Skip to main content

Advertisement

Log in

Genetic sources for the development of salt tolerance in crops

  • Review paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Salinity is one of major threats to modern agriculture. The problem of soil salinization is especially important for the agricultural areas suffering from water scarcity and inadequate irrigation. This type of environmental stress can severely reduce crop yield since it inhibits and impairs plant growth and development. During evolution, a wide range of adaptation strategies and tolerance mechanisms have evolved in plants to survive in harsh saline environments. Moreover, some other eukaryotes such as lower plants, fungi and animals demonstrate outstanding capabilities to adapt to saline conditions. The deep knowledge of these tolerance mechanisms of halophytes, halophytic crop relatives and other living organisms could be a useful tool for new crop breeding strategies and genetic engineering. The study of adaptation strategies to high salinity including gene networks involved in these process in different plant species and other organisms may help to develop and transfer salt tolerance to the major agricultural crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ali A, Yun D-J (2017) Salt stress tolerance; what do we learn from halophytes? J Plant Biol 60:431–439

    Article  CAS  Google Scholar 

  • Ali A, Park HC, Aman R, Ali Z, Yun DJ (2013) Role of HKT1 in Thellungiella salsuginea, a model extremophile plant. Plant Signal Behav 8(8):e25196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arabbeigi M, Arzani A, Majidi MM, Kiani R, Tabatabaei BES, Habibi F (2014) Salinity tolerance of Aegilops cylindrica genotypes collected from hyper-saline shores of Uremia Salt Lake using physiological traits and SSR markers. Acta Physiol Plant 36:2243–2251

    Article  CAS  Google Scholar 

  • Ardie SW, Xie L, Takahashi R, Liu S, Takano T (2009) Cloning of a high-affinity K+ transporter gene PutHKT2;1 from Puccinellia tenuiflora and its functional comparison with OsHKT2;1 from rice in yeast and Arabidopsis. J Exp Bot 60(12):3491–3502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardie SW, Liu S, Takano T (2010) Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29:865–874

    Article  CAS  PubMed  Google Scholar 

  • Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189

    Article  CAS  Google Scholar 

  • Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnol Adv 27:744–752

    Article  CAS  PubMed  Google Scholar 

  • Asins MJ, Bretó MP, Cambra M, Carbonell EA (1993) Salt tolerance in Lycopersicon species. I. Character definition and changes in gene expression. Theor Appl Genet 86:737–743

    Article  CAS  PubMed  Google Scholar 

  • Awala SM, Nanhapo PI, Sakagami JI, Kanyomeka L, Iijima M (2010) Differential salinity tolerance among Oryza glaberrima, Oryza sativa and their interspecies including NERICA. Plant Prod Sci 13:3–10

    Article  Google Scholar 

  • Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel. Plant Biotechnol J 10:453–464

    Article  CAS  PubMed  Google Scholar 

  • Bal AR, Dutt SK (1986) Mechanism of salt tolerance in wild rice (Oryza coarctata Roxb). Plant Soil 92:399–404

    Article  CAS  Google Scholar 

  • Bhargava A, Shukla S, Ohri D (2006) Chenopodium quinoa—an Indian perspective. Ind Crops Prod 23:73–87

    Article  CAS  Google Scholar 

  • Bose J, Rodrigo-Moreno A, Lai D, Xie Y, Shen W, Shabala S (2015) Rapid regulation of the plasm membrane H+-ATPase activity is essential to salinity tolerance in two halophyte species, Atriplex lentiformis and Chenopodium quinoa. Annu Bot 115:481–494

    Article  Google Scholar 

  • Braun-Blanquet J (1932) Plant sociology: the study of plant communities. MacGraw Hill, New York, pp 1–439

    Google Scholar 

  • Bromham L, Bennett TH (2014) Salt tolerance evolves more frequently in C4 grass lineages. J Evol Biol 27:653–659

    Article  CAS  PubMed  Google Scholar 

  • Byrt CS, Platten DJ, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna11. Plant Physiol 143:1918–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cagnac O, Leterrier M, Yeager M, Blumwald E (2007) Identification and characterization of Vnx1p, a novel type of vacuolar monovalent cation⁄H+ antiporter of Saccharomyces cerevisiae. J Biol Chem 282:24284–24293

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi AK, Patel MK, Mishra A, Tiwari V, Jha B (2014) The SbMT-2 gene from a halophyte confers abiotic stress tolerance and modulates ROS scavenging in transgenic tobacco. PLoS ONE 9(10):e111379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SY, Xia GM, Quan TY, Xiang FN, Yin J, Chen HM (2004) Introgression of salt-tolerance from somatic hybrids between common wheat and Thinopyrum ponticum. Plant Sci 167:773–779

    Article  CAS  Google Scholar 

  • Chen J, Huang Q, Gao D, Wang J, Lang Y, Liu T, Li B, Bai Z, Luis Goicoechea J, Liang C, Chen C, Zhang W, Sun S, Liao Y, Zhang X, Yang L, Song C, Wang M, Shi J, Liu G, Liu J, Zhou H, Zhou W, Yu Q, An N, Chen Y, Cai Q, Wang B, Liu B, Min J, Huang Y, Wu H, Li Z, Zhang Y, Yin Y, Song W, Jiang J, Jackson SA, Wing RA, Wang J, Chen M (2013) Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4:1595

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Bao H, Guo J, Jia W, Li Y (2015) Overexpression of SeNHX1 improves both salt tolerance and disease resistance in tobacco. Plant Signal Behav 10(4):e993240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Che-Othman MH, Jacoby RP, Millar AH, Taylor NL (2019) Wheat mitochondrial respiration shifts from the tricarboxylic acid cycle to the GABA shunt under salt stress. New Phytol 1:4. https://doi.org/10.1111/nph.15713

    Article  Google Scholar 

  • Colmer TD, Epstein E, Dvorak J (1995) Differential solute regulation in leaf blades of various ages in salt-sensitive wheat and a salt-tolerant wheat × Lophopyrum elongatum (Host) A Love amphiploid. Plant Physiol 108:1715–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colmer TD, Munns R, Flowers TJ (2005a) Improving salt tolerance of wheat and barley: future prospects. Aust J Exp Agric 45:1425–1443

    Article  CAS  Google Scholar 

  • Colmer TD, Garthwaite AJ, Islam AKMR, Islam S, Malik AI, von Bothmer R (2005b) Salinity and waterlogging tolerance in wild Hordeum species: physiological basis and prospects for use in cereal improvement. In: Li CJ et al (eds) Plant nutrition for food security, human health and environmental protection. Tsinghua University Press, Beijing, pp 8–9

    Google Scholar 

  • Colmer TD, Flowers TJ, Munns R (2006) Use of wild relatives to improve salt tolerance in wheat. J Exp Bot 57:1059–1078

    Article  CAS  PubMed  Google Scholar 

  • Das-Chatterjee A, Goswami L, Maitra S, Dastidar KG, Ray S, Majumder AL (2006) Introgression of a novel salt-tolerant L-myo-inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka (PcINO1) confers salt tolerance to evolutionary diverse organisms. FEBS Lett 580:3980–3988

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Diray-Arce J, Clement M, Gul B, Khan MA, Nielsen BL (2015) Transcriptome assembly, profiling and differential gene expression analysis of the halophyte Suaeda fruticosa provides insights into salt tolerance. BMC Genomics 16:353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorak J, Noaman MM, Goyal S, Gorham J (1994) Enhancement of the salt tolerance of Triticum turgidum L. by the Kna1 locus transferred from Triticum aestivum L. chromosome 4D by homologous recombination. Theor Appl Genet 87:872–877

    Article  CAS  PubMed  Google Scholar 

  • Ellis RP, Foster BP, Robinson D, Handley LL, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9–17

    Article  CAS  PubMed  Google Scholar 

  • Elsawy HIA, Mekawy AMM, Elhity MA, Abdel-Dayem SM, Abdelaziz MN, Assaha DVM, Ueda A, Saneoka H (2018) Differential responses of two Egyptian barley (Hordeum vulgare L.) cultivars to salt stress. Plant Physiol Biochem 127:425–435

    Article  CAS  PubMed  Google Scholar 

  • FAO (2016)

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2015) Plant salt tolerance: adaptations in halophytes. Annu Bot 115:327–331

    Article  CAS  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121

    Article  CAS  Google Scholar 

  • Flowers TJ, Flowers SA, Hajibagheri MA, Yeo AR (1990) Salt tolerance in the halophytic wild rice, Porteresia coarctata Tateoka. New Phytol 114:675–684

    Article  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Forster BP, Phillips MS, Miller TE, Baird E, Powell W (1990) Chromosome location of genes controlling tolerance to salt (NaCl) and vigour in Hordeum vulgare and H. chilense. Heredity 65:99–107

    Article  Google Scholar 

  • Forster BP, Pakniyat H, Macaulay M, Matheson W, Philips MS, Thomas WTB, Powell W (1994) Variation in the leaf sodium content of the Hordeum vulgare (barley) cultivar Maythorpe and its derived mutant cv. Golden promise. Heredity 73:249–253

    Article  CAS  Google Scholar 

  • Fuchs I, Stölzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Gao Q, Duan X, Yue G, Yang A, Zhang J (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57:3259–3270

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ 54:374–381

    Article  CAS  Google Scholar 

  • Gao W, Bai S, Li Q, Gao C, Liu G, Li G, Tan F (2013) Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra). PLoS ONE 8(6):e67462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg R, Verma M, Agrawal S, Shankar R, Majee M, Jain M (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21:69–84

    Article  CAS  PubMed  Google Scholar 

  • Garthwaite AJ, von Bothmer R, Colmer TD (2005) Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl into the shoots. J Exp Bot 56:2365–2378

    Article  CAS  PubMed  Google Scholar 

  • Gharat SA, Parmar S, Tambat S, Vasudevan M, Shaw BP, Subudhi PK (2016) Transcriptome analysis of the response to NaCl in Suaeda maritima provides an insight into salt tolerance mechanisms in halophytes. PLOS ONE 11(9):e0163485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Q, Li P, Ma S, Rupassara SI, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    Article  CAS  PubMed  Google Scholar 

  • Gorham J (1990) Salt tolerance in the Triticeae: K/Na discrimination in Aegilops species. J Exp Bot 41:615–621

    Article  CAS  Google Scholar 

  • Gorham J (1994) Salt tolerance in the Triticeae: K/Na discrimination in some perennial wheatgrasses and their amphiploids with wheat. J Exp Bot 45(4):441–447

    Article  CAS  Google Scholar 

  • Greenway H (1962) Plant response to saline substrates. I. Growth and ion uptake of several varieties of Hordeum during and after sodium chloride treatment. Aust J Biol Sci 15:16–38

    Article  CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31(1):149–190

    Article  CAS  Google Scholar 

  • Gregorio GB, Senadhira D, Mendoza RD, Manigbas NL, Roxas JP, Guerta CQ (2002) Progress in breeding for salinity tolerance and associated abiotic stresses in rice. Field Crops Res 76:91–101

    Article  Google Scholar 

  • Guan B, Hu Y, Zeng Y, Wang Y, Zhang F (2011) Molecular characterization and functional analysis of a vacuolar Na(+)/H(+) antiporter gene (HcNHX1) from Halostachys caspica. Mol Biol Rep 38:1889–1899

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Zhang L, Xiao G, Cao S, Gu D, Tian W, Chen S (1997) Expression of betaine aldehyde dehydrogenase gene and salinity tolerance in rice transgenic plants. Sci China Ser C 40:496–501

    Article  CAS  Google Scholar 

  • Guo YS, Wan-Ke Z, Dong-Qing Y, Bao-Xing D, Jin-Song Z, Shou-Yi C (2002) Overexpression of proline transporter gene isolated from halophyte confers salt tolerance in Arabidopsis. Acta Bota Sinica 44:956–962

    Google Scholar 

  • Guo S, Yin H, Zhang X, Zhao F, Li P, Chen S, Zhao Y, Zhang H (2006) Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol 60:41–50

    Article  CAS  PubMed  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6(10):1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Himabindu Y, Chakradhar Th, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp Bot 124:39–63

    Article  CAS  Google Scholar 

  • Horie T, Schroeder JI (2004) Sodium transporters in plants. Diverse genes and physiological functions. Plant Physiol 136:2457–2462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YZ, Zeng YL, Guan B, Zhang FC (2011) Overexpression of a vacuolar H+ -pyrophosphatase and a B subunit of H+ -ATPase cloned from the halophyte Halostachys caspica improves salt tolerance in Arabidopsis thaliana. Plant Cell Tiss Organ Cult 108:63–71

    Article  CAS  Google Scholar 

  • Husain S, von Caemmerer S, Munns R (2004) Control of salt transport from roots to shoots of wheat in saline soil. Funct Plant Biol 31:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Isayenkov SV (2012) Physiological and molecular aspects of salt stress in plants. Cytol Gen 46:302–318

    Article  Google Scholar 

  • Isayenkov SV, Maathuis FJM (2019) Plant salinity stress: many unanswered questions remain. Front Plant Sci 10:80

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishikawa T, Shabala S (2019) Control of xylem Na+ loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance. Physiol Plant 165:619–631

    Article  CAS  PubMed  Google Scholar 

  • Jacobs A, Ford K, Kretschmer J, Tester M (2011) Rice plants expressing the moss sodium pumping ATPase PpENA1 maintain greater biomass production under salt stress. Plant Biotechnol J 9:838–847

    Article  CAS  PubMed  Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterisation of two genes for Na+ exclusion in durum wheat: Nax1 and Nax2. Plant Physiol 142:1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion Nax1 and Nax2 (wheat HKT1;4 and HKT1;5) decrease Na+ accumulation in bread wheat under saline and waterlogged conditions. J Exp Bot 62:2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jha B, Sharma A, Mishra A (2011) Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance. Mol Biol Rep 38:4823–4832. https://doi.org/10.1007/s11033-010-06

    Article  CAS  PubMed  Google Scholar 

  • Jia GX, Zhu ZQ, Chang FQ, Li YX (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21:141–146

    Article  CAS  Google Scholar 

  • Joshi R, Ramanarao MV, Baisakh N (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol Biochem 65:61–66

    Article  CAS  PubMed  Google Scholar 

  • Joshi R, Ramanarao MV, Bedre B, Sanchez L, Pilcher W, Zandkarimi H, Baisakh N (2015) Salt adaptation mechanisms of halophytes: improvement of salt tolerance in crop plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants. Springer, New York, pp 243–279

    Chapter  Google Scholar 

  • Kalinina EB, Keith BK, Kern AJ, Dyer WE (2012) Salt-and osmotic stress-induced choline monooxygenase expression in Kochia scoparia, is ABA-independent. Biol Plant 56:699–704

    Article  CAS  Google Scholar 

  • Kane NC, Burke JM, Marek L, Seiler G, Vear F, Baute G, Knapp SJ, Vincourt P, Rieseberg LH (2013) Sunflower genetic, genomic and ecological resources. Mol Ecol Resour 13:10–20

    Article  PubMed  Google Scholar 

  • Kavitha K, Usha B, George S, Venkataraman G, Parida A (2010) Molecular characterization of a salt-inducible monodehydroascorbate reductase from the halophyte Avicennia marina. Int J Plant Sci 171:457–465

    Article  CAS  Google Scholar 

  • Kenrick P, Crane PR (1997) The origin and early evolution of plants on land. Nature 389:33–39

    Article  CAS  Google Scholar 

  • Kerby K, Kuspira J (1987) The phylogeny of the polypoloid wheats Triticum aestivum (bread wheat) and Triticum durum (macaroni wheat). Genome 29:722–737

    Article  Google Scholar 

  • Khedr AHA, Serag MS, Nemat-Alla MM, Abo El-Naga AZ, Nada RM, Quick WP, Abogadallah GM (2012) A DREBgene from the xero-halophyte Atriplex halimusis induced by osmotic but not ionic stress and shows distinct differences from glycophytic homologues. Plant Cell Tiss Organ Cult 106:191–206

    Article  Google Scholar 

  • Khlestkina EK, Salina EA (2001) Genome-specific markers of tetraploid wheats and their putative diploid progenitor species. Plant Breed 120:227–232

    Article  CAS  Google Scholar 

  • Kim DM, Ju HG, Kwon TR, Oh CS, Ahn SN (2009) Mapping QTLs for salt tolerance in an introgression line population between japonica cultivars in rice. J Crop Sci Biotech 12:121–128

    Article  Google Scholar 

  • King IP, Law CN, Cant KA, Orford SE, Reader SM, Miller TE (1997) Tritipyrum, a potential new salt-tolerant cereal. Plant Breed 116:127–132

    Article  Google Scholar 

  • Kobayashi S, Abe N, Yoshida KT, Liu S, Takano T (2012) Molecular cloning and characterization of plasma membrane and vacuolar type Na+/K+ antiporters of an alkaline salt tolerant monocot Puccinellia tenuiflora. J Plant Res 125:587–594

    Article  CAS  PubMed  Google Scholar 

  • Kong F, Li H, Sun P, Zhou Y, Mao Y (2014) De Novo assembly and characterization of the transcriptome of seagrass Zostera marina using Illumina paired-end sequencing. PLoS ONE 9:e112245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan T, Duan Y, Wang B, Zhou Y, Wu W (2011) Molecular cloning and functional characterization of a Na+/H+ antiporter gene from halophyte Spartina anglica. Turk J Agric For 35:535–543

    CAS  Google Scholar 

  • Latha R, Rao CS, Subramaniam HMS, Eganathan P, Swaminathan MS (2004) Approaches to breeding for salinity tolerance—a case study on Porteresia coarctata. Annu Appl Biol 144:177–184

    Article  Google Scholar 

  • Läuchli A (1984) Salt exclusion: an adaptation of legumes for crops and pastures under saline conditions. In: Staples RC (ed) Salinity tolerance in plants: strategies for crop improvement. Wiley, New York, pp 171–187

    Google Scholar 

  • Lexer C, Lai Z, Rieseberg LH (2003) Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytol 161:225–233

    Article  CAS  Google Scholar 

  • Li W, Wang D, Jin T, Chang Q, Yin D, Xu S, Liu B, Liu L (2011) The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic Alfalfa (Medicago sativa L.). Plant Mol Biol Rep 29:278

    Article  CAS  Google Scholar 

  • Li R, Zhang J, Wu G, Wang H, Chen J, Wei J (2012) HbCIPK2, a novel CBL-interacting protein kinase from halophyte Hordeum brevisubulatum, confers salt and osmotic stress tolerance. Plant Cell Environ 35:1582–1600

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Hu YX, Yang X, Yu XD, Li QL (2014) A novel zinc-finger HIT protein with an additional PAPA-1-like region from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought and salt stresses tolerance. Mol Biotechnol 56:1089–1099

    Article  CAS  PubMed  Google Scholar 

  • Li B, Tester M, Gilliham M (2017) Chloride on the move. Trends Plant Sci 22(3):236–248. https://doi.org/10.1016/j.tplants.2016.12.004

    Article  CAS  PubMed  Google Scholar 

  • Linares OF (2002) African rice (Oryza glaberrima): history and future potential. Proc Natl Acad Sci USA 99:16360–16365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Wang Y, Wang N, Dong YY, Fan XD, Liu XM, Yang J, Li HY (2011) Cloning of a vacuolar H(+)-pyrophosphatase gene from the halophyte Suaeda corniculata whose heterologous overexpression improves salt, saline-alkali and drought tolerance in Arabidopsis. J Integr Plant Biol 53:731–742

    CAS  PubMed  Google Scholar 

  • Liu L, Fan XD, Wang FW, Wang N, Dong YY, Liu X-M, Yang J, Wang Y-F, Li H-Y (2013) Coexpression of ScNHX1 and ScVP in transgenic hybrids improves salt and saline-alkali tolerance in alfalfa (Medicago sativa L.). J Plant Growth Regul 32:1–8

    Article  CAS  Google Scholar 

  • Liu J, Zhang S, Dong L, Chu J (2014) Incorporation of Na+/H+ antiporter gene from Aeluropus littoralis confers salt tolerance in soybean (Glycine max L.). Indian J Biochem Biophys 51:58–65

    CAS  PubMed  Google Scholar 

  • Lu S-Y, Jing Y-X, Shen S-H, Zhao H-Y, Ma L-Q, Zhou X-J, Ren Q, Li Y-F (2005) Antiporter gene from Hordum brevisubulatum (Trin.) link and its overexpression in transgenic tobaccos. J. Integr Plant Biol 47:343–349

    Article  CAS  Google Scholar 

  • Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang J (2008) Overexpression of an H+-PPase gene from Thellungiella halophile in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49:1150–1164

    Article  CAS  PubMed  Google Scholar 

  • Lv SL, Lian LJ, Tao PL, Li ZX, Zhang KW, Zhang JR (2009) Overexpression of Thellungiella halophile H(+)-PPase (TsVP) in cotton enhances drought stress resistance of plants. Planta 229:899–910

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Zhang M, Xiao X, You J, Wang J, Wang T, Yao Y, Tian C (2013) Global transcriptome profiling of Salicornia europaea L. shoots under NaCl treatment. PLoS ONE 8(6):e65877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maas EV, Grieve CM (1990) Spike and leaf development in salt stressed wheat. Crop Sci 30:1309–1313

    Article  Google Scholar 

  • Maathuis FJM, Amtmann A (1999) K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios. Ann Bot 84:123–133

    Article  CAS  Google Scholar 

  • Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt-tolerant l-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-confering salt tolerance phenotype. J Biol Chem 279:28539–28552

    Article  CAS  PubMed  Google Scholar 

  • Manohar M, Shigaki T, Hirschi KD (2011) Plant cation/H+ exchangers (CAXs): biological functions and genetic manipulations. Plant Biol 13:561–569

    Article  CAS  PubMed  Google Scholar 

  • Maršálová L, Vítámvás P, Hynek R, Prášil IT, Kosová K (2016) Proteomic response of Hordeum vulgare and H. marinum to salinity. Front Plant Sci 7:1154

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin A, Chapman V (1977) A hybrid between Hordeum chilense and Triticum aestivum. Cereal Res Commun 5:365–368

    Google Scholar 

  • Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ, Bonifacio A (2009) Characterization of salt overly sensitive 1 (SOS1) gene homologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647–657

    Article  CAS  PubMed  Google Scholar 

  • McGuire GE, Dvorak J (1981) High salt tolerance potential in wheat grasses. Crop Sci 21:702–705

    Article  Google Scholar 

  • Megdiche W, Passaquet C, Zourrig W, Zuily Fodi Y, Abdelly C (2008) Molecular cloning and characterization of novel cystatin gene in leaves Cakile maritima halophyte. J Plant Physiol 166:739–749

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Tanna B (2017) Halophytes: potential resources for salt stress tolerance genes and promoters. Front Plant Sci 8:829

    Article  PubMed  PubMed Central  Google Scholar 

  • Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10:135–151

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA (2003) Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil 253:201–218

    Article  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57:1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Yoshida K, Shinmyo A (2004) Yeast plasma membrane Ena1p ATPase alters alkali-cation homeostasis and confers increased salt tolerance in tobacco cultured cells. Biotechnol Bioeng 85:776–789

    Article  CAS  PubMed  Google Scholar 

  • Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira M (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377

    Article  CAS  Google Scholar 

  • Nevo E, Krugman T, Beiles A (1993) Short communication: genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed 110:338–341

    Article  Google Scholar 

  • Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144(4):1978–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh DH, Gong Q, Ulanov A, Zhang Q, Li Y, Ma W, Yun D-J, Bressan RA, Bohnert HJ (2007) Sodium stress in the halophyte Thellungiella halophila and transcriptional changes in a thsos1-RNA interference line. J Integr Plant Biol 49:1484–1496

    Article  CAS  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  CAS  PubMed  Google Scholar 

  • Omielan JA, Epstein E, Dvorak J (1991) Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salttolerant Lophopyrum elongatum. Genome 34:961–974

    Article  Google Scholar 

  • Orsini F, D’Urzo MP, Inan G, Serra S, Oh DH, Mickelbart MV, Consiglio F, Li X, Jeong JC, Yun DJ, Bohnert HJ, Bressan RA, Maggio A (2010) A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. J Exp Bot 61:3787–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozgur R, Uzilday B, Sekmen AH, Turkan I (2013) Reactive oxygen species regulation and antioxidant defence in halophytes. Funct Plant Biol 40:8–9

    Article  CAS  Google Scholar 

  • Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    Article  CAS  PubMed  Google Scholar 

  • Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  CAS  PubMed  Google Scholar 

  • Patra B, Ray S, Richter A, Majumder AL (2010) Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma 245:143–152

    Article  CAS  PubMed  Google Scholar 

  • Pedersen JT, Palmgren MB (2017) Why do plants lack sodium pumps and would they benefit from having one? Funct Plant Biol 44:473–479

    Article  CAS  PubMed  Google Scholar 

  • Pedersen CN, Axelsen KB, Harper JF, Palmgren MG (2012) Evolution of plant P-type ATPases. Front Plant Sci 3:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgressions train of bread wheat. Mol Cell Proteomics 8:2676–2686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittman JK, Edmond C, Sunderland PA, Bray CM (2009) A cation-regulated and proton gradient-dependent cation transporter from Chlamydomonas reinhardtii has a role in calcium and sodium homeostasis. J Biol Chem 284:525–533

    Article  CAS  PubMed  Google Scholar 

  • Polunin N (1960) Introduction to plant geography. McGraw-Hill Book Company Inc, New York

    Google Scholar 

  • Poustini K, Siosemardeh A (2004) Ion distribution in wheat cultivars in response to salinity stress. Field Crops Res 85:125–133

    Article  Google Scholar 

  • Prashanth SR, Sadhasivam V, Parida A (2008) Overexpression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291

    Article  CAS  PubMed  Google Scholar 

  • Prista C, Almagro A, Loureiro-Dias MC, Ramos J (1997) Physiological basis for the high salt tolerance of Debaryomyces hansenii. Appl Environ Microbiol 63:4005–4009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qadir M, Quillerou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum 38:282–295

    Article  Google Scholar 

  • Qiao WH, Zhao XY, Li W, Luo Y, Zhang XS (2007) Overexpression of AeNHX1, a root-specific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep 26:1663–1672

    Article  CAS  PubMed  Google Scholar 

  • Quan R, Wang J, Hui J, Bai H, Lyu X, Zhu Y, Zhang H, Zhang Z, Li S, Huang R (2018) Improvement of salt tolerance using wild rice genes. Front Plant Sci 8:2269

    Article  PubMed  PubMed Central  Google Scholar 

  • Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz GA, Saeed NA (2014) Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol Biol Rep 41(3):1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Rhodes D, Nadolska-Orczyk A, Rich PJ (2002) Salinity, osmolytes and compatible solutes. In: Lauchli A, Luttge U (eds) Salinity: environment pbnt-molecuks. Kluwer, Dordrecht, pp 181–204

    Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Rozema J, Flowers TJ (2005) Crops for a salinized world. Science 322:1478

    Article  Google Scholar 

  • Rozema J, Zaheer S, Niazi B, Linders H, Broekman R (1993) Salt tolerance of Beta vulgaris L.: a comparison of the growth of seabeet and fodderbeet in response to salinity. In: Lieth H, Masoom A (eds) Towards the rational use of high salinity tolerant plants, V 2. Kluwer Academic, Dordrecht, pp 193–198

    Chapter  Google Scholar 

  • Sakai H, Ikawa H, Tanaka T, Numa H, Minami H, Fujisawa M, Shibata M, Kurita K, Kikuta A, Hamada M, Kanamori H, Namiki N, Wu J, Itoh T, Matsumoto T, Sasaki T (2011) Distinct evolutionary patterns of Oryza glaberrima deciphered by genome sequencing and comparative analysis. Plant J 66:796–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schachtman DP (2000) Molecular insights into the structure and function of plant K+ transport mechanisms. Biochem Biophys Acta 1465:127–139

    Article  CAS  PubMed  Google Scholar 

  • Schachtman DP, Bloom AJ, Dvorak J (1989) Salt-tolerant TriticumxLophopyrum derivatives limit the accumulation of sodium and chloride ions under saline stress. Plant Cell Environ 12:47–55

    Article  CAS  Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Patra B, Ray S, Majumder AL (2008) Inositol methyl transferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka) regulation of pinitol synthesis under abiotic stress. Plant Cell Environ 31:1442–1459

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669

    Article  CAS  Google Scholar 

  • Shabala S, Mackay A (2011) Ion transport in halophytes. Adv Bot Res 57:151–199

    Article  CAS  Google Scholar 

  • Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19:687–691

    Article  CAS  PubMed  Google Scholar 

  • Shah SH, Gorham J, Forster BP, Wyn Jones RG (1987) Salt tolerance in the Triticeae: the contribution of the D-genome to cation selectivity in hexaploid wheat. J Exp Bot 38:254–269

    Article  CAS  Google Scholar 

  • Shannon MC (1978) Testing salt tolerance variability among tall wheatgrass lines. Agron J 10:719–722

    Article  Google Scholar 

  • Shao Q, Han N, Ding T, Zhou F, Wang B (2014) SsHKT1;1 is a potassium transporter of the C3 halophyte Suaeda salsa that is involved in salt tolerance. Funct Plant Biol 41:790–802

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y, Langridge P, Tester M, Nevo E (2010) Wide genetic diversity of salinity tolerance, sodium exclusion and growth in wild emmer wheat, Triticum dicoccoides. Breed Sci 60:426–435

    Article  Google Scholar 

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang ZS, Liu Q, Chen SY (2003) Characterization of a DRE-binding transcription factorfrom a halophyte Atriplex hortensis. Theor Appl Gene 107:155–161

    Article  CAS  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen J (1997) Increased salt and drought tolerance by D-Ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115:1211–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Quintero F, Pardo J, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Mishra A, Jha B (2014) Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene 547:119–125

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Yadav NS, Tiwari V, Agarwal PK, Jha B (2016) A SNARE-Like superfamily protein SbSLSP from the halophyte Salicornia brachiata confers salt and drought tolerance by maintaining membrane stability, K(+)/Na(+) ratio, and antioxidant machinery. Front Plant Sci 7:737

    PubMed  PubMed Central  Google Scholar 

  • Song J, Wang B (2015) Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model. Ann Bot 115:541–553

    Article  CAS  PubMed  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang X, Wang H, Shao C, Shao H (2015) Global gene expression of Kosteletzkya virginica seedlings responding to salt stress. PLoS ONE 10:e0124421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao JJ, Wei W, Pan WJ, Lu L, Li QT, Ma JB, Zhang WK, Ma B, Chen SY, Zhang JS (2018) An Alfin-like gene from Atriplex hortensis enhances salt and drought tolerance and abscisic acid response in transgenic Arabidopsis. Sci Rep 8(1):2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91:503–527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari V, Chaturvedi AK, Mishra A, Jha B (2014) The transcriptional regulatory mechanism of the peroxisomal ascorbate peroxidase (pAPX) gene cloned from an extreme halophyte, Salicornia brachiate. Plant Cell Physiol 55:201–217

    Article  CAS  PubMed  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11:1195–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukagoshi H, Suzuki T, Nishikawa K, Agarie S, Ishiguro S, Higashiyama T (2015) RNA-seq analysis of the response of the halophyte, Mesembryanthemum crystallinum (ice plant) to high salinity. PLoS ONE 10:e0118339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udawat P, Jha RK, Sinha D, Mishra A, Jha B (2016) Overexpression of a cytosolic abiotic stress responsive universal stress protein (SbUSP) mitigates salt and osmotic stress in transgenic tobacco plants. Front Plant Sci 7:518

    Article  PubMed  PubMed Central  Google Scholar 

  • Udawat P, Jha RK, Mishra A, Jha B (2017) Overexpression of a plasma membrane-localized SbSRP-like protein enhances salinity and osmotic stress tolerance in transgenic tobacco. Front. Plant Sci 8:582

    Article  PubMed  PubMed Central  Google Scholar 

  • Von Bothmer R, Jacobsen N, Baden C, Jørgensen RB, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, 2nd edn. International Plant Genetic Resources Institute, Rome, pp 1–127

    Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008) Proteomic analysis on a high salt tolerance introgressions train of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Hsu PK, Tsay YF (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li B, Meng Y, Ma X, Lai Y, Si E, Yang K, Ren P, Shang X, Wang H (2015a) Transcriptomic profiling of the salt-stress response in the halophyte Halogeton glomeratus. BMC Genomics 16:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Su SZ, Wu Y, Li SP, Shan XH, Liu HK, Wang S, Yuan YP (2015b) Overexpression of maize chloride channel gene ZmCLC-d in Arabidopsis thaliana improved its stress resistance. Biol Plant 59:55–64

    Article  CAS  Google Scholar 

  • Weimberg R, Shannon MC (1988) Vigor and salt tolerance in 3 lines of tall wheatgrass. Physiol Plant 73:232–237

    Article  CAS  Google Scholar 

  • Wu C, Gao X, Kong X, Zhao Y, Zhang H (2009) Molecular cloning and functional analysis of a Na+/H+ antiporter gene ThNHX1 from a halophytic plant Thellungiella halophile. Plant Mol Biol Rep 27:1

    Article  CAS  Google Scholar 

  • Xia GM, Xiang FN, Zhou AF, Wang H, He SX, Chen HM (2003) Asymmetric somatic hybridization between wheat (Triticum aestivum L.) and Agropyron elongatum (Host) Nevski. Theor Appl Genet 107:299–305

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Monneveux P, Damania AB, Zahavieva M (1993) Evaluation of salt tolerance in genetic resoures of Triticum and Aegilops species. Plant Genet Resour News Lett 96:11–16

    Google Scholar 

  • Xu XJ, Zhou YJ, Ren DT, Ren HH, Bu JC, Feng GY (2014) Cloning and characterization of gene encoding a Mn-containing superoxide dismutase in Eutrema halophilum. Biol Plant 58:105–113

    Article  CAS  Google Scholar 

  • Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na(+) loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12:188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav NS, Singh VK, Singh D, Jha B (2014) A novel gene SbSI-2 encoding nuclear protein from a halophyte confers abiotic stress tolerance in E coli and tobacco. PLoS ONE. 9(7):e101926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto N, Takano T, Tanaka K, Ishige T, Terashima S, Endo C, Kurusu T, Yajima S, Yano K, Tada Y (2015) Comprehensive analysis of transcriptome response to salinity stress in the halophytic turf grass Sporobolus virginicus. Front Plant Sci 6:241

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang X, Hu YX, Li XL, Yu XD, Li QL (2014) Molecular characterization and function analysis of SlNAC2 in Suaeda liaotungensis K. Gene 543:190–197

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Zeng Y, Liu L, Huang Y, Zhao E, Zhang F (2012) Overexpression of the halophyte Kalidium foliatum H+-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol Biol Rep 39:7989–7996

    Article  CAS  PubMed  Google Scholar 

  • Zhang GH, Su Q, An LJ, Wu S (2008) Characterization and expression of a vacuolar Na(+)/H(+) antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46:117–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li Y, Lai J, Zhang H, Liu Y, Liang L, Xie Q (2012) Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis. Mol Biol Rep 39:4627–4633

    Article  CAS  PubMed  Google Scholar 

  • Zhang LQ, Niu YD, Huridu H, Hao JF, Qi Z, Hasi A (2014) Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.). Gen Mol Res 13:5350–5360

    Article  CAS  Google Scholar 

  • Zhao F, Guo S, Zhang H, Zhao Y (2006a) Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci 170:216–224

    Article  CAS  Google Scholar 

  • Zhao FY, Zhang XJ, Li PH, Zhao Y-X, Zhang H (2006b) Co-expression of the Suaeda salsa SsNHX1 and Arabidopsis AVP1 confer greater salt tolerance to transgenic rice than the single SsNHX1. Mol Breed 7:341

    Article  CAS  Google Scholar 

  • Zhou S, Chen X, Zhang X, Li Y (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett 30:369–376

    Article  CAS  PubMed  Google Scholar 

  • Zou C, Chen A, Xiao L, Muller HM, Ache P, Haberer G, Zhang M, Jia W, Deng P, Huang R, Lang D, Li F, Zhan D, Wu X, Zhang H, Bohm J, Liu R, Shabala S, Hedrich R, Zhu JK, Zhang H (2017) A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Res 27:1327–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav V. Isayenkov.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isayenkov, S.V. Genetic sources for the development of salt tolerance in crops. Plant Growth Regul 89, 1–17 (2019). https://doi.org/10.1007/s10725-019-00519-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-019-00519-w

Keywords

Navigation