Skip to main content
Log in

Exogenous strigolactone enhanced the drought tolerance of pepper (Capsicum chinense) by mitigating oxidative damage and altering the antioxidant mechanism

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

Exogenous SL positively regulates pepper DS by altering the root morphology, photosynthetic character, antioxidant enzyme activity, stomatal behavior, and SL-related gene expression.

Abstract

Drought stress (DS) has always been a problem for the growth and development of crops, causing significant negative impacts on crop productivity. Strigolactone (SL) is a newly discovered class of plant hormones that are involved in plants’ growth and development and environmental stresses. However, the role of SL in response to DS in pepper remains unknown. DS considerably hindered photosynthetic pigments content, damaged root architecture system, and altered antioxidant machinery. In contrast, SL application significantly restored pigment concentration modified root architecture system, and increased relative chlorophyll content (SPAD). Additionally, SL treatment reduced oxidative damage by reducing hydrogen peroxide (H2O2) (24–57%) and malondialdehyde (MDA) (79–89%) accumulation in pepper seedlings. SL-pretreated pepper seedlings showed significant improvement in antioxidant enzyme activity, proline accumulation, and soluble sugar content. Furthermore, SL-related genes (CcSMAX2, CcSMXL6, and CcSMXL3) were down-regulated under DS. These findings suggest that the foliar application of SL can alleviate the adverse effects of drought tolerance by up-regulating chlorophyll content and activating antioxidant defense mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Materials.

References

  • Abdul S, Sami U, Muhammad I, Ahmad S, Madiha B, Tahira A, Muhammad I, Tehreem F, Saleh A, Sulaiman A (2021) Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms. Cereal Res Commun 50:263–272

    Google Scholar 

  • Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra AS (2018) Mechanism of stomatal closure in plants exposed to drought and cold stress. Adv Exp Med Biol 1081:215–232

    Article  CAS  PubMed  Google Scholar 

  • Ahmad KT, Mohd S, Qazi F (2022) Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress. J Plant Growth Regul 42:2408–2432

    Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  • Aliche EB, Screpanti C, De Mesmaeker A, Munnik T, Bouwmeester HJ (2020) Science and application of strigolactones. New Phytol 227:1001–1011

    Article  PubMed  PubMed Central  Google Scholar 

  • Altaf MA, Hao Y, He C, Mumtaz MA, Shu H, Fu H, Wang Z (2022) Physiological and biochemical responses of pepper (Capsicum annuum L.)seedlings to nickel toxicity. Front Plant Sci. https://doi.org/10.3389/fpls.2022.950392

    Article  PubMed  PubMed Central  Google Scholar 

  • Altaf MA, Hao Y, Shu H, Mumtaz MA, Cheng S, Alyemeni MN, Ahmad P, Wang Z (2023) Melatonin enhanced the heavy metal-stress tolerance of pepper by mitigating the oxidative damage and reducing the heavy metal accumulation. J Hazard Mater 454:131468

    Article  CAS  PubMed  Google Scholar 

  • Anfang M, Shani E (2021) Transport mechanisms of plant hormones. Curr Opin Plant Biol 63:102055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asim K, Neslihan S, Aykut S, Rabiye T, Tuba A (2011) Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regul 64:27–37

    Article  Google Scholar 

  • Avendaño-Vázquez AO, Cordoba E, Llamas E, San RC, Nisar N, De la Torre S, Ramos-Vega M et al (2014) An uncharacterized apocarotenoid-derived signal generated in ζ-carotene desaturase mutants regulates leaf development and the expression of chloroplast and nuclear genes in Arabidopsis. Plant Cell 26:2524–2537

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayre BG (2011) Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant 4:377–394

    Article  CAS  PubMed  Google Scholar 

  • Baek W, Lim CW, Lee SC (2021) Pepper E3 ligase CaAIRE1 promotes ABA sensitivity and drought tolerance by degradation of protein phosphatase CaAITP1. J Exp Bot 72:4520–4534

    Article  CAS  PubMed  Google Scholar 

  • Billah M, Li F, Yang Z (2021) Regulatory network of cotton genes in response to salt, drought and wilt diseases (Verticillium and Fusarium): progress and perspective. Front Plant Sci 12:759245

    Article  PubMed  PubMed Central  Google Scholar 

  • Chesterfield RJ, Vickers CE, Beveridge CA (2020) Translation of strigolactones from plant hormone to agriculture: achievements, future perspectives, and challenges. Trends Plant Sci 25:1087–1106

    Article  CAS  PubMed  Google Scholar 

  • Chi C, Xu X, Wang M, Zhang H, Fang P, Zhou J, Xia X, Shi K, Zhou Y, Yu J (2021) Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. Hortic Res 8:237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dinneny JR (2019) Developmental responses to water and salinity in root systems. Annu Rev Cell Dev Biol 35:239–257

    Article  CAS  PubMed  Google Scholar 

  • Feng Z, Liang X, Tian H, Watanabe Y, Nguyen KH, Tran CD, Abdelrahman M et al (2023) SUPPRESSOR of MAX2 1 (SMAX1) and SMAX1-LIKE2 (SMXL2) negatively regulate drought resistance in Arabidopsis thaliana. Plant Cell Physiol 63:1900–1913

    Article  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Jorge S, Ha SH, Magallanes-Lundback M, Gilliland LU, Zhou A, Lipka AE, Nguyen YN et al (2013) Carotenoid cleavage dioxygenase4 is a negative regulator of β-carotene content in Arabidopsis seeds. Plant Cell 25:4812–4826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269

    Article  CAS  PubMed  Google Scholar 

  • Ha CV, Leyva-González MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M et al (2014) Positive regulatory role of strigolactone in plant responses to drought and salt stress. Proc Natl Acad Sci U S A 111:851–856

    Article  PubMed  Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R (2015) Accelerated dryland expansion under climate change Nat. Clim Change. https://doi.org/10.1038/nclimate2837

    Article  PubMed  Google Scholar 

  • Joo H, Lim CW, Lee SC (2022) Pepper SUMO E3 ligase CaDSIZ1 enhances drought tolerance by stabilizing the transcription factor CaDRHB1. New Phytol 235:2313–2330

    Article  CAS  PubMed  Google Scholar 

  • Khan TA, Saleem M, Fariduddin Q (2022) Melatonin influences stomatal behavior, root morphology, cell viability, photosynthetic responses, fruit yield, and fruit quality of tomato plants exposed to salt stress. J Plant Growth Regul 42:2408–32

    Article  Google Scholar 

  • Khan A, Jie Z, Xiangjun K, Ullah N, Short AW, Diao Y, Zhou R, Xiong YC (2023) Pre treatment of melatonin rescues cotton seedlings from cadmium toxicity by regulating key physio-biochemical and molecular pathways. J Hazard Mater 445:130530

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Li G, Yang J, Huang X, Ji Q, Zhou K, Khan S, Ke W, Hou H (2020) Investigation of an antioxidative system for salinity tolerance in Oenanthe javanica. Antioxidants (basel). https://doi.org/10.3390/antiox9100940

    Article  PubMed  Google Scholar 

  • Lawson T, Vialet-Chabrand S (2019) Speedy stomata, photosynthesis and plant water use efficiency. New Phytol 221:93–98

    Article  PubMed  Google Scholar 

  • Li Y, Li S, Feng Q, Zhang J, Han X, Zhang L, Yang F, Zhou J (2022) Effects of exogenous strigolactone on the physiological and ecological characteristics of Pennisetum purpureum Schum seedlings under drought stress. BMC Plant Biol. https://doi.org/10.1186/s12870-022-03978-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Lian Y, Lian C, Wang L, Li Z, Yuan G, Xuan L, Gao H, Wu H, Yang T, Wang C (2023) Suppressor of MAX2 like 6, 7, and 8 interact with DDB1 binding WD repeat domain hypersensitive to ABA deficient 1 to regulate the drought tolerance and target sucrose nonfermenting 1 related protein kinase 2.3 to abscisic acid response in Arabidopsis. Biomolecules 13(9):1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang D, Ni Z, Xia H, Xie Y, Lv X, Wang J, Lin L, Deng Q, Luo X (2019) Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci Horti 246:34–43

    Article  CAS  Google Scholar 

  • Liu X, Gao T, Liu C, Mao K, Gong X, Li C, Ma F (2023) Fruit crops combating drought: physiological responses and regulatory pathways. Plant Physiol 192:1768–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lv SY, Donglin Jiang Meng E, Zhiying HY, Yue S, Shuijin Z, Jinhong C, Tianlun Z (2023) Exogenous strigolactones enhance salinity tolerance in cotton (Gossypium hirsutum L) seedlings. Plant Stress. https://doi.org/10.1016/j.stress.2023.100235

    Article  Google Scholar 

  • Ma N, Hu C, Wan L, Hu Q, Xiong J, Zhang C (2017) Strigolactones improve plant growth, photosynthesis, and alleviate oxidative stress under salinity in rapeseed (Brassica napus L.) by regulating gene expression. Front Plant Sci 8:1671

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma X, Li Y, Gai WX, Li C, Gong ZH (2021) The CaCIPK3 gene positively regulates drought tolerance in pepper. Hortic Res 8:216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood T, Khalid S, Abdullah M, Ahmed Z, Shah MKN, Ghafoor A, Du X (2019) Insights into drought dtress signaling in plants and the molecular genetic basis of cotton drought tolerance. Cells 9(1):105

    Article  PubMed  PubMed Central  Google Scholar 

  • Meher SP, Ashok RK, Manohar RD (2018) Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots. Saudi J Biol Sci 25:285–289

    Article  CAS  PubMed  Google Scholar 

  • Meng YC, Zhang HF, Pan XX, Chen N, Hu HF, Haq SU, Khan A, Chen RG (2021) CaDHN3, a pepper (Capsicum annuum L) dehydrin gene enhances the tolerance against salt and drought stresses by reducing ROS accumulation. Int J Mol Sci 22(6):3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, Ju Y, Fang Y (2019) Alleviation of drought stress in grapevine by foliar-applied strigolactones. Plant Physiol Biochem 135:99–110

    Article  CAS  PubMed  Google Scholar 

  • Müller M, Munné-Bosch S (2021) Hormonal impact on photosynthesis and photoprotection in plants. Plant Physiol 185:1500–1522

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq N, Wang Y, Fan J, Li Y, Ding J (2022) Down-regulation of cytokinin receptor gene SlHK2 improves plant tolerance to drought, heat, and combined stresses in tomato. Plants 11:154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naeem MN, Muhammad SA, RashidAhmad RA, Muhammad YI, Muhammad ZN, FahimAthar H-ur R-A, Muhammad A, Hafiz TA, Muhammad, (2018) Improving drought tolerance in maize by foliar application of boron water status, antioxidative defense and photosynthetic capacity. Arch Agron Soil Sci. https://doi.org/10.1080/03650340.2017.1370541

    Article  Google Scholar 

  • Omoarelojie LO, Kulkarni MG, Finnie JF, Pospíšil T, Strnad M, Van Staden J (2020) Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiol Biochem 155:965–979

    Article  CAS  PubMed  Google Scholar 

  • Osmolovskaya N, Shumilina J, Kim A, Didio A, Grishina T, Bilova T, Keltsieva OA et al (2018) Methodology of drought dtress research: experimental setup and physiological characterization. Int J Mol Sci 19(12):4089

    Article  PubMed  PubMed Central  Google Scholar 

  • Pedro G, Filippis GA, Hasanuzzaman M, Lao MT (2020) Oxidative stress and antioxidant metabolism under adverse environmental conditions: a review. Bot Rev 87(421):466

    Google Scholar 

  • Qi J, Song CP, Wang B, Zhou J, Kangasjärvi J, Zhu JK, Gong Z (2018) Reactive oxygen species signaling and stomatal movement in plant responses to drought stress and pathogen attack. J Integr Plant Biol 60:805–826

    Article  CAS  PubMed  Google Scholar 

  • Raja V, Qadir SU, Kumar N, Alsahli AA, Rinklebe J, Ahmad P (2023) Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiol Biochem 201:107872

    Article  CAS  PubMed  Google Scholar 

  • Rellán-Álvarez R, Lobet G, Dinneny JR (2016) Environmental control of root system biology. Annu Rev Plant Biol 67:619–642

    Article  PubMed  Google Scholar 

  • Sattar A, Ul-Allah S, Ijaz M, Sher A, Butt M, Abbas T, Irfan M, Fatima T, Alfarraj S, Alharbi SA (2021) Exogenous application of strigolactone alleviates drought stress in maize seedlings by regulating the physiological and antioxidants defense mechanisms. Cereal Res Commun. https://doi.org/10.1007/s42976-021-00171-z

    Article  Google Scholar 

  • Shu H, Zhang Y, He C, Altaf MA, Hao Y, Liao D, Li L et al (2022) Establishment of in vitro regeneration system and molecular analysis of early development of somatic callus in Capsicum chinense and Capsicum baccatum. Front Plant Sci 13:1025497

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu H, Altaf MA, Mushtaq N, Fu H, Lu X, Zhu G, Cheng S, Wang Z (2023) Physiological and transcriptome analysis of the effects of exogenous strigolactones on drought responses of pepper seedlings. Antioxidants (basel). https://doi.org/10.3390/antiox12122019

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao Y, Yuke L, Jihong K, Zhiyuan B, Lijuan X, Zhensheng G, Xinyu W, Jianming D, Chongying W (2020) The SUPPRESSOR of MAX2 1 (SMAX1)-Like SMXL6, SMXL7 and SMXL8 Act as negative regulators in response to drought stress in Arabidopsis. Plant Cell Physiol 61:1477–1492

    Article  Google Scholar 

  • Visentin I, Vitali M, Ferrero M, Zhang Y, Ruyter-Spira C, Novák O, Strnad M, Lovisolo C, Schubert A, Cardinale F (2016) Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato. New Phytol 212:954–963

    Article  CAS  PubMed  Google Scholar 

  • Visentin I, Pagliarani C, Deva E, Caracci A, Turečková V, Novák O, Lovisolo C, Schubert A, Cardinale F (2020) A novel strigolactone-miR156 module controls stomatal behaviour during drought recovery. Plant Cell Environ 43:1613–1624

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Ni J, Shah F, Liu W, Wang D, Yao Y, Hu H et al (2019) Overexpression of the stress-inducible SsMAX2 promotes drought and salt resistance via the regulation of redox homeostasis in Arabidopsis. Int J Mol Sci 20(4):837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Smith SM, Huang J (2022) Origins of strigolactone and karrikin signaling in plants. Trends Plant Sci 27:450–459

    Article  PubMed  Google Scholar 

  • Wani KI, Naeem M, Khan MMA, Aftab T (2023) Insights into strigolactone (GR24) mediated regulation of cadmium-induced changes and ROS metabolism in Artemisia annua. J Hazard Mater 448:130899

    Article  CAS  PubMed  Google Scholar 

  • Yanjing W, Ting FB, Simeng Du, Dong LX (2022) The effect of wheat drought resistance by different concentrations exogenous strigolactone. J Biobased Mater Bio 16(653):658

    Google Scholar 

  • Zhang Y, Lv S, Wang G (2018) Strigolactones are common regulators in induction of stomatal closure in planta. Plant Signal Behav 13:e1444322

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Li Y, Xi X, Ma C, Sun Z, Yang X, Li X, Tian Y, Wang C (2021) Exogenous strigolactones alleviate KCl stress by regulating photosynthesis, ROS migration and ion transport in Malus hupehensis Rehd. Plant Physiol Biochem 159:113–122

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Tan Z, Zhou Y, Guo S, Sang T, Wang Y, Shu S (2022) Physiological mechanism of strigolactone enhancing tolerance to low light stress in cucumber seedlings. BMC Plant Biol 22:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful for funding provided by Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture (XTCX2022NYB03), Hainan University, and Hainan Province Science and Technology Special Fund (ZDYF2023XDNY028).

Funding

Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, XTCX2022NYB03, Zhiwei Wang, Hainan University, and Hainan Province Science and Technology Special Fund, ZDYF2023XDNY028, Zhiwei Wang.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Shu H. and Wang Z.; methodology, Shu H. and Xu K.; software, Shu H. and Li X.; validation, Shu H. and Liu J.; formal analysis, Shu H., Muhammad A.A.; investigation, Fu H. and Lu X.; writing—original draft preparation, Shu H.; writing—review and editing, Wang Z.; visualization, Cheng S.; supervision, Wang Z.; funding acquisition, Wang Z. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Zhiwei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Communicated by Baskar Venkidasamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, H., Xu, K., Li, X. et al. Exogenous strigolactone enhanced the drought tolerance of pepper (Capsicum chinense) by mitigating oxidative damage and altering the antioxidant mechanism. Plant Cell Rep 43, 106 (2024). https://doi.org/10.1007/s00299-024-03196-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00299-024-03196-w

Keywords

Navigation