Skip to main content
Log in

Xylose fermentation by yeasts

4. Purification and kinetic studies of xylose reductase fromPichia stipitis

  • Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Summary

Xylose reductase from the xylose-fermenting yeastPichia stipitis was purified to electrophoretic homogeneity via ion-exchange, gel and affinity chromatography. At physiological pH values the thermodynamic equilibrium constant was determined to be 0.575x1010 (l·mol-1). Product inhibiton studies are reported which clearly show that the kinetic mechanism of the xylose reductase is ordered-bi-bi with isomerisation of a stable enzyme form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnett JA (1976) Utilization of sugars by yeasts. Adv Carbohydr Chem Biochem 32:125–228

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Bruinenberg PM, de Bot PHM, van Dijken JP, Scheffers WA (1984) NADH-linked aldose reductase: the key to anaerobic alcoholic fermention of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260

    Google Scholar 

  • Chiang C, Knight SG (1960a) Metabolism ofd-xylose by moulds. Nature 188:79–83

    Google Scholar 

  • Chiang C, Knight SG (1960b) A new pathway of pentose metabolism. Biochem Biophys Res Comm 3:554–558

    Google Scholar 

  • Cleland WW (1963a) Nomenclature and rate equations. Biochim Biophys Acta 67:104–137

    Google Scholar 

  • Cleland WW (1963b) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. 2. Inhibition: nomenclature and theory. Biochim Biophys Acta 67:173–187

    Google Scholar 

  • Dalziel K (1957) Initial steady state velocities in the evaluation of enzyme-coenzyme-substrate reaction mechanisms. Acta Chem Scand 11:1706–1723

    Google Scholar 

  • Dellweg H, Rizzi M, Methner H, Debus D (1984) Xylose fermentation by yeasts. 3. Comparison ofPachysolen tannophilus andPichia stipitis. Biotechnol Lett 6:395–400

    Google Scholar 

  • Du Preez JC, van der Walt JP (1983) Fermentation ofd-xylose to ethanol by a strain ofCandida shehatae. Biotechnol Lett 5:357–362

    Google Scholar 

  • Du Preez JC, Prior BA, Monteiro AMT (1984) The effect of aeration on xylose fermentation byCandida shehatae andPachysolen tannophilus. Appl Microbiol Biotechnol 19:261–266

    Google Scholar 

  • Du Preez JC, Bosch M, Prior BA (1986) The fermentation of hexose and pentose sugars byCandida shehatae andPichia stipitis. Appl Microbiol Biotechnol 23:228–233

    Google Scholar 

  • Horecker BL (1963) Pentose metabolism in bacteria. Wiley, New York, pp 100–111

    Google Scholar 

  • Jeffries TW (1985) Effects of culture conditions on the fermentation of xylose to ethanol byCandida shehatae. Biotechnol Bioeng Symp 15:149–166

    Google Scholar 

  • King EL, Altman C (1956) A schematic method of deriving the rate laws for enzyme catalyzed reactions. J Phys Chem 60:1375–1378

    Google Scholar 

  • Laemmli UK, Favre M (1973) Maturation of the head of bacteriophage T4. I. DNA packaging events. J Mol Biol 80:575–599

    Google Scholar 

  • Maurer Hr (1968) Disk-Elektrophorese. Verlag Walter de Gruyter, Berlin

    Google Scholar 

  • Rizzi M, Klein C, Schulze C, Bui-Thanh NA, Dellweg H (1987) Mathematical model for the semiaerobic fermentation of xylose by the yeastPichia stipitis. In: Neijssel OM, van der Meer RR, Luyben KChAM. Elsevier, Amsterdam, NL, Vol 3:415

    Google Scholar 

  • Rizzi M (1988) Biochemische und reaktionskinetische Charakterisierung der Xylose-Reduktase und der NAD+-Xylit-Dehydrogenase, isoliert ausPichia stipitis. Doctoral thesis, TU Berlin D83

  • Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion ofd-xylose into ethanol by the yeastPachysolen tannophilus. Biotechnol Lett 3:89–92

    Google Scholar 

  • Magee RJ, Kosaric N (1985) Bioconversion of hemicellulosics. Adv Biotechnol Bioengin 32:61–93

    Google Scholar 

  • Segal HL, Kachmar JF, Boyer PD (1952) Kinetic analysis of enzyme reactions. Enzymologia 15:187–198

    Google Scholar 

  • slininger PJ, Bothast RJ, van Cauwenberge JE (1982) Conversion ofd-xylose to ethanol by the yeastPachysolen tannophilus. Biotechnol Bioeng 24:371–384

    Google Scholar 

  • Slininger PJ, Bothast RJ, Okos MR, Ladisch MR (1985) Comparative evaluation of ehanol production by xylose-fermenting yeasts presented high xylose concentrations. Biotechnol Lett 7:431–436

    Google Scholar 

  • Sreenath HK, Chapman TW, Jeffries TW (1986) Ethanol production fromd-xylose in batch fermentations withCandida shehatae: process variables. Appl Microbiol Biotechnol 24:294–299

    Google Scholar 

  • Toivola A, Yarrow D, van den Bosch E, van Dijken JP, Scheffers WA (1984) Alcoholic fermentation ofd-xylose by yeasts. Appl Environ Microbiol 47:1221–1223

    Google Scholar 

  • Verduyn C, van Kleef R, Frank J, Schreuder H, van Dijken JP, Scheffers WA (1985) Properties of the NAD(P)H-dependent xylose reductase from xylose fermenting yeastPichia stipitis. Biochem J 226:669–677

    Google Scholar 

  • Wilkinson GN (1961) Statistical estimations in enzyme kinetics. Biochem J 80:324–332

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzi, M., Erlemann, P., Bui-Thanh, NA. et al. Xylose fermentation by yeasts. Appl Microbiol Biotechnol 29, 148–154 (1988). https://doi.org/10.1007/BF00939299

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00939299

Keywords

Navigation