Skip to main content

Advertisement

Log in

Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase

  • Bioenergy/Biofuels/Biochemicals
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Xylan represents a major component of lignocellulosic biomass, and its utilization by Saccharomyces cerevisiae is crucial for the cost effective production of ethanol from plant biomass. A recombinant xylan-degrading and xylose-assimilating Saccharomyces cerevisiae strain was engineered by co-expression of the xylanase (xyn2) of Trichoderma reesei, the xylosidase (xlnD) of Aspergillus niger, the Scheffersomyces stipitis xylulose kinase (xyl3) together with the codon-optimized xylose isomerase (xylA) from Bacteroides thetaiotaomicron. Under aerobic conditions, the recombinant strain displayed a complete respiratory mode, resulting in higher yeast biomass production and consequently higher enzyme production during growth on xylose as carbohydrate source. Under oxygen limitation, the strain produced ethanol from xylose at a maximum theoretical yield of ~90 %. This study is one of only a few that demonstrates the construction of a S. cerevisiae strain capable of growth on xylan as sole carbohydrate source by means of recombinant enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  CAS  PubMed  Google Scholar 

  2. Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226

    Article  Google Scholar 

  3. Juturu V, Wu JC (2014) Microbial exo-xylanases: a mini review. Appl Biochem Biotechnol 174:81–92

    Article  CAS  PubMed  Google Scholar 

  4. Nogué VS, Karhumaa K (2015) Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnol Lett 37:761–772

    Article  Google Scholar 

  5. Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. La Grange DC, Pretorius IS, Claeyssens M, van Zyl WH (2001) Degradation of xylan to d-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger β-Xylosidase (xlnD) and the Trichoderma reesei Xylanase II (xyn2) genes. Appl Environ Microbiol 67:5512–5519

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sakamoto T, Hasunuma T, Hori Y, Yamada R, Kondo A (2012) Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J Biotechnol 158:203–210

    Article  CAS  PubMed  Google Scholar 

  8. Sun J, Wen F, Si T, Xu J-H, Zhao H (2012) Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome. Appl Environ Microbiol 78:3837–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tomás-Pejó E, Bonander N, Olsson L (2014) Industrial yeasts strains for biorefinery solutions: constructing and selecting efficient barcoded xylose fermenting strains for ethanol. Biofuels Bioprod Biorefining 8:626–634

    Article  Google Scholar 

  10. Rizzi M, Erlemann P, Bui-Thanh N-A, Dellweg H (1988) Xylose fermentation by yeasts. Appl Microbiol Biotechnol 29:148–154

    Article  CAS  Google Scholar 

  11. Rodriguez-Peña JM, Cid VJ, Arroyo J, Nombela C (1998) The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 162:155–160

    Article  PubMed  Google Scholar 

  12. Bruinenberg PM, van Dijken JP, Scheffers WA (1983) An enzymatic analysis of NADPH production and consumption in Candida utilis. J Gen Microbiol 129:965–971

    CAS  PubMed  Google Scholar 

  13. Jeffries TW, Jin Y-S (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  CAS  PubMed  Google Scholar 

  14. Kuyper M, Winkler AA, van Dijken JP, Pronk JT (2004) Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664

    Article  CAS  PubMed  Google Scholar 

  15. van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M et al (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90:391–418

    Article  CAS  PubMed  Google Scholar 

  16. van Maris AJA, Winkler AA, Kuyper M, de Laat WTAM, Van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Adv Biochem Eng Biotechnol 108:179–204

    PubMed  Google Scholar 

  17. Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4648–4651

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Brat D, Boles E, Wiedemann B (2009) Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol 75:2304–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hector RE, Dien BS, Cotta MA, Mertens JA (2013) Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. Biotechnol Biofuels 6:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MSM, de laat WTAM et al (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4:69–78

    Article  CAS  PubMed  Google Scholar 

  21. Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WTAM, van Dijken JP et al (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180:134–141

    Article  CAS  PubMed  Google Scholar 

  22. Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A et al (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82:1067–1078

    Article  CAS  PubMed  Google Scholar 

  23. Goma G (1979) Advances in biochemical engineering. Biochimie 61:19–20

    Article  Google Scholar 

  24. Jin Y-S, Jones S, Shi N-Q, Jeffries TW (2002) Molecular cloning of XYL3 (d-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol 68:1232–1239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Träff KL, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS genes. Appl Environ Microbiol 67:5668–5674

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sambrook J, Russell DW, Irwin N (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  27. De Villiers G (2006) Development of recombinant Saccharomyces cerevisiae for improved d-xylose utilisation. MSc Thesis, Stellenbosch University, South Africa

  28. Cho KM, Yoo YJ, Kang HS (1999) δ-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol 25:23–30

    Article  CAS  Google Scholar 

  29. Lee FWF, da Silva NA (1997) Sequential δ-integration for the regulated insertion of cloned genes in Saccharomyces cerevisiae. Biotechnol Prog 13:368–373

    Article  CAS  PubMed  Google Scholar 

  30. La Grange DC, Pretorius IS, van Zyl WH (1996) Expression of a Trichoderma reesei β-xylanase gene (xyn2) in Saccharomyces cerevisiae. Appl Environ Microbiol 62:1036–1044

    PubMed  PubMed Central  Google Scholar 

  31. Kulka RG (1956) Colorimetric estimation of ketopentoses and ketohexoses. Biochem J 63:542–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schenk M, Bisswanger H (1998) A microplate assay for d-xylose/d-glucose isomerase. Enzyme Microb Technol 22:721–723

    Article  CAS  Google Scholar 

  33. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  34. Sapunova LI, Tamkovich IO, Lobanok AG (2010) Some aspects of xylose isomerase constitutive biosynthesis in Arthrobacter nicotianae. Appl Biochem Microbiol 46:400–404

    Article  CAS  Google Scholar 

  35. Loison G, Nguyen-Juilleret M, Alouani S, Marquet M (1986) Plasmid-transformed ura3 fur1 double-mutants of S. cerevisiae: an autoselection system applicable to the production of foreign proteins. Nat Botechnology 4:433–437

    Article  CAS  Google Scholar 

  36. Utille J-P, Kováč P, Sauriol F, Perlin AS (1986) N.m.r. spectra of aldobiuronic and aldotriuronic acid derivatives related to 4-O-methyl-D-glucurono-D-xylans. Carbohydr Res 154:251–258

    Article  CAS  Google Scholar 

  37. Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98:2503–2510

    Article  PubMed  Google Scholar 

  38. Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund M-F (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5

    Article  PubMed  PubMed Central  Google Scholar 

  39. Parachin NS, Gorwa-Grauslund MF (2011) Isolation of xylose isomerases by sequence-and function-based screening from a soil metagenomic library. Biotechnol Biofuels 4:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Petrash JM, Murthy BSN, Young M, Morris K, Rikimaru L, Griest TA et al (2001) Functional genomic studies of aldo-keto reductases. Chem Biol Interact 130–132:673–683

    Article  PubMed  Google Scholar 

  41. Träff KL, Jönsson LJ, Hahn-Hägerdal B (2002) Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19:1233–1241

    Article  PubMed  Google Scholar 

  42. Görgens JF, van Zyl WH, Knoetze JH, Hahn-Hägerdal B (2001) The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 73:238–245

    Article  PubMed  Google Scholar 

  43. Van Rensburg E, den Haan R, Smith J, van Zyl WH, Görgens JF (2012) The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl Microbiol Biotechnol 96:197–209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the National Research Foundation (NRF) for financial support to the Chair of Energy Research: Biofuels and other clean alternative fuels (Grant Number UID 86423 awarded to WHvZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willem Heber van Zyl.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mert, M.J., la Grange, D.C., Rose, S.H. et al. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase. J Ind Microbiol Biotechnol 43, 431–440 (2016). https://doi.org/10.1007/s10295-015-1727-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1727-1

Keywords

Navigation