 (Fusarium oxysporum f. sp. radicis-lycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato (Lycopersicon esculentum). Ann Appl Biol 130:319–323

    Article  Google Scholar 

  • Vallejos CE, Tanksley SD (1983) Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor Appl Genet 66:241–247

    Article  Google Scholar 

  • van der Biezen EA, Glagotskaya T, Overduin B, Nijkamp HJJ, Hille J (1995) Inheritance and genetic mapping of resistance to Alternaria alternata f. sp. lycopersici in Lycopersicon pennellii. Mol Gen Genet 247:453–461

    Article  PubMed  Google Scholar 

  • van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed  Google Scholar 

  • van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in yellow stuffer tomato. Theor Appl Genet 107:139–147

    PubMed  Google Scholar 

  • van der Knaap E, Lippman ZB, Tanksley SD (2000) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104:241–247

    Article  Google Scholar 

  • van der Knaap E, Sanyal A, Jackson SA, Tanksley SD (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168:2127–2140

    Article  PubMed  CAS  Google Scholar 

  • van Heusden AW, Koornneef M, Voorrips RE, Brüggemann W, Pet G, Vrielink-van Ginkel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074

    Article  Google Scholar 

  • van Ooijen JW, Sandbrink JM, Vrielink M, Verkerk R, Zabel P, Lindhout P (1994) An RFLP linkage map of Lycopersicon peruvianum. Theor Appl Genet 89:1007–1013

    Article  Google Scholar 

  • van Tuinen A, Cordommier-Pratt M-M, Pratt LH, Verkerk R, Zabel P, Koornneef M (1997) The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor Appl Genet 94:115–122

    Article  PubMed  Google Scholar 

  • Veremis JC, van Heusden AW, Roberts PA (1999) Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theor Appl Genet 98:274–280

    Article  CAS  Google Scholar 

  • Villalta I, Reina-Sånchez A, Cuartero J, Carbonell EA, Asins MJ (2005) Comparative microsatellite linkage analysis and genetic structure of two populations of F6 lines derived from Lycopersicon pimpinellifolium and L. cheesmanii. Theor Appl Genet 110:881–894

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky DM, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343

    Google Scholar 

  • Wang Y, Van der Hoeven R, Nielsen R, Mueller LA, Giovannoni J, Tanksley SD (2005) Characteristics of the tomato nuclear genome as determined by sequencing unmethylated EcoRI digest fragment. Theor Appl Genet 112:72–84

    Article  PubMed  Google Scholar 

  • Wann EV, Jourdain EL (1985) Effects of mutant genotypes hp og c and dg og c on tomato fruit quality. J Am Soc Hort Sci 110:212–215

    CAS  Google Scholar 

  • Warnock SJ (1988) A review of taxonomy and phylogeny of the genus Lycopersicon. Hort Sci 23:669–673

    Google Scholar 

  • Warren GF (1998) Spectacular increases in crop yields in the twentieth century. Weed Technol 12:752–760

    Google Scholar 

  • Wilkinson J, Lanahan MB, Yen H, Giovannoni J, Klee H (1995) An ethylene-induced component of signal transduction encoded by Never-ripe. Science 270:1807–1809

    Article  PubMed  CAS  Google Scholar 

  • Williams JGK, Kubelik AE, Levak KJ, Rafalski JA, Tingey SC (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531–6535

    Article  PubMed  CAS  Google Scholar 

  • Wing RA, Zhang HB, Tanksley SD (1994) Map-based cloning in crop plants. Tomato as a model system: I. Genetic and physical mapping of Jointless. Mol Gen Genet 242:681–688

    Article  PubMed  CAS  Google Scholar 

  • Yaghoobi J, Kaloshian I, Wen Y, Williamson VM (1995) Mapping of a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91:457–464

    Article  CAS  Google Scholar 

  • Yang W-Y, Francis DM (2005) Marker assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J Am Soc Hort Sci 130:716–721

    CAS  Google Scholar 

  • Yang W-Y, Sacks EJ, Lewis Ivey ML, Miller SA, Francis DM (2005) Resistance in Lycopersicon esculentum intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 95:519–527

    Article  CAS  PubMed  Google Scholar 

  • Yates HE, Frary A, Doganlar S, Frampton AJ, Eannetta NT, Uhlig J, Tanksley SD (2004) Comparative fine mapping of fruit quality QTLs on chromosome 4 introgression derived from two wild tomato species. Euphytica 135:283–296

    Article  CAS  Google Scholar 

  • Yen HC, Lee S, Tanksley SD, Lanahan MB, Klee HJ, Giovannoni JJ (1995) The tomato Never-ripe locus regulates ethylene-inducible gene experession and is linked to a homologue of the Arabidopsis ETR1 gene. Plant Physiol 107:1343–1353

    Article  PubMed  CAS  Google Scholar 

  • Yen HC, Shelton BA, Howard LR, Lee S, Vrebalov J, Giovannoni JJ (1997) The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet 95:1069–1079

    Article  CAS  Google Scholar 

  • Yu ZH, Wang JF, Stall RE, Vallejos CE (1995) Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) dye. Genetics 141:675–682

    PubMed  CAS  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay U, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146

    Article  CAS  Google Scholar 

  • Zamir D, Tal M (1987) Genetic analysis of sodium, potassium and chloride ion content in Lycopersicon. Euphytica 36:187–191

    Article  CAS  Google Scholar 

  • Zhang H-B, Budiman MA, Wing RA (2000) Genetic mapping of jointless-2 to tomato chromosome 12 using RFLP and RAPD markers. Theor Appl Genet 100:1183–1189

    Article  CAS  Google Scholar 

  • Zhang H-B, Martin GB, Tanksley SD, Wing RA (1994) Map-based cloning in crop plants. Tomato as a model system: II. Isolation and characterization of a set of overlapping artificial chromosomes encompassing the Jointless locus. Mol Gen Genet 244:613–621

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lin GY, Niño-Liu DO, Foolad MR (2003) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19

    Article  CAS  Google Scholar 

  • Zhang LP, Khan A, Niño-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum × L. hirsutum cross. Genome 45:133–146

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Stommel JR (2000) RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence beta-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill). Theor Appl Genet 100:368–375

    Article  CAS  Google Scholar 

  • Zhang Y-P, Stommel JR (2001) Development of SCAR and CAPS markers linked to the Beta gene in tomato. Crop Sci 41:1602–1608

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Foolad, M.R. (2007). Molecular Mapping, Marker-Assisted Selection And MAP-Based Cloning In Tomato. In: Varshney, R.K., Tuberosa, R. (eds) Genomics-Assisted Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6297-1_13

Download citation

Publish with us

Policies and ethics