Skip to main content
Log in

Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

The heat stress-induced dehydrin proteins (DHNs) expression and their relationship with the water relations of sugarcane (Saccharum officinarum L.) leaves were studied. Sugarcane seedlings were subjected to heat stress (day/night temperature of 40/35 °C) under relative humidity 60/65 % to avoid aerial desiccation and determinations made at 4, 12, 24, 36, 48, 60 and 72 h. The leaves showed a sharp decline in the water and osmotic potentials, and relative water content during first 12 h of heat stress, but a regain in their values in 24 h. The pressure potential (ψp) decreased initially but increased later and approached control leaves. The increase in ψp was tightly correlated to the accumulation of free proline, glycinebetaine and soluble sugars, indicating their possible involvement in the osmotic adjustment under heat stress. Immunological detection revealed the expression of three DHNs with an apparent molecular mass of 21, 23 and 27 kDa under heat stress (48 to 72 h) and their expression was independent of the changes in the water relations of leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DHNs:

dehydrin proteins

FP:

free proline

GB:

glycinebetaine

RWC:

relative water content

SS:

water soluble sugars

ψp :

pressure potential

ψs :

osmotic potential

ψw :

water potential

References

  • Allagulova, C.R., Gimalov, F.R., Shakirova, F.M., Vakhitov, V.A.: The plant dehydrins: structure and putative functions.-Biokhimiya 68: 945–951, 2003.

    CAS  Google Scholar 

  • Bates, I.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies.-Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Borovskii, G.B., Stupnikova, I.V., Antipina, A.I., Valdimerova, S.V., Voinikov, V.K.: Accumulation of dehydrins-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment.-BioMed Centr. Plant Biol. 2: 5–11, 2002.

    Google Scholar 

  • Buchanan, B.B., Gruissem, W., Jones, R.L.: Biochemistry and Molecular Biology of Plants.-American Society of Plant Physiologists, Rockville 2000.

    Google Scholar 

  • Camejo, D., Rodriguez, P., Morales, M.A., Dell’Amico, J.M., Torrecillas, A., Alarcon, J.J.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility.-J. Plant. Physiol. 162: 281–289, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Q., Vierling, E.: Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein.-Mol. gen. Genet. 226: 425–431, 1991.

    Article  PubMed  CAS  Google Scholar 

  • Close, T.J.: Dehydrins: a commonality in the response of plants to dehydration and low temperature.-Physiol. Plant. 100: 291–296, 1997.

    Article  CAS  Google Scholar 

  • Close, T.J., Fenton, R.D., Moonan, F.: A view of plant dehydrins using antibodies specific to the carboxy terminal peptide.-Plant mol. Biol. 23: 279–286, 1993.

    Article  PubMed  CAS  Google Scholar 

  • Ebrahim, M.K., Zingsheim, O., El-Shourbagy, M.N., Moore, P.H., Komor, E.: Growth and sugar storage in sugarcane grown at temperatures below and above optimum.-J. Plant Physiol. 153: 593–602, 1998.

    CAS  Google Scholar 

  • Ebrahim, M.K.H., Zingsheim, O., Veith, R., Abo-Kassem, E.E.M., Komor, E.: Sugar uptake and storage by sugarcane suspension cells at different temperatures and high sugar concentrations.-J. Plant Physiol. 154: 610–616, 1999.

    CAS  Google Scholar 

  • Fischer, R.: Number of kernels in wheat crops and the influence of solar radiation and temperature.-J. agr. Sci. 108: 447–461, 1985.

    Google Scholar 

  • Fokar, M., Nguyen, H.T., Blum, A.: Heat tolerance in spring wheat. II. Grain filling.-Euphytica 104: 9–15, 1998.

    Article  Google Scholar 

  • Goyal, K., Walton, L.J., Tunnacliffe, A.: LAE proteins prevent protein aggregation due to water stress.-Biochem. J. 388: 151–157, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Grieve, C.M., Grattan, S.R.: Rapid assay for determination of water soluble quaternary ammonium compounds.-Plant Soil 70: 303–307, 1983.

    Article  CAS  Google Scholar 

  • Gulen, H., Eris, A.: Some physiological changes in strawberry (Fragaria × ananassa ‘Camarosa’) plants under heat stress.-J. hort. Sci. Biotechnol. 78: 894–898, 2003.

    Google Scholar 

  • Harlow, E., Lane, D.: Antibodies: A Laboratory Manual.-Cold Spring Harbor Laboratory Press, Cold Spring Harbor-New York 1988.

    Google Scholar 

  • Jain, M., Mathur, G., Koul, S., Sarin, NB.: Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.).-Plant Cell Rep. 20: 463–468, 2001.

    Article  CAS  Google Scholar 

  • Jiang, Y., Huang, B.: Osmotic adjustment and root growth associated with drought preconditioning-enhanced heat tolerance in Kentucky bluegrass.-Crop Sci. 41:1168–1173, 2001.

    Article  Google Scholar 

  • Karim, M.A., Fracheboud, Y., Stamp, P.: Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes.-J. Agron. Crop Sci. 184: 217–223, 2000.

    Article  Google Scholar 

  • Koag, M.-C., Fenton, R.D., Wilkens, S., Close, T.J.: The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity.-Plant Physiol. 131: 309–316, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Machado, S., Paulsen, G.M.: Combined effects of drought and high temperature on water relations of wheat and sorghum.-Plant Soil 233: 179–187, 2001.

    Article  CAS  Google Scholar 

  • Maestri, E., Klueva, N., Perrotta, C., Gulli, M., Hguyen, H.T., Marmiroli, N.: Molecular genetics of heat tolerance and heat shock proteins in cereals.-Plant mol. Biol. 48: 667–81, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Marcum, K.B.: Cell membrane thermostability and whole plant heat tolerance of Kentucky bluegrass.-Crop Sci. 38: 1214–1218, 1998.

    Article  Google Scholar 

  • Moisyadi, S., Harrington, H.M.: Characterization of the heat shock response in cultured sugarcane cells. I. Physiology of the heat shock response and heat shock protein synthesis.-Plant Physiol. 90: 1156–1162, 1989.

    Article  PubMed  CAS  Google Scholar 

  • Morales, D., Rodríguez, P., Dell’Amico, J., Nicolás, E., Torrecillas, A., Sánchez-Blanco, M.J.: High-temperature preconditioning and thermal shock imposition affects water relations, gas exchange and root hydraulic conductivity in tomato.-Biol. Plant. 47: 203–208, 2003.

    Article  Google Scholar 

  • Perdomo, P., Murphy, J.A., Berkowitz, G.A.: Physiological changes associated with performance of Kentucky bluegrass cultivars during summer stress.-HortScience 31: 1182–1186, 1996.

    Google Scholar 

  • Porat, R., Pasentsis, K., Rozentzvieg, D., Gerasopoulos, D., Falara, V., Samach, A., Lurie, S., Kanellis, A.K.: Isolation of a dehydrin cDNA from orange and grapefruit citrus fruit that is specifically induced by the combination of heat followed by chilling temperatures-Physiol. Plant. 120: 256–264, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi, S.A., Mandramootoo, C.A., Dodds, G.T.: Evaluation of irrigation schemes for sugarcane in Sindh, Pakistan using SWAP93.-Agr. Water Manage. 54: 37–48, 2002.

    Article  Google Scholar 

  • Rawson, H.M.: Effect of high temperatures on the development and yield of wheat and practices to reduce deleterious effects.-In: Klatt, A.R. (ed.): Wheat Production Constraints in Tropical Environments. Pp. 44–62. CIMMYT, Mexico City 1988.

    Google Scholar 

  • Rinne, P.L., Kaikuranta, P.L., Van der Plas, L.H., Van der Schoot, C.: Dehydrins in cold-acclimated apices of birch (Betula pubescens Ehrh.): production, localization and potential role in rescuing enzyme function during dehydration.-Planta 209: 377–388, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, M.J., Bonnett, G.D., Hughes, R.M., Muchow, R.C., Campbell, J.A.: Temperature and leaf area expansion of sugarcane: Integration of controlled-environment, field and model studies.-Aust. J. Plant Physiol. 25: 819–828, 1998.

    Article  Google Scholar 

  • Sanmiya, K., Suzuki, K., Egawa, Y., Shono, M.: Mitochondrial small heat-shock protein enhances thermotolerance in tobacco plants.-FEBS Lett. 557: 265–268, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Schoffl, F., Prandl, R., Reindl, A.: Molecular responses to heat stress.-In: Shinozaki, K., Yamaguchi-Shinozaki, K. (ed): Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. Pp. 81–98. K.R.G. Landes Co., Austin 1999.

    Google Scholar 

  • Shah, N.H., Paulsen, G.M.: Interaction of drought and high temperature on photosynthesis and grain filling of wheat.-Plant Soil 257: 219–226, 2003.

    Article  CAS  Google Scholar 

  • Sung, D.-Y., Kaplan, F., Lee, K.-J., Guy, C.L.: Acquired tolerance to temperature extremes.-Trends Plant Sci. 8: 179–187, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Svensson, J., Ismail, A.M., Palva, E.T., Close, T.J.: Dehydrins.-In: Storey, K.B., Storey, J.M. (ed.): Cell and Molecular Responses to Stress. Vol. 3. Sensing, Signalling and Cell Adaptation. Pp. 155–171. Elsevier Science, Amsterdam 2002.

    Google Scholar 

  • Taiz, L., Zeiger, E.: Plant Physiology, 3rd Edition.-Sinauer Associates Inc. Publishers, Massachusetts 2002.

    Google Scholar 

  • Wahid, A., Shabbir, A.: Induction of heat stress tolerance in barley seedling by pre-sowing seed treatment with glycinebetaine.-Plant Growth Regul. 46: 133–141, 2005.

    Article  CAS  Google Scholar 

  • Xing, W., Rajashekar, C.B.: Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana.-Environ. exp. Bot. 46: 21–28, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Yin, Z., Pawlowicz, I., Bartoszewski, G., Malinowski, R., Malepszy, S., Robat, T.: Transcriptional expression of a Solanum sogarandinum pGT::Dhn10 gene fusion in cucumber, and its correlation with chilling tolerance in transgenic seedlings.-Cell mol. Biol. Lett. 9: 891–902, 2004.

    PubMed  CAS  Google Scholar 

  • Yoshida, S., Forno, D.A., Cock, J.H., Gomaz, K.U.: Laboratory Manual for Physiological Studies of Rice.-IRRI, Los Baños, 1976.

    Google Scholar 

  • Zhu, B., Choi, D.-W., Fenton, R., Close, T.J.: Expression of the barley multigene family and the development of freezing tolerance.-Mol. gen. Genet. 264: 145–153, 2000.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Wahid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wahid, A., Close, T.J. Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol Plant 51, 104–109 (2007). https://doi.org/10.1007/s10535-007-0021-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-007-0021-0

Additional key words

Navigation