Skip to main content
Log in

Exogenous 7,8-dihydro-8α-20-hydroxyecdysone application improves antioxidative enzyme system, photosynthesis, and yield in rice under high-temperature condition

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

7,8-Dihydro-8α-20-hydroxyecdysone (DHECD) has biological activity similar to brassinosteroids. In this study, we investigated the role of DHECD on the antioxidative enzyme activity and photosynthetic performance of rice subjected to high-temperature conditions. DHECD at either 1 or 10 µM was used as a foliar application to rice leaves at 23 days after sowing, and then, at 31 days after sowing, rice plants were moved to a heat chamber at 40/30 °C day/night for 9 days. Application of DHECD significantly increased the activities of the antioxidative enzymes: superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase. The results of this study provide the first direct evident for DHECD-elevated antioxidative enzyme activity and decreased lipid peroxidation, which possibly induced thermotolerance in rice plants. Furthermore, DHECD was effective in increasing the net photosynthetic rate, stomatal conductance, and water use efficiency, as well as increasing the maximal quantum efficiency of photosystem II and decreasing non-photochemical quenching. Thus, enhancement of photosynthesis by DHECD application resulted in a high grain yield for rice plants subjected to high-temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

BRs:

Brassinosteroids

CAT:

Catalase

DHECD:

7,8-Dihydro-8α-20-hydroxyecdysone

Fv/Fm:

Maximal photochemical efficiency of PSII

g s :

Stomatal conductance

MDA:

Malondialdehyde

P N :

Net photosynthetic rate

POD:

Peroxidase

ΦPSII:

Actual photochemical efficiency of PSII

qN:

Non-photochemical quenching

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

WUE:

Water use efficiency

References

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607–1621

    Article  CAS  PubMed  Google Scholar 

  • Balouchi HR (2010) Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. Int J Biol Life Sci 6:56–66

    Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Bilger W, BjÖrkman OB (1990) Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in Hedera canariensis. Photosynth Res 25:173–185

    Article  CAS  PubMed  Google Scholar 

  • Brandford MA (1976) Rapid method for the quantification of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  Google Scholar 

  • Calatá A (2011) Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”. Biochimie 94:101–109

    Article  Google Scholar 

  • Camejo D, Rodríguez P, Morales MA, Dell’amico JM, Torrecillas A, Alarcón JJ (2005) High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J Plant Physiol 162:281–289

    Article  CAS  PubMed  Google Scholar 

  • Cao YY, Duan H, Yang LN, Wang ZQ, Liu LJ, Yang JC (2009) Effect of high temperature during heading and early filling on grain yield and physiological characteristics in indica rice. Acta Agron Sin 35:512–521

    CAS  Google Scholar 

  • Chen LM, Lin CC, Kao CH (2000) Copper toxicity in rice seedlings: changes in antioxidative enzyme activities, H2O2 level and cell wall peroxidase activity in roots. Bot Bull Acad Sin 41:99–103

    CAS  Google Scholar 

  • Dai AH, Nie YX, Yu B, Li Q, Lu LY, Bai JG (2012) Cinnamic acid pretreatment enhances heat tolerance of cucumber leaves through modulating antioxidant enzyme activity. Environ Exp Bot 79:1–10

    Article  CAS  Google Scholar 

  • De Ronde JAD, Cress WA, Kruger GHJ, Strasser RJ, Staden JV (2004) Photosynthetic response of transgenic soybean plants containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 61:1211–1244

    Article  Google Scholar 

  • Demming-Adams B, Adams WW III, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Article  Google Scholar 

  • Department of Agriculture (2005) Fertilizer recommendation of economic crops. Technical Bulletin No. 8/2005

  • Duan HG, Yuan S, Liu WJ, Xi DH, Qing DH, Liang HG, Lin HH (2006) Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. J Integr Plant Biol 48:920–927

    Article  CAS  Google Scholar 

  • Fariduddin Q, Khanam S, Hasan SA, Ali B, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. Acta Physiol Plant 31:889–897

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hamdani S, Gauthier A, Msilini N, Carpentier R (2011) Positive charges of polyamines protect PSII in isolated thylakoid membranes during photoinhibitory conditions. Plant Cell Physiol 52:866–873

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hasan SA, Yusuf M, Hayat Q, Ahmad A (2010) Effect of 28-homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. Environ Exp Bot 69:105–112

    Article  CAS  Google Scholar 

  • Holá D, Rothová O, Kočová M, Kohout L, Kvasnica M (2010) The effect of brassinosteroids on the morphology, development and yield of field-grown maize. Plant Growth Regul 61:29–43

    Article  Google Scholar 

  • Institute SAS (2003) SAS users guide. Version 9.1. SAS Institute, Cary

    Google Scholar 

  • Inzé D, Montagu MV (2002) Oxidative stress in plants. Taylor & Francis, London

    Google Scholar 

  • IPCC (2007) Summary for policy makers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge, pp 1–18

    Google Scholar 

  • Janeczko A, Oklestkova J, Pociecha E, Koscielniak J, Mirek M (2011) Physiological effects and transport of 24-epibrassinolide in heat stressed barley. Acta Physiol Plant 33:1249–1259

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Leakey ADB, Press MC, Scholes JD (2003) High temperature inhibition of photosynthesis is greater under sun flecks than uniform irradiance in a tropical rain forest tree seedling. Plant Cell Environ 26:1681–1690

    Article  Google Scholar 

  • Liu X, Huang B (2000) Heat stress injury in relation to membrane lipid peroxidation in creeping bent grass. Crop Sci 40:503–510

    Article  CAS  Google Scholar 

  • Locato V, Gadaleta C, De Gara L, De Pinto MC (2008) Production of reactive species and modulation of antioxidant network in response to heat shock: a critical balance for cell fate. Plant Cell Environ 31:1606–1619

    Article  CAS  PubMed  Google Scholar 

  • Mazorra LM, Núñez M, Hechavarria Coll MF, Sánchez-Blanco MJ (2001) Influence of brassinosteroids on antioxidant enzymes activity in tomato under different temperatures. Biol Plant 45:593–596

    Article  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Mao WH, Zhou YH, Yu JQ, Nogués S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57

    Article  CAS  Google Scholar 

  • Parkhill JP, Maillet G, Cullen J (2001) Fluorscence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. J Phycol 37:517–529

    Article  Google Scholar 

  • Radic S, Radic-Stojkovic M, Pevalek-Kozlina B (2006) Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. J Plant Physiol 163:1248–1292

    Article  Google Scholar 

  • Ramraj VM, Vyas BN, Godrej NB, Mistry KB, Swami BN, Singh N (1997) Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. J Agric Sci 128:405–413

    Article  CAS  Google Scholar 

  • Reda F, Mandoura HMH (2011) Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine. Int J Acad Res 3:108–115

    Google Scholar 

  • Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51:1302–1319

    Article  CAS  PubMed  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Suksamrarn A, Tanachatchairatana T, Sirigarn C (2002) Stereoselective catalytic hydrogenation of D7-6-ketosteroids in the presence of sodium nitrite. Tetrahedron 58:6033–6038

    Article  CAS  Google Scholar 

  • Suleman P, Redha A, Afzal M, Al-Hasan R (2012) Temperature-induced changes of malondialdehyde, heat-shock proteins in relation to chlorophyll fluorescence and photosynthesis in Conocarpus lancifolius. Acta Physiol Plant 28:1–9

    Google Scholar 

  • Tang Y, Wen X, Lu Q, Yang Z, Cheng Z, Lu C (2007) Heat stress induces an aggregation of the light -harvesting complex of photosystem II in spinach plants. Plant Physiol 143:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Chai-arree W, Kaveeta L, Pankean P, Suksamrarn A (2013) Effects of a brassinosteroid and an ecdysone analogue on pollen germination of rice under heat stress. J Pestic Sci 38:105–111

    Article  CAS  Google Scholar 

  • Thussagunpanit J, Jutamanee K, Sonjaroon W, Chai-arree W, Kaveeta L, Pankean P, Suksamrarn A (2015) Effects of brassinosteroid and brassinosteroid mimic on photosynthetic efficiency and rice yield under heat stress. Photosynthetica 53:312–320

    Article  CAS  Google Scholar 

  • Tian J, Wang LP, Yang YJ, Sun J, Guo SR (2012) Exogenous spermidine alleviates the oxidative damage in cucumber seedlings subjected to high temperatures. J Am Soc Hortic Sci 137:11–19

    Article  CAS  Google Scholar 

  • van Kooten O, Snel JFH (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Vaz J, Sharma PK (2011) Relationship between xanthophy cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. Indian J Exp Bot 49:60–67

    Google Scholar 

  • Velikova V, Loreto F (2005) On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant Cell Environ 28:318–327

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wahid A, Close TJ (2007) Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51:104–109

    Article  CAS  Google Scholar 

  • Wang WX, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, Fan L, Loescher W, Duan W, Liu GJ, Cheng JS, Luo HB, Li SH (2010) Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biol 10:34–44

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen X, Gong H, Lu C (2005) Heat stress induces a reversible inhibition of electron transport at the acceptor side of photosystem II in a cyanobacterium Spirulina platensis. Plant Sci 168:1471–1476

    Article  CAS  Google Scholar 

  • Werawattanametin K, Podimuang V, Suksamrarn A (1986) Ecdysteroids from Vitex glabrata. J Nat Prod 49:365–366

    Article  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 27:717–724

    Article  CAS  Google Scholar 

  • Wu X, Yao X, Chen J, Zhu Z, Zhang H, Zha D (2014) Brassinosteroids protect photosynthesis and antioxidant system of eggplant seedlings from high-temperature stress. Acta Physiol Plant 36:251–261

    Article  CAS  Google Scholar 

  • Xu S, Li J, Zhang X, Wei H, Cui L (2006) Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56:274–285

    Article  CAS  Google Scholar 

  • Yamaguchi K, Mori H, Nishimura M (1995) A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant Cell Physiol 36:1157–1162

    CAS  PubMed  Google Scholar 

  • Yu Q, Rengel Z (1999) Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins. Plant Sci 142:1–11

    Article  CAS  Google Scholar 

  • Yu JQ, Huang LF, Hu WH, ZhouYH Mao WH, Ye SF, Nogués S (2004) A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen L, Zhang S, Zheng H, Liu G (2009) Effects of high temperature stress on microscopic and ultrastructural characteristics of mesophyll cells in flag leaves of rice. Rice Sci 16:65–71

    Article  Google Scholar 

  • Zhang J, Li DM, Gao Y, Yu B, Xia CX, Bai JG (2012) Pretreatment with 5-aminolevulinic acid mitigates heat stress of cucumber leaves. Biol Plant 56:780–784

    Article  CAS  Google Scholar 

  • Zhang YP, Zhu XH, Ding HD, Yang SJ, Chen YY (2013) Foliar application of 24-epibrassinolide alleviates high-temperature induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica 51:341–349

    Article  CAS  Google Scholar 

  • Zlatev Z (2009) Drought-induced changes in chlorophyll fluorescence of young wheat plant. Biotechnology 23:437–441

    Google Scholar 

Download references

Acknowledgments

This work was supported by Kasetsart University, Thailand. Partial support from the Center of Excellence for Innovation in Chemistry, Office of the Higher Education Commission, Thailand is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanapol Jutamanee.

Additional information

Communicated by U Feller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonjaroon, W., Kaveeta, L., Chai-arree, W. et al. Exogenous 7,8-dihydro-8α-20-hydroxyecdysone application improves antioxidative enzyme system, photosynthesis, and yield in rice under high-temperature condition. Acta Physiol Plant 38, 202 (2016). https://doi.org/10.1007/s11738-016-2205-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-016-2205-8

Keywords

Navigation