Skip to main content

Advertisement

Log in

Effect of salinity stress on plants and its tolerance strategies: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The environmental stress is a major area of scientific concern because it constraints plant as well as crop productivity. This situation has been further worsened by anthropogenic activities. Therefore, there is a much scientific saddle on researchers to enhance crop productivity under environmental stress in order to cope with the increasing food demands. The abiotic stresses such as salinity, drought, cold, and heat negatively influence the survival, biomass production and yield of staple food crops. According to an estimate of FAO, over 6 % of the world’s land is affected by salinity. Thus, salinity stress appears to be a major constraint to plant and crop productivity. Here, we review our understanding of salinity impact on various aspects of plant metabolism and its tolerance strategies in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4:2072–2081

    CAS  Google Scholar 

  • Abdullah Z, Khan MA, Flowers TJ (2001) Causes of sterility in seed set of rice under salinity stress. J Agron Crop Sci 167:25–32

    Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    CAS  Google Scholar 

  • Aghaei K, Ehsanpour AA, Komatsu S (2008) Proteome analysis of potato under salt stress. J Proteome Res 7:4858–4868

    CAS  Google Scholar 

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmad P, Jeleel CA, Azooz MM, Nabi G (2009) Generation of ROS and non-enzymatic antioxidants during abiotic stress in Plants. Bot Res Intern 2:11–20

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi G, Sharma S (2010a) Roles of enzymatic and non-enzymaticantioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010b) Antioxidative defence system, lipid peroxidation, prolinemetabolizing enzymes and biochemical activity in two genotypes of Morus albaL. subjectedto NaCl stress. Russ J Plant Physiol 57:509–517

    CAS  Google Scholar 

  • Ahmad P, Nabi G, Ashraf M (2011) Cadmium-induced oxidative damage in mustard [Brassica juncea(L.) Czern.& Coss.] plants can be alleviated by salicylic acid. South Afr J Bot 77:36–44

    CAS  Google Scholar 

  • Ahmad P, Hakeem KR, Kumar A, Ashraf M, Akram NA (2012) Salt-induced changes in photosyntheticactivity and oxidative defense system of three cultivars of mustard (Brassica juncea L.). Afr J Biotechnol 11:2694–2703

    CAS  Google Scholar 

  • Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9:43–50

    Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    CAS  Google Scholar 

  • Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008) Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ 31:325–340

    CAS  Google Scholar 

  • Amirjani MR (2011) Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. Int J Bot 7:73–81

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over-expression of a vacuolar Naþ/Hþ antiport in Arabidopsis. Science 285:1256–1258

    CAS  Google Scholar 

  • Arenas-Huertero C, Pérez B, Rabanal F, Blanco-Melo D, De la Rosa C, Estrada-Navarrete G, Sanchez F, Covarrubias A, Reyes J (2009) Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol Biol 70:385–401

    CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissue. In: Foyer CH, Mullineaux PM (eds) Causes of photooxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Askari H, Edqvist J, Hajheidari M, Kafi M, Salekdeh GH (2006) Effects of salinity levels onproteome of Suaeda aegyptiaca leaves. Proteomics 6:2542–2554

    CAS  Google Scholar 

  • Baea H, Herman E, Bailey B, Bae HJ, Sicher R (2005) Exogenous trehalose alters Arabidopsis transcripts involved in cell wall modification, abiotic stress, nitrogen metabolism, and plant defense. Physiol Plant 125:114–126

    Google Scholar 

  • Ballif BA, Blenis J (2001) Molecular mechanisms mediating mammalian mitogen-activatedprotein kinase (MAPK) kinase (MEK)-MAPK cell survival signals. Cell Growth Differ 12:397–408

    CAS  Google Scholar 

  • Bandehagh A, Salekdeh GH, Toorchi M, Mohammadi A, Komatsu S (2011) Comparative proteomic analysis of canola leaves under salinity stress. Proteomics 11:1965–1975

    CAS  Google Scholar 

  • Bar Y, Apelbaum A, fi Kafka U, Goren R (1997) Relationship between chloride and nitrate and its effect on growth and mineral composition of avocado and citrus plants. J Plant Nutr 20:715–731

    CAS  Google Scholar 

  • Barkla BJ, Vera-Estrella R, Hernandez-Coronado M, Pantoja O (2009) Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance. Plant Cell 21:4044–4058

    CAS  Google Scholar 

  • Battaglia M, Olvera-Carillo Y, Garciarrubio A, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

    CAS  Google Scholar 

  • Beck M, Komis G, Muller J, Menzel D, Samaj J (2010) Arabidopsis homologs of nucleus- and phragmoplast-localized kinase 2 and 3 and mitogen-activated protein kinase 4 are essential for microtubule organization. Plant Cell 22:755–771

    CAS  Google Scholar 

  • Beck M, Komis G, Ziemann A, Menzel D, Samaj J (2011) Mitogen-activated protein kinase 4 is involved in the regulation of mitotic and cytokinetic microtubule transitions in Arabidopsis thaliana. New Phytol 189:1069–1083

  • Bordi A (2010) The influence of salt stress on seed germination, growth and yield of canola cultivars. Not Bot Horti Agrobo 38:128–133

    Google Scholar 

  • Brumós J, Colmenero-Flores JM, Conesa A, Izquierdo P, Sánchez G, Iglesias DJ, López-Climent MF, Gómez-Cadenas A, Talón M (2009) Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive citrus stocks. Funct Integr Genomics 9:293–309

  • Bugos RC, Hieber AD, Yamamoto HY (1998) Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J Biol Chem 273:15321–15324

    CAS  Google Scholar 

  • Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, Segundo BS (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol doi:10.1104/pp.113.230268

  • Carpıcı EB, Celık N, Bayram G (2009) Effects of salt stress on germination of some maize(Zea mays L.) cultivars. Afr J Biotechnol 8:4918–4922

    Google Scholar 

  • Chakraborty K, Sairam RK, Bhattacharya RC (2012) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101

    CAS  Google Scholar 

  • Chattopadhyay A, Subba P, Pandey A, Bhushan D, Kumar R, Datta A, Chakraborty S, Chakraborty N (2011) Analysis of the grasspea proteome and identification of stress-responsive proteins upon exposure to high salinity, low temperature, and abscisic acid treatment. Phytochemistry 72:1293–1307

    CAS  Google Scholar 

  • Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought-from genes to the whole plant. Funct Plant Biol 30:239–264

    CAS  Google Scholar 

  • Cheeseman JM (1988) Mechanism of salinity tolerance in plants. Plant Physiol 87:547–550

    CAS  Google Scholar 

  • Chen S, Gollop N, Heuer B (2009) Proteomic analysis of salt-stressed tomato (Solanum lycopersicum) seedlings: effect of genotype and exogenous application of glycine betaine. J Exp Bot 60:2005–2019

    CAS  Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9:3100–3114

    CAS  Google Scholar 

  • Chitteti B, Peng Z (2007) Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. J Proteome Res 6:1718–1727

    CAS  Google Scholar 

  • Chutipaijit S, Cha-um S, Sompornpailin K (2011) High contents of proline and anthocyaninincrease protective response to salinity in Oryza sativa L. spp. indica. Aust J Crop Sci 5:1191–1198

    CAS  Google Scholar 

  • Ciftci-Yilmaz S, Morsy MR, Song L, Coutu A, Krizek BA, Lewis MW, Warren D, Cushman J, Connolly EL, Mittler R (2007) The EAR-motif of the Cys2/His2-typezinc finger protein Zat7 plays a key role in the defense response of Arabidopsisto salinity stress. J Biol Chem 282:9260–9268

    CAS  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    CAS  Google Scholar 

  • Conde C, Silva P, Agasse A, Lemoine R, Delrot S, Tavares R, Geròs H (2007) Utilization and transport of mannitol in Olea europaea and implications for salt stress tolerance. Plant Cell Physiol 48:42–53

    CAS  Google Scholar 

  • Dang YP, Dalal RC, Routley R, Schwenke GD, Daniells I (2006) Subsoil constraints to grain production in the cropping soils of the north-eastern region of Australia: an overview. Aust J Exp Agric 46:19–35

    Google Scholar 

  • Dang YP, Dalal RC, Mayer DG, McDonald M, Routely R, Schwenke GD, Buck SR, Daniells IG, Singh DK, Manning W, Ferguson N (2008) High subsoil chloride concentrations reduce soil water extraction and crop yield on Vertisols in north-eastern Australia. Aust J Agric Res 59:321–330

    CAS  Google Scholar 

  • Dani V, Simon WJ, Duranti M, Croy RRD (2005) Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5:737–745

    CAS  Google Scholar 

  • Dantas BF, De Sa RL, Aragao CA (2007) Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Rev Bras de Sementes 29:106–110

    Google Scholar 

  • Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM (2011) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918

    CAS  Google Scholar 

  • De Paola D, Cattonaro F, Pignone D, Sonnante G (2012) The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis. BMC Genomics 13:41

    Google Scholar 

  • Demetriou G, Neonaki C, Navakoudis E, Kotzabasis K (2007) Salt stress impact on the molecular structure and function of the photosynthetic apparatus—the protective role of polyamines. Biochim Biophys Acta-Bioenerget 1767:272–280

    CAS  Google Scholar 

  • Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38

    CAS  Google Scholar 

  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9

    CAS  Google Scholar 

  • Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456

    CAS  Google Scholar 

  • Dolatabadian A, Modarressanavy SAM, Ghanati F (2011) Effect of salinity on growth, xylem structure and anatomical characteristics of soybean. Not Sci Biol 3:41–45

    Google Scholar 

  • Dombrowski JE, Baldwin JC, Martina RC (2008) Cloning and characterization of a salt stress inducible small GTPase gene from the model grass species Lolium temulentum. J Plant Physiol 165:651–661

    CAS  Google Scholar 

  • Dooki AD, Mayer-Posner FJ, Askari H, Zaiee AA, Salekdeh GH (2006) Proteomic responses of rice young panicles to salinity. Proteomics 6:6498–6507

    CAS  Google Scholar 

  • Elstner EF (1987) Metabolism of activated oxygen species. In: Davies DD (ed) The biochemistry of plants, vol II, Biochemistry of metabolism. Academic, San Diego, pp 252–315

    Google Scholar 

  • Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC (2012) The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39:6387–6397

    CAS  Google Scholar 

  • Fernández-Torquemada Y, Sánchez-Lizaso JL (2013) Effects of salinity on seed germination and early seedling growth of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Estuarine, Coastal Shelf Sci 119:64–70

  • Flowers TJ, Hajibagheri MA, Clipson NJW (1986) Halophytes. Quart Rev Biol 61:313–337

    Google Scholar 

  • Gadallah MAA (1999) Effects of proline and glycine betaine on Vicia faba response to salt stress. Biol Plant 42:249–257

    CAS  Google Scholar 

  • Gain P, Mannan MA, Pal PS, Hossain MM, Parvin S (2004) Effect of salinity on some yield attributes of rice. Pak J Biol Sci 7:760–762

    Google Scholar 

  • Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837–845

    CAS  Google Scholar 

  • Garcia-Olmedo F, Molina A, Segura A, Moreno M (1995) The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol 3:72–74

    CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Salinity and its effects on the functional biology of legumes. Acta Physiol Plant 30:595–618

    Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903

    CAS  Google Scholar 

  • Geissler N, Hussin S, Koyro HW (2010) Elevated atmospheric CO2 concentration enhances salinity tolerance in Aster tripolium L. Planta 231:583–594

    CAS  Google Scholar 

  • Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: Human causes, extent, management and case studies. UNSW Press, Sydney, Australia, and CAB International, Wallingford, UK

    Google Scholar 

  • Godoy JA, Lunar S, Torres-Schumann J, Moreono J, Rodrigo RM, Pintor-Toro JA (1994) Expression, tissue distribution and subcellular localization of dehydrin TAS14 in salt-stressed tomato plants. Plant Mol Biol l26:1921–1934

    Google Scholar 

  • Gomes-Filho E, Machado Lima CRF, Costa JH, da Silva AC, da Guia Silva Lima M, de Lacerda CF, Prisco JT (2008) Cowpea ribonuclease: properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Rep 27:147–157

    CAS  Google Scholar 

  • Grattan SR, Grieve CM (1999) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157

    CAS  Google Scholar 

  • Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31:149–190

    CAS  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:1169–1194

    Google Scholar 

  • Guan B, Yu J, Chen X, Xie W, Lu Z (2011) Effects of salt stress and nitrogen application on growthand ion accumulation of Suaeda salsa plants. Intl Conf Remote Sens Environ Transport Engin,24–26 June, pp 8268–8272

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similarand specific responses and their relation to salt tolerance in citrus. Planta 204:460–469

    Google Scholar 

  • Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A 97:3735–3740

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1985) Free radicals in biology and medicine. Clarendon, Oxford

    Google Scholar 

  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Clarendon, Oxford

    Google Scholar 

  • Hasanuzzaman M, Fujita M (2011a) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M (2011b) Exogenous silicon treatment alleviates salinity-induced damage in Brassica napus L. seedlings by up-regulating the antioxidant defense and methylglyoxal detoxification system. Abstract of Plant Biology 2011, American Society of Plant Biology. http://abstracts.aspb.org/pb2011/public/P10/P10001.html

  • Hasanuzzaman M, Fujita M, Islam MN, Ahamed KU, Nahar K (2009) Performance of four irrigatedrice varieties under different levels of salinity stress. Int J Integr Biol 6:85–90

    Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of 1 pyrroline-5-carboxylase synthetase (P5CS) results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

  • Hu Y, Schmidhalter U (2005) Drought and salinity: a comparison of their effects on mineral nutrition of plants. J Plant Nutr Soil Sci 168:541–549

    CAS  Google Scholar 

  • Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118–139

    Google Scholar 

  • Hussin S, Geissler N, Koyro HW (2013) Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol Plant 35:1025–1038

    CAS  Google Scholar 

  • Ibrar M, Jabeen M, Tabassum J, Hussain F, Ilahi I (2003) Salt tolerance potential of Brassica juncea Linn. J Sci Tech Univ Peshawar 27:79–84

    Google Scholar 

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

  • Iyengar ERR, Reddy MP (1996) Photosynthesis in highly salt-tolerant plants. In: Pessaraki M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 897–909

    Google Scholar 

  • Jacoby RP, Millar AH, Taylor NL (2010) Wheat mitochondrial proteomes provide new links between antioxidant defense and plant salinity tolerance. J Proteome Res 9:6595–6604

    CAS  Google Scholar 

  • Jiang Y, Yang B, Harris NS, Deyholos MK (2007) Comparative proteomic analysis of NaCl stress-responsive proteins in Arabidopsis roots. J Exp Bot 58:3591–3607

    CAS  Google Scholar 

  • Kalaji HM, Govindjee BK, Koscielniakd J, Zük-Gołaszewska K (2011) Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ Exp Bot 73:64–72

  • Kaur G, Kumar S, Nayyar H, Upadhyaya HD (2008) Cold stress injury during the pod- fillingphase in chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. J Agron Crop Sci 194:457–464

    Google Scholar 

  • Kav NNV, Srivastava S, Goonewardende L, Blade SF (2004) Proteome-level changes in the roots of Pisum sativum in response to salinity. Ann Appl Biol 145:217–230

    CAS  Google Scholar 

  • Kaveh H, Nemati H, Farsi M, Jartoodeh SV (2011) How salinity affect germination and emergence of tomato lines. J Biol Environ Sci 5:159–163

    Google Scholar 

  • Keutgen AJ, Pawelzik E (2009) Impacts of NaCl stress on plant growth and mineral nutrient assimilation in two cultivars of strawberry. Environ Exp Bot 65:170–176

    CAS  Google Scholar 

  • Khan MA, Rizvi Y (1994) Effect of salinity, temperature and growth regulators on the germination and early seedling growth of Atriplex griffithii var. Stocksii. Can J Bot 72:475–479

    Google Scholar 

  • Khan MA, Weber DJ (2008) Ecophysiology of high salinity tolerant plants (tasks for vegetation science), 1st edn. Springer, Amsterdam

    Google Scholar 

  • Khan MA, Ungar IA, Showalter AM (2000) Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Ann Bot 85:225–232

    CAS  Google Scholar 

  • Khan MM, Al-Mas'oudi RSM, Al-Said F, Khan I (2013) Salinity effects on growth, electrolyte leakage, chlorophyll content and lipid peroxidation in cucumber (Cucumis sativus L.)2013 International Conference on Food and Agricultural Sciences IPCBEE vol.55, IACSIT Press, Singapore doi:10.7763/IPCBEE.2013. V55. 6

  • Khodarahmpour Z, Ifar M, Motamedi M (2012) Effects of NaCl salinity on maize (Zea mays L.) at germination and early seedling stage. Afr J Biotechnol 11:298–304

    CAS  Google Scholar 

  • Kim DW, Rakwal R, Agrawal GK, Jung YH, Shibato J, Jwa NS, Iwahashi Y, Iwahashi H, Kim DH, Shim IS, Usui K (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26:4521–4539

    CAS  Google Scholar 

  • Kim SH, Woo DH, Kim JM, Lee SY, Chung WS, Moon YH (2011) Arabidopsis MKK4 mediates osmotic-stress response via its regulation of MPK3 activity. Biochem Biophys Res Commun 412:150–154

  • Kosová K, Vítámvás P, Prášil IT (2010) The role of dehydrins in plant stress response. In:Handbook of Plant and CropStress. Pessarakli M (ed) CRC Press, Taylor and Francis: Boca Raton, FL, USA, pp 239–285

  • Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition a review. Int J Mol Sci 14:6757–6789

    Google Scholar 

  • Kumar Swami A, Alam SI, Sengupta N, Sarin R (2011) Differential proteomic analysis of salt response in Sorghum bicolor leaves. Environ Exp Bot 71:321–328

    Google Scholar 

  • Kumar G, Purty RS, Sharma MP, Singla-Pareek SL, Pareek A (2009) Physiological responses among Brassica species under salinity stress show strong correlation with transcript abundance for SOS pathway-related genes. J Plant Physiol 166:507–520

    CAS  Google Scholar 

  • Kumari S, Panjabi V, Kushwaha HR, Sopory SK, Singla-Pareek SL, Pareek A (2009) Transcriptome map for seedling stage specific salinity stress response indicates a specific set of genes as candidate for saline tolerance in Oryza sativa L. Funct Integr Genomics 9:109–123

    CAS  Google Scholar 

  • Kurth E, Cramer GR, Lauchli A, Epstein E (1986) Effects of NaCl and CaCl2 on cell enlargement and cell production in cotton roots. Plant Physiol 82:1102–1106

    CAS  Google Scholar 

  • Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92:689–737

    CAS  Google Scholar 

  • Lauchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Jenks MA, Hasegawa PM, Mohan JS (eds) Advances in molecular breeding towards drought and salt tolerant crops. Springer, Berlin, pp 1–32

    Google Scholar 

  • Lea-Cox JD, Syvertsen JP (1993) Salinity reduces water use and nitrate-N-use efficiency of citrus. Ann Bot 72:47–54

    CAS  Google Scholar 

  • Lee YS, ParkSR, Park HJ, KwonYW (2004a) Salt stress magnitude can be quantified by integrating salinity with respect to duration. Proceedings of 4th International Crop Sci Congress. Brisbane, Aust 26 Sept-1 Oct pp 1–5

  • Lee SM, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OK (2004b) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediateosmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391

    CAS  Google Scholar 

  • Li H, Dong Y, Yin H, Wang N, Yang J, Liu X, Wang Y, Wu J, Li X (2011a) Characterization of the stress associated micro RNAs in Glycine max by deep sequencing. BMC Plant Biol 11:170

  • Li W, Zhang C, Lu Q, Wen X, Lu C (2011b) The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J Plant Physiol 168:1743–1752

    CAS  Google Scholar 

  • Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guoa Y (2009) Phosphorylation of SOS3-like calcium binding protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salttolerance in Arabidopsis. Plant Cell 21:1607–1619

  • Linghe Z, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci 40:996–1003

    Google Scholar 

  • Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817

    CAS  Google Scholar 

  • Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci USA 97:3730–3734

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    CAS  Google Scholar 

  • Lòpez-Climent MF, Arbona V, Pérez-Clemente RM, Gòmez-Cadenas A (2008) Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environ Exp Bot 62:176–184

    Google Scholar 

  • Lu SF, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in Populus. Plant J 55:131–151

    CAS  Google Scholar 

  • Lu Y, Lam H, Pi E, Zhan Q, Tsai S, Wang C, Kwan Y, Ngai S (2013) Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring. J Agric Food Chem 61:8711–8721

    CAS  Google Scholar 

  • Mahajan S, Pandey GK, Tuteja N (2008) Calcium and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158

    CAS  Google Scholar 

  • Manaa A, Ahmed HB, Valot B, Bouchet JP, Aschi-Smiti S, Causse M, Faurobert M (2011) Salt and genotype impact on plant physiology and root proteome variations in tomato. J Exp Bot 62:2797–2813

    CAS  Google Scholar 

  • Mane AV, Karadge BA, Samant JS (2010) Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon Nardus (L.) Rendle. J Chem Pharm Res 2:338–347

  • Mantri N, Patade V, Penna S, Ford R, Pang E (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 1–19

    Google Scholar 

  • Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012

    Google Scholar 

  • Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM (1994) The protein phosphatise calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J Biol Chem 269:8792–8796

    CAS  Google Scholar 

  • Mittal S, Kumari N, Sharma V (2012) Differential response of salt stress on Brassica juncea: photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol Biochem 54:17–26

    CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity upregulates the antioxidative system in rootmitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin S, Prasad DT, Lee O, Kwak SS, Kim DH, Nam J, Bahk J, Hong JC, Lee SY, Cho MJ, Lim CO, Yun DJ (2003) NDP kinase 2 interacts with two oxidative stress-acivated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci U S A 100:358–363

    CAS  Google Scholar 

  • Moons A, Bauw G, Prinsen E, van Montagu M, van Der Straeten D (1995) Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varietites. Plant Physiol 107:177–186

    CAS  Google Scholar 

  • Müller J, Beck M, Mettbach U, Komis G, Hause G, Menzel D, Samaj J (2010) Arabidopsis MPK6 is involved in cell division plane control during early root development, and localizes to the pre-prophase band, phragmoplast, trans-Golgi network and plasma membrane. Plant J 61:234–248

  • Munns R (1993) Physiological processes limiting plant growth in saline soil:some dogmas and hypotheses. Plant Cell Environ 16:15–24

    CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663

    CAS  Google Scholar 

  • Murty PSS, Murty KS (1982) Spikelet sterility in relation to nitrogen and carbohydrate contents in rice. Ind J Plant Physiol 25:40–48

    Google Scholar 

  • Nahar K, Hasanuzzaman M (2009) Germination, growth, nodulation and yield performance of three mung bean varieties under different levels of salinity stress. Green Farming 2:825–829

    Google Scholar 

  • Navarro L, Dunoyer P, Jay F (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    CAS  Google Scholar 

  • Ndimba BK, Chivasa S, Simon WJ, Slabas AR (2005) Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 5:4185–4196

    CAS  Google Scholar 

  • Nounjana N, Nghiab PT, Theerakulpisuta P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:596–604

    Google Scholar 

  • Oertli JJ (1991) Nutrient management under water and salinity stress. In: Proceeding of the symposium on nutrient management for sustained productivity. Dept Soils Punjab Agric UnverLudhiana, India, pp 138–165

    Google Scholar 

  • Ohnishi N, Murata N (2006) Glycine betaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcussp. PCC 7942. Plant Physiol 141:758–765

    CAS  Google Scholar 

  • Othman Y, Al-Karaki G, Al-Tawaha AR, Al-Horani A (2006) Variation in germination and ion uptake in barley genotypes under salinity conditions. World J Agric Sci 2:11–15

    Google Scholar 

  • Pang Q, Chen S, Dai S, Wang Y, Chen Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol Environ Saf 60:324–349

    CAS  Google Scholar 

  • Parida AK, Das AB, Mittra B (2004) Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Struct Funct 18:167–174

    CAS  Google Scholar 

  • Peng Z, Wang M, Li F, Lv H, Li C, Xia G (2009) A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat. Mol Cell Proteomics 8:2676–2686

    CAS  Google Scholar 

  • Persak H, Pitzschke A (2013) Tight interconnection and multi-level control of Arabidopsis MYB44 in MAPK cascade signalling. PLoS One 8:e57547

    CAS  Google Scholar 

  • Piotr S, Grazyna K (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125:31–40

  • Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1-MKK1/2-MPK4 pathway in ROS signalling. Mol Plant 2:120–137

    CAS  Google Scholar 

  • Qadir M, Schubert S (2002) Degradation processes and nutrient constraints in sodic soils. Land Degrad Dev 13:275–294

    Google Scholar 

  • Qiu QS, Guo Y, Quintero FJ, Pardo JM, Schumaker KS, Zhu JK (2004) Regulation of vacuolar Naþ/Hþ exchange in Arabidopsis thaliana by the salt-overly sensitive (SOS) pathway. J Biol Chem 279:207–215

    CAS  Google Scholar 

  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCaBP8/CBL10, a putative calcium sensor, interacts with theprotein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431

    CAS  Google Scholar 

  • Rasoulnia A, Bihamta MR, Peyghambari SA, Alizadeh H, Rahnama A (2011) Proteomic response of barley leaves to salinity. Mol Biol Rep 38:5055–5063

    CAS  Google Scholar 

  • Renberg L, Johansson AI, Shutova T, Stenlund H, Aksmann A, Raven JA, Gardeström P, Moritz T, Samuelsson G (2010) A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in Chlamydomonas reinhardtii. Plant Physiol 154:187–196

    CAS  Google Scholar 

  • Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    CAS  Google Scholar 

  • Rogers ME, Grieve CM, Shannon MC (2003) Plant growth and ion relations in lucerne (Medicagosativa L.) in response to the combined effects of NaCl and P. Plant Soil 253:187–194

    CAS  Google Scholar 

  • Romero-Aranda R, Soria T, Cuartero S (2001) Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Sci 160:265–272

    CAS  Google Scholar 

  • Rozeff N (1995) Sugarcane and salinity—a review paper. Sugarcane 5:8–19

    Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiata L.Wilczek). Indian J Exp Biol 48:593–600

    CAS  Google Scholar 

  • Sairam RK, Roa KV, Srivastava GC (2002) Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Sci 163:1037–1046

    CAS  Google Scholar 

  • Sakamoto A, Alia MN (1998) Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold. Plant Mol Biol 38:1011–1019

    CAS  Google Scholar 

  • Samajova O, Plihal O, Al-Yousif M, Hirt H, Samaj J (2013) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotechnol Adv 31:118–128

    CAS  Google Scholar 

  • Schweighofer A, Kazanaviciute V, Scheikl E, Teige M, Doczi R, Hirt H, Schwanninger M, Kant M, Schuurink R, Mauch F, Buchala A, Cardinale F, Meskienea I (2007) The PP2C-type phosphatase AP2C1, which negatively regulates MPK4and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19:2213–2224

    CAS  Google Scholar 

  • Seemann JR, Critchley C (1985) Effects of salt stress on the growth, ion contents, stomatal behaviour and photosynthetic capacity of a salt sensitive species, Phaseolus vulgaris L. Planta 164:66–69

    Google Scholar 

  • Semiz GD, Ünlukara A, Yurtseven E, Suarez DL, Telci I (2012) Salinity impact on yield, water use, mineral and essential oil contentof fennel (Foeniculum vulgare Mill.). J Agric Sci 18:177–186

    Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice Porteresia coarctata: a physiological and proteomic approach. Planta 229:911–929

  • Shanker AK, Venkateswarlu B (2011) Abiotic stress in plants—mechanisms and adaptations. In: TechJaneza Trdine 9, 51000 Rijeka, Croatia

  • Shi H, Zhu JK (2002) SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiol 129:585–593

    CAS  Google Scholar 

  • Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901

    CAS  Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    CAS  Google Scholar 

  • Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010a) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Proteome Res 9:2882–2897

  • Sobhanian H, Razavizadeh R, Nanjo Y, Ehsanpour AA, Jazii FR, Motamed N, Komatsu S (2010b) Proteome analysis of soybean leaves, hypocotyls and roots under salt stress. Proteome Sci 8:19

    Google Scholar 

  • Sugimoto M, Takeda K (2009) Proteomic analysis of specific proteins in the root of salt-tolerant barley. Biosci Biotechnol Biochem 73:2762–2765

    CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    CAS  Google Scholar 

  • Szabolcs I (1974) Salt affected soils in Europe. Martinus Nijhoff, The Hague, p 63

    Google Scholar 

  • Sze H, Li X, Palmgren MG (1999) Energization of plant membranes by Hþ-pumping ATPases: regulation and biosynthesis. Plant Cell 11:677–689

    CAS  Google Scholar 

  • Tada Y, Kashimura T (2009) Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Plant Cell Physiol 50:439–446

    CAS  Google Scholar 

  • Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 35:1697–1709

    Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic plants by production of the osmolyte mannitol. Science 259:508–510

    CAS  Google Scholar 

  • Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203

    CAS  Google Scholar 

  • Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429–443

    CAS  Google Scholar 

  • Tuna LA, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178

    CAS  Google Scholar 

  • Ulfat M, Athar H, Ashraf M, Akram NA, Jamil A (2007) Appraisal of physiological and biochemical selection criteria for evaluation of salt tolerance in canola (Brassica napus L.). Pak J Bot 39:1593–1608

    Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13:132–138

    CAS  Google Scholar 

  • Veeranagamallaiah G, Jyothsnakumari G, Thippeswamy M, Reddy PCO, Surabhi GK, Sriranganayakulu G, Mahesh Y, Rajasekhar B, Madhurarekha C, Sudhakar C (2008) Proteomic analysis of salt stress responses in foxtail millet (Setaria italica L. cv. Prasad) seedlings. Plant Sci 175:631–641

    CAS  Google Scholar 

  • Vincent D, Ergül A, Bohlman MC, Tattersall EA, Tillett RL, Wheatley MD, Woolsey R, Quilici DR, Joets J, Schlauch K, Schooley DA, Cushman JC, Cramer GR (2007) Proteomic analysis reveals differences between Vitis. Vinifera L. cv. Chardonnay and cv. Cabernet Sauvignon and their responses to water deficit and salinity. J Exp Bot 58:1873–1892

    CAS  Google Scholar 

  • Vorasoot N, Songsri P, Akkasaeng C, Jogloy S, Patanothai A (2003) Effect of water stress on yield and agronomic characters of peanut. Songklanakarin J Sci Technol 25:283–288

    Google Scholar 

  • Wahid A, Rao R, Rasul E (1997) Identification of salt tolerance traits in sugarcane lines. Field Crop Res 54:9–17

    Google Scholar 

  • Walia A, Lee JS, Wasteneys G, Ellis B (2009) Arabidopsis mitogen-activated protein kinaseMPK18 mediates cortical microtubule functions in plant cells. Plant J 59:565–575

    CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    CAS  Google Scholar 

  • Wang MC, Peng ZY, Li CL, Li F, Liu C, Xia GM (2008a) Proteomic analysis on a high salt tolerance introgression strain of Triticum aestivum/Thinopyrum ponticum. Proteomics 8:1470–1489

    CAS  Google Scholar 

  • Wang X, Yang P, Gao Q, Liu X, Kuang T, Shen S, He Y (2008b) Proteomic analysis of the response to high-salinity stress in Physcomitrella patens. Planta 228:167–177

    CAS  Google Scholar 

  • Wang X, Fan P, Song H, Chen X, Li X, Li Y (2009) Comparative proteomic analysis of differentially expressed protein in shoots of Salicornia europea, under different salinity. J Proteome Res 8:3331–3345

    CAS  Google Scholar 

  • White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988

    CAS  Google Scholar 

  • Witzel K, Weidner A, Surabhi GK, Börner A, Mock HP (2009) Salt stress-induced alterations in the root proteome of barley genotypes with contrasting response towards salinity. J Exp Bot 60:3546–3557

    Google Scholar 

  • Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H, Dai F, Wu F, Zhang G (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One 8:e55431

    CAS  Google Scholar 

  • Xu G, Magen H, Tarchitzky J, Kafkafi U (2000) Advances in chloride nutrition of plants. Adv Agron 68:97–150

    CAS  Google Scholar 

  • Xu C, Sibicky T, Huang B (2010) Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bent grass differing in salinity tolerance. Plant Cell Rep 29:595–615

    CAS  Google Scholar 

  • Xu S, Hu B, He Z, Ma F, Feng J, Shen W, Yan J (2011) Enhancement of salinity tolerance during rice seed germination by presoaking with hemoglobin. Int J Mol Sci 12:2488–2501

    CAS  Google Scholar 

  • Yang Q, Chen ZZ, Zhoua XF, Yina HB, Lia X, Xina XF, Honga XH, Zhu JK, Gong Z (2009) Over-expression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31

    CAS  Google Scholar 

  • Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075

    CAS  Google Scholar 

  • Yu J, Chen S, Zhao Q, Wang T, Yang C, Diaz C, Sun G, Dai S (2011) Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. J Proteome Res 10:3852–3870

    CAS  Google Scholar 

  • Zhang W, Peumans WJ, Barre A, Astoul CH, Rovira P, Rougé P, Proost P, Truffa-Bachi P, Jalali AAH, van Damme EJM (2000) Isolation and characterization of a jacalin-related mannose-binding lectin from salt-stressed rice (Oryza sativa) plants. Planta 210:970–978

    CAS  Google Scholar 

  • Zhang MH, Qin ZH, Liu X (2005) Remote sensed spectral imagery to detect late blight in field tomatoes. Precision Agriculture 6:489–508

  • Zhou J, Li F, Wang J, Ma Y, Chong K, Xu Y (2009) Basic helix-loop-helix transcription factor from wild rice (OrbHLH2) improves tolerance to salt and osmotic stress in Arabidopsis. J Plant Physiol 166:1296–1306

    CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  Google Scholar 

  • Zhu JK (2004) Plant salt tolerance and the SOS pathway. In: Proceedings of the XLVIII Italian Society of Agricultural Genetics: SIFV-SIGA Joint Meeting, Lecce, Italy (15–18 September, 2004), ISBN 88-900622-5-8.

  • Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191

    CAS  Google Scholar 

  • Zhu ZJ, Wei GQ, Li J, Qian QQ, Yu JQ (2004) Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci 167:527–533

    CAS  Google Scholar 

  • Zi Z, Liebermeister W, Klipp E (2010) A quantitative study of the Hog1 MAPK response to fluctuating osmotic stress in Saccharomyces cerevisiae. PLoS One 5:e9522

    Google Scholar 

  • Zörb C, Herbst R, Forreite C, Schubert S (2009) Short-term effects of salt exposure on the maize chloroplast protein pattern. Proteomics 9:4209–4220

    Google Scholar 

  • Zörb C, Schmitt S, Mühling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10:4444–4449

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grants Commission, New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijay Pratap Singh or Sheo Mohan Prasad.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parihar, P., Singh, S., Singh, R. et al. Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22, 4056–4075 (2015). https://doi.org/10.1007/s11356-014-3739-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-3739-1

Keywords

Navigation