Skip to main content
Log in

Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L.

  • Original Paper
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

To investigate the effect of exogenously applied 28-homobrassinolide (HBL) on drought-stressed plants, photosynthesis and antioxidant systems were examined in Indian mustard (Brassica juncea L.). Seedlings of Indian mustard were subjected to drought stress for 7 days at the 8–14 (DS1)/15–21 (DS2) days’ stage of growth and then returned to normal conditions of growth. These seedlings were sprayed with HBL (0.01 μM) at the 30-day stage and were sampled at 60 days to assess the changes in growth, photosynthesis and antioxidant enzymes. Plants exposed to stress at either of the stages of growth exhibited a significant decrease in growth and photosynthesis. The exposure of plants to stress at an earlier stage (DS1) was more inhibitory than that at a later stage (DS2). However, the follow-up treatment with HBL significantly improved the values of these parameters and also overcame the inhibitory effect of water stress. The activity of antioxidant enzymes [catalase (E.C. 1.11.1.6), peroxidase (E.C. 1.11.1.7) and superoxide dismutase (E.C. 1.15.1.1)] and proline content in leaves exhibited an increase in response to both the treatment factors, where their interaction had an additive effect. It was, therefore, concluded that the elevated antioxidant system, at least in part, was responsible for amelioration of the drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BRs:

Brassinosteroids

CA:

Carbonic anhydrase

CAT:

Catalase

Ci:

Intercellular CO2 concentration

DDW:

Double distilled water

DM:

Dry mass

FM:

Fresh mass

g s :

Stomatal conductance

HBL:

28-Homobrassinolide

NR:

Nitrate reductase

PN:

Net photosynthetic rate

POX:

Peroxidase

DS1:

Drought stress at the 8-day stage

DS2:

Drought stress at the 15-day stage

WUE:

Water use efficiency

References

  • Alam M, Hayat S, Ali B, Ahmad A (2007) Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica 45:139–142. doi:10.1007/s11099-007-0022-4

    Article  CAS  Google Scholar 

  • Ali B, Hayat S, Ahmad A (2007) 28-Homobrassinolide ameliorates the saline stress in chickpea (Cicer arietinum L). Environ Exp Bot 59:217–223. doi:10.1016/j.envexpbot.2005.12.002

    Article  CAS  Google Scholar 

  • Ali B, Hasan SA, Hayat S, Yadav S, Fariduddin Q, Ahmad A (2008) A role of brassinosteroids in the amelioration of aluminium stress through antioxidant system in mungbean (Vigna radiata L Wilczek). Environ Exp Bot 62:153159. doi:10.1016/j.envexpbot.2007.07.014

  • Bajguz A (2000) Effect of brassinosteroids on nucleic acid and protein content in cultured cells of Chlorella vulgaris. Plant Physiol Biochem 38:209–215. doi:10.1016/S0981-9428(00)00733-6

    Article  CAS  Google Scholar 

  • Bandurska H (2001) Does proline accumulated in leaves of water deficit stressed barley plants confine cell membrane injuries? II. Proline accumulation during hardening and its involvement in reducing membrane injuries in leaves subjected to severe osmotic stress. Acta Physiol Plant 23:483–490. doi:10.1007/s11738-001-0059-0

    Article  CAS  Google Scholar 

  • Bates LS, Waldeen RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 30:205–207. doi:10.1007/BF00018060

    Article  Google Scholar 

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Ann Biochem 44:276–287. doi:10.1016/0003-2697(71)90370-8

    Article  CAS  Google Scholar 

  • Boo YC, Jung J (1999) Water deficit-induced oxidative stress and antioxidative defenses in rice plant. J Plant Physiol 155:255–261

    CAS  Google Scholar 

  • Campbell HW (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303. doi:10.1146/annurev.arplant.50.1.277

    Article  PubMed  CAS  Google Scholar 

  • Cao S, Xu Q, Cao Y, Qian K, An K, Zhu Y, Binzeng H, Zhao H, Kuai B (2005) Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. Physiol Plant 123:57–66. doi:10.1111/j.1399-3054.2004.00432.x

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Methods Enzymol 2:764–776. doi:10.1016/S0076-6879(55)02300-8

    Article  Google Scholar 

  • Choe S (2006) Brassinosteroid biosysnthesis and inactivation. Physiol Plant 126:539–548

    CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451. doi:10.1146/annurev.arplant.49.1.427

    Article  PubMed  CAS  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture not by affecting ATP synthesis. Trends Plant Sci 5:187–188. doi:10.1016/S1360-1385(00)01625-3

    Article  Google Scholar 

  • Davies W, Zhang JJ (1991) Root signals and the regulation of growth and development of plant in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76. doi:10.1146/annurev.pp.42.060191.000415

    Article  CAS  Google Scholar 

  • Dwivedi RS, Randhawa NS (1974) Evolution of a rapid test for the hidden hunger of zinc in plants. Plant Soil 40:445–451. doi:10.1007/BF00011531

    Article  CAS  Google Scholar 

  • Fariduddin Q, Ahmad A, Hayat S (2003) Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-homobrassinolide. Photosynthetica 41:307–310. doi:10.1023/B:PHOT.0000011968.78037.b1

    Article  CAS  Google Scholar 

  • Fariduddin Q, Ahmad A, Hayat S (2004) Response of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. Biol Plant 48:465–468. doi:10.1023/B:BIOP.0000041106.77930.d6

    Article  CAS  Google Scholar 

  • Flexas JJ, Bota F, Loreto G, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plant. Plant Biol 6:269–279. doi:10.1055/s-2004-820867

    Article  PubMed  CAS  Google Scholar 

  • Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130:1319–1334. doi:10.1104/pp.011254

    Article  PubMed  CAS  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedure for agricultural research. Wiley, New York

    Google Scholar 

  • Hartzendorf T, Rolletschek H (2001) Effect of NaCl-salinity on amino acid and carbohydrate contents of Phragmites australis. Aquat Bot 69:195–208. doi:10.1016/S0304-3770(01)00138-3

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) 28-Homobrassinolide protects chickpea (Cicer arietrinum) from cadmium toxicity by stimulating antioxidants. Environ Pollut 151:60–66. doi:10.1016/j.envpol.2007.03.006

    Article  PubMed  CAS  Google Scholar 

  • Hayat S, Ahmad A (2003) Brassinosteroids: bioactivity and crop productivity. Kluwer Academic, Dordrecht

    Google Scholar 

  • Hayat S, Ali B, Hasan SA, Ahmad A (2007) Brassinosteroids enhanced the level of antioxidants under cadmium stress in Brassica juncea. Environ Exp Bot 60:33–41. doi:10.1016/j.envexpbot.2006.06.002

    Article  CAS  Google Scholar 

  • Hopkins WJ (1995) Introduction to plant physiology. Wiley, New York

    Google Scholar 

  • Horling F, Lamkemeyer P, Konnig J, Finkemeir I, Kandlbinder A, Baier M, Dietz KJ (2003) Divergent light, ascorbate and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131:317–325. doi:10.1104/pp.010017

    Article  PubMed  CAS  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570. doi:10.1146/annurev.pp.24.060173.002511

    Article  CAS  Google Scholar 

  • Huffaker RC, Radin T, Kleinkopf GE, Cox EL (1970) Effects of mild water stress on enzymes of nitrate assimilation and the carboxylase phase of photosynthesis in barley. Crop Sci 10:471–474

    Article  CAS  Google Scholar 

  • Jaworski EG (1971) Nitrate reductase assay in intact plant tissues. Biochem Biophys Res Commun 43:1274–1279. doi:10.1016/S0006-291X(71)80010-4

    Article  PubMed  CAS  Google Scholar 

  • Jones MM, Turner NC (1978) Osmotic adjustment in leaves of sorghum in response to water deficit. Plant Physiol 61:122–126. doi:10.1104/pp.61.1.122

    Article  PubMed  CAS  Google Scholar 

  • Kaiser WM (1987) Effect of water stress on photosynthesis. Physiol Plant 71:142–149. doi:10.1111/j.1399-3054.1987.tb04631.x

    Article  CAS  Google Scholar 

  • Khripach V, Zhabinskii V, De Groot A (1999) Brassinosteroids: a new class of plant hormones. Academic Press, San Diego

    Google Scholar 

  • Khripach V, Zhabinskii V, De Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. Ann Bot (Lond) 86:441–447. doi:10.1006/anbo.2000.1227

    Google Scholar 

  • Krishna P (2003) Brassinosteroids-mediated stress resistance. J Plant Growth Regul 22:265–275. doi:10.1007/s00344-003-0058-z

    Article  CAS  Google Scholar 

  • Lawlor DW (2002) Limitation to photosynthesis in water-stressed leaves: stomatal metabolism and the role of ATP. Ann Hortic 89:871–885

    CAS  Google Scholar 

  • Li L, van Staden J (1998) Effect of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regul 24:55–66. doi:10.1023/A:1005954532397

    Article  Google Scholar 

  • Lindner RC (1944) Rapid analytical methods for some of the more common inorganic constituents of plant tissues. Plant Physiol 19:76–79. doi:10.1104/pp.19.1.76

    Article  PubMed  CAS  Google Scholar 

  • Matsudo K, Riazi A (1981) Stress induced osmotic adjustment in growing regions of barley leaves. Plant Physiol 68:571–576. doi:10.1104/pp.68.3.571

    Article  Google Scholar 

  • Matysik J, Alia Bhalu B, Mohanty P (2002) Molecular mechanism of quenching of reactive oxygen by proline under stress in plants. Curr Sci 82:525–532

    CAS  Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulias J, Flexas J (2002) Regulation of photosynthesis of C3 plant in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot (Lond) 89:895–905. doi:10.1093/aob/mcf079

    Article  CAS  Google Scholar 

  • Morilla CA, Boyer JS, Hageman RH (1973) Nitrate reductase activity and polyribosomal content of corn (Zea mays L) having low leaf water potentials. Plant Physiol 51:817–824. doi:10.1104/pp.51.5.817

    Article  PubMed  CAS  Google Scholar 

  • Munns RC, Brady CJ, Barlow EWR (1976) Solute accumulation in the apex and leaves of wheat during water stress. Aust J Plant Physiol 6:379–389

    Article  Google Scholar 

  • Nam NH, Subbaroa GV, Chauhan YS, Johansen C (1998) Importance of canopy attributes in determining dry matter accumulation of pigeonpea under contrasting moisture regimes. Crop Sci 38:955–961

    Google Scholar 

  • Ogweno JO, Song XS, Shi K, Hu WH, Yu JQ, Nogues S (2008) Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. J Plant Growth Regul 27:49–57. doi:10.1007/s00344-007-9030-7

    Article  CAS  Google Scholar 

  • Reddy RA, Chaitanya KV, Juter PP, Gnanam A (2005) Photosynthesis and oxidative stress responses to water-deficit in five different mulberry (Morus alba L.) cultivars. Physiol Mol Biol Plants 11:291–298

    CAS  Google Scholar 

  • Sairam RK (1994) Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress condition of two wheat varieties. Plant Growth Regul 14:173–181. doi:10.1007/BF00025220

    Article  CAS  Google Scholar 

  • Sasse JM (2003) Physiological actions of Brassinosteroids: an update. J Plant Growth Regul 22:276–288. doi:10.1007/s00344-003-0062-3

    Article  PubMed  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365. doi:10.1093/jexbot/53.372.1351

    Article  PubMed  CAS  Google Scholar 

  • Shaner JL, Boyer JS (1976) Nitrate reductase activity in maize (Zea mays L.) leaves. II. Regulation by nitrate flux at low leaf water potential. Plant Physiol 58:505–509. doi:10.1104/pp.58.4.505

    Article  PubMed  CAS  Google Scholar 

  • Sinha SK, Nicholar DJD (1981) Nitrate reductase in the physiology and biochemistry of drought resistance in plant. In: Paley LG, Aspinall D (eds) Academic Press, Sydney, pp 145–169

  • Sobrado MA, Turner NC (1986) Photosynthesis, dry matter accumulation and distribution in the wild sunflower (Helianthus petiolaris) and distribution in cultivated sunflower (Helianthus annuus) as influenced by water deficit. Oecologia 69:181–187. doi:10.1007/BF00377619

    Article  Google Scholar 

  • Sumithra K, Reddy AR (2004) Changes in proline metabolism of cowpea seedlings under water deficit. J Plant Biol 31:201–204

    CAS  Google Scholar 

  • Wang B, Zhang G (1993) Effect of epibrassinolide on the resistance of rice seedlings to chilling injury. Zhiwa Shengli Xuebao 19:53–60

    Google Scholar 

  • Wilen RW, Sacco M, Gusta LV, Krishna P (1995) Effect of 24-epibrassinolide on freezing and thermotolerance of bromo grass (Bromus inermis) cell cultures. Physiol Plant 95:195–202. doi:10.1111/j.1399-3054.1995.tb00827.x

    Article  CAS  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2003) Plant responses to drought and stress tolerance. Bulg J Plant Physiol (special issue) 187–286

  • Yu JQ, Huang LF, Hu WH, Zhou YH, Mao WH, Ye SF, Nogues SA (2004) A role of brassinosteroids in the regulation of photosynthesis in Cucumis sativus. J Exp Bot 55:1135–1143. doi:10.1093/jxb/erh124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author Q. Fariduddin is thankful to the Department of Science and Technology (DST), Government of India, New Delhi, India for the award of the Research Project under the SERC FAST Track Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Fariduddin.

Additional information

Communicated by S. Lewak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fariduddin, Q., Khanam, S., Hasan, S.A. et al. Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L.. Acta Physiol Plant 31, 889–897 (2009). https://doi.org/10.1007/s11738-009-0302-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11738-009-0302-7

Keywords

Navigation