Skip to main content
Log in

Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars

  • Published:
Photosynthetica

Abstract

Brassinosteroids (BRs), an important class of plant steroidal hormones, play a significant role in the amelioration of various biotic and abiotic stresses. 24-epibrassinolide (EBR), an active brassinosteroid, was applied exogenously in different concentrations to characterize a role of BRs in tolerance of melon (Cucumis melo L.) to high temperature (HT) stress and to investigate photosynthetic performance of HT-stressed, Honglvzaocui (HT-tolerant) and Baiyuxiang (HTsensitive), melon variety. Under HT, Honglvzaocui showed higher biomass accumulation and a lower index of heat injury compared with the Baiyuxiang. The exogenous application of 1.0 mg L−1 EBR, the most effective concentration, alleviated dramatically the growth suppression caused by HT in both ecotypes. Similarly, EBR pretreatment of HTstressed plants attenuated the decrease in relative chlorophyll content, net photosynthetic rate, stomatal conductance, stomatal limitation, and water-use efficiency (WUE), as well as the maximal quantum yield of PSII photochemistry (Fv/Fm), the efficiency of excitation capture of open PSII center, the effective quantum yield of PSII photochemistry (ΦPSII), photochemical quenching coefficient, and the photon activity distribution coefficients of PSI (α). EBR pretreatment further inhibited the increase in intracellular CO2 concentration, leaf transpiration rate, minimal fluorescence of dark-adapted state, nonphotochemical quenching, thermal dissipation, and photon activity distribution coefficients of PSII. Results obtained here demonstrated that EBR could alleviate the detrimental effects of HT on the plant growth by improving photosynthesis in leaves, mainly reflected as up-regulation of photosynthetic pigment contents and photochemical activity associated with PSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BRs:

brassinosteroids

C i :

intracellular CO2 concentration

Chl:

chlorophyll

D:

fraction of absorbed light used in thermal dissipation in PSII antennae

E :

transpiration rate

EBR:

24-epibrassinolide

Fo :

minimal fluorescence of dark-adapted state

Fo′:

minimal fluorescence of light -adapted state

Fm :

the maximal fluorescence of dark-adapted state

Fm′:

maximal fluorescence of light-adapted state

Fs :

steady-state fluorescence

Fv/Fm :

maximal quantum yield of PSII photochemistry

Fv′/Fm′:

efficiency of excitation capture of open PSII center

g s :

stomatal conductance

Ls :

stomatal limitation

NPQ:

nonphotochemical quenching

P:

fraction of absorbed light that is utilized in PSII photochemistry

P N :

net photosynthetic rate

PPFD:

photosynthetic photon flux density

qP :

photochemical quenching coefficient

Rubisco:

ribulose-1,5-bisphosphate carboxylase/oxygenase

SD:

standard deviation

WUE:

water-use efficiency

X:

fraction of absorbed light that was neither used in photochemistry nor dissipated in PSII antenna

ΦPSII :

effective quantum yield of PSII photochemistry

α:

photon activity distribution coefficients of PSI

β:

the photon activity distribution coefficients of PSII

β/α-1:

the relative deviation from full balance between the two photosystems

References

  • Ainsworth, E.A., Ort, D.R.: How do we improve crop production in a warming world? — Plant Physiol. 154: 526–530, 2010.

    Article  PubMed  CAS  Google Scholar 

  • Ali, Q., Athar, H.R., Ashraf, M.: Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. — Plant Growth Regul. 56: 107–116, 2008.

    Article  CAS  Google Scholar 

  • Allakhverdiev, S.I., Kreslavski, V.D., Klimov, V.V. et al.: Heat stress: an overview of molecular responses in photosynthesis. — Photosynth. Res. 98: 541–550, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Azia, F., Stewart, K.A. Relationships between extractable chlorophyll and SPAD values in muskmelon leaves. — J. Plant Nutr. 24: 961–966, 2011.

    Article  Google Scholar 

  • Bajguz, A.: Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. — Plant Physiol. Biochem. 38: 209–215, 2000.

    Article  CAS  Google Scholar 

  • Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Braun, G., and Malkin, S.: Regulation of the imbalance in light excitation between Photosystem II and Photosystem I by cations and by the energized state of the thylakoid membrane. — Biochim. Biophys. Acta 1017: 79–90, 1990.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Adams, W.W., Barker, D.H. et al.: Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. — Physiol. Plant. 98: 253–264, 1996.

    Article  CAS  Google Scholar 

  • Dhaubhadel, S., Browning, K.S., Gallie, D.R., and Krishna P.: Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. — Plant J. 29: 681–691, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Dhaubhadel, S., Chaudhary, S., Dobinson, K., Krishna, P.: Treatment with 24-epibrassinolide, a brassinosteroid increases the basic thermotolerance of Brassica napus and tomato seedlings. — Plant Mol. Biol. 40: 333–342, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Dubey, R.S.: Photosynthesis in plants under stressful conditions. — In: Pessarakli, M (ed.): Handbook of Photosynthesis. 2nd Ed. Pp. 717–737. CRC Press, Taylor & Francis Group, New York 2005.

    Google Scholar 

  • Farquhar, G.D., Sharkey, T.D.: Stomatal conductance and photosynthesis. — Ann. Rev. Plant Physiol. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Gilmore, A.M.: Mechanistic aspects of xanthophylls cycle dependent photoprotection in higher plant chloroplast and leaves. — Physiol. Plant. 99: 197–209, 1997.

    Article  CAS  Google Scholar 

  • Gudesblat, G.E., Russinova, E.: Plants grow on brassinosteroids. — Curr. Opin. Plant Biol. 14: 530–537, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Haldimann, P., Feller, U.: Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. — Plant Cell Environ. 28: 302–317, 2005.

    Article  CAS  Google Scholar 

  • Hasan, S.A., Hayat, S., Ali, B., et al.: 28-Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. — Environ. Pollut. 15: 60–66, 2008.

    Article  Google Scholar 

  • Hayat, S., Hasan, S.A., Yusuf, M. et al.: Effect of 28- homobrassinolide on photosynthesis, fluorescence and antioxidant system in the presence or absence of salinity and temperature in Vigna radiata. — Environ. Exp. Bot. 69: 105–112, 2010.

    Article  CAS  Google Scholar 

  • Hayat, S., Yadav, S., Wani, A. et al.: Comparative effect of 28- homobrassinolide and 24-epibrassinolide on the growth, carbonic anhydrase activity and photosynthetic efficiency of Lycopersicon esculentum. — Photosynthetica 49: 397–404, 2011.

    Article  CAS  Google Scholar 

  • Janeczko, A., Oklestkova, J., Pociecha, E. et al.: Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. — Acta Physiol. Plant. 33: 1249–1259, 2011.

    Article  CAS  Google Scholar 

  • Kagale, S., Divi, U.K., Krochko, J.E. et al.: Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. — Planta 225: 353–364, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Li, X.G., Meng, Q.W., Jiang, G.Q., Zou, Q.: The susceptibility of cucumber and sweet pepper to chilling under low irradiance is related to energy dissipation and water-water cycle. — Photosynthetica 41: 259–265, 2003.

    Article  CAS  Google Scholar 

  • Lobell, D.B., Asner, G.P.: Climate and management contributions to recent trends in US agricultural yields. — Science 299: 1032–1032, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Malkin, S., Telfer, A., and Barber, J.: Quantitative analysis of State 1-State 2 transitions in intact leaves using modulated fluorimetry — evidence for changes in the absorption crosssection of the two photosystems during state transitions. — Biochim. Biophys. Acta 848: 48–57, 1986.

    Article  CAS  Google Scholar 

  • Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence-a practical guide. — J. Exp. Bot. 51: 659–668, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Mazorra, L.M., Holton, N., Bishop, G.J., Núñez, M.: Heat shock response in tomato brassinosteroid mutants indicates that thermotolerance is independent of brassinosteroid homeostasis. — Plant Physiol. Biochem. 49: 1420–1428, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Nogués, S., Baker, N.R.: Effect of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. — J. Exp. Bot. 51: 1309–1317, 2000.

    Article  PubMed  Google Scholar 

  • Ogweno, J.O., Son, X.S., Shi, K. et al.: Brassinosteroid alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing antioxidant systems in Lycopersicon esculentum. — J. Plant Growth Regul. 27: 49–57, 2008.

    Article  CAS  Google Scholar 

  • Sasse, J.M.: Physiological actions of brassinosteroids: an update. — J. Plant Growth Regul. 22: 276–288, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Shahbaz, M., Ashraf, M., Athar, H.R.: Does exogenous application of 24-epibrassinolide ameliorate salt induced growth inhibition in wheat (Triticum aestivum L.)? — Plant Growth Regul. 55: 51–64, 2008.

    Article  CAS  Google Scholar 

  • Sharkey, T.D., Ogawa, T.: Stomatal responses to light. — In: Zeiger, E., Farquhar, G., Cowan, I. (ed.): Stomatal Function. Pp. 195–208. Stanford Univ. Press, Stanford 1987.

    Google Scholar 

  • Singh, I., Shono, M.: Physiological and molecular effects of 24- epibrassinolide, a brassinosteroid, on thermotolerance of tomato. — Plant Growth Regul. 47: 111–119, 2005.

    Article  CAS  Google Scholar 

  • Souza, R.P., Machadoa, E.C., Silva, J.A.B. et al.: Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. — Environ. Exp. Bot. 51: 45–56, 2004.

    Article  CAS  Google Scholar 

  • Wilen, R.W., Sacco, M., Gusta, L.V., Krishna, P.: Effects of 24-epibrassinolide on freezing and thermotolerance of bromegrass (Bromus inermis) cell cultures. — Physiol. Plant. 95: 195–202, 1995.

    Article  CAS  Google Scholar 

  • Wise, R.R., Olson, A.J., Schrader, S.M., Sharkey, T.D.: Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. — Plant Cell Environ. 27: 717–724, 2004.

    Article  CAS  Google Scholar 

  • Xia, X.J., Huang, L.F., Zhou, Y.H. et al.: Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in Cucumis sativus. — Planta 230: 1185–1196, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J.Q., Huang, L.F., Hu, W.H. et al.: A role for brassinosteroids in the regulation of photosynthesis in Cucumis sativus. — J. Exp. Bot. 55: 1135–1143, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Chen.

Additional information

Acknowledgements: We are grateful for the funding supported by the Shanghai Prosper Agriculture by Science and Technology Plan, China (Grant No. 2009-2-1) and the Open Fund of Shanghai Key Lab of Protected Horticultural Technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y.P., Zhu, X.H., Ding, H.D. et al. Foliar application of 24-epibrassinolide alleviates high-temperature-induced inhibition of photosynthesis in seedlings of two melon cultivars. Photosynthetica 51, 341–349 (2013). https://doi.org/10.1007/s11099-013-0031-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-013-0031-4

Additional key words

Navigation