Skip to main content
Log in

Metabolic engineering for improved fermentation of pentoses by yeasts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The fermentation of xylose is essential for the bioconversion of lignocellulose to fuels and chemicals, but wild-type strains of Saccharomyces cerevisiae do not metabolize xylose, so researchers have engineered xylose metabolism in this yeast. Glucose transporters mediate xylose uptake, but no transporter specific for xylose has yet been identified. Over-expressing genes for aldose (xylose) reductase, xylitol dehydrogenase and moderate levels of xylulokinase enable xylose assimilation and fermentation, but a balanced supply of NAD(P) and NAD(P)H must be maintained to avoid xylitol production. Reducing production of NADPH by blocking the oxidative pentose phosphate cycle can reduce xylitol formation, but this occurs at the expense of xylose assimilation. Respiration is critical for growth on xylose by both native xylose-fermenting yeasts and recombinant S, cerevisiae. Anaerobic growth by recombinant mutants has been reported. Reducing the respiration capacity of xylose-metabolizing yeasts increases ethanol production. Recently, two routes for arabinose metabolism have been engineered in S. cerevisiae and adapted strains of Pichia stipitis have been shown to ferment hydrolysates with ethanol yields of 0.45 g g−1 sugar consumed, so commercialization seems feasible for some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbi M, Kuhad RC, Singh A (1996) Fermentation of xylose and rice straw hydrolysate to ethanol by Candida shehatae NCL-3501. J Ind Microbiol 17:20–23

    CAS  PubMed  Google Scholar 

  • Aguilar R, Ramirez JA, Garrote G, Vazquez M (2002) Kinetic study of the acid hydrolysis of sugar cane bagasse. J Food Eng 55:309–318

    Article  Google Scholar 

  • Amore R, Kötter P, Kuster C, Ciriacy M, Hollenberg CP (1991) Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene 109:89–97

    CAS  PubMed  Google Scholar 

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    CAS  PubMed  Google Scholar 

  • Bao X, Gao D, Qu Y, Wang Z, Walfridssion M, Hahn-Hägerdal B (1997) Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Chin J Biotechnol 13:225–231

    CAS  PubMed  Google Scholar 

  • Basaran P, Basaran N, Hang YD (2000) Isolation and characterization of Pichia stipitis mutants with enhanced xylanase activity. World J Microbiol Biotechnol 16:545–550

    Article  CAS  Google Scholar 

  • Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes l-arabinose and produces ethanol. Appl Environ Microbiol 69:4144–4150

  • Billard P, Menart S, Fleer R, Bolotin-Fukuhara M (1995) Isolation and characterization of the gene encoding xylose reductase from Kluyveromyces lactis. Gene 162:93–97

    Article  CAS  PubMed  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    Article  CAS  PubMed  Google Scholar 

  • Bruinenberg PM (1986) The NADP(H) redox couple in yeast metabolism. Antonie Van Leeuwenhoek 52:411–429

    CAS  PubMed  Google Scholar 

  • Bruinenberg PM, Debot PHM, Dijken JP van, Scheffers WA (1983a) The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292

    CAS  Google Scholar 

  • Bruinenberg PM, Dijken JP van, Scheffers WA (1983b) A theoretical analysis of NADPH production and consumption in yeasts. J Gen Microbiol 129:953–964

    CAS  Google Scholar 

  • Bruinenberg PM, Debot PHM, Dijken JP van, Scheffers WA (1984) NADH-linked aldose reductase—the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260

    CAS  Google Scholar 

  • Bruinenberg PM, Jonker R, Dijken JP van, Scheffers WA (1985) Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS-621 and Saccharomyces cerevisiae CBS-8066—evidence for the absence of transhydrogenase activity in yeasts. Arch Microbiol 142:302–306

    CAS  Google Scholar 

  • Buziol S, et al (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2:283–291

    Article  CAS  PubMed  Google Scholar 

  • Chang SF, Ho NW (1988) Cloning the yeast xylulokinase gene for the improvement of xylose fermentation. Appl Biochem Biotechnol 17:313–318

    CAS  PubMed  Google Scholar 

  • Chang YD, Dickson RC (1988) Primary structure of the lactose permease gene from the yeast Kluyveromyces lactis—presence of an unusual transcript structure. J Biol Chem 263:16696–16703

    CAS  PubMed  Google Scholar 

  • Chen RF, Wu ZW, Lee YY (1998) Shrinking-bed model for percolation process applied to dilute-acid pretreatment hydrolysis of cellulosic biomass. Appl Biochem Biotechnol 70/72:37–49

  • Cho JY, Jeffries TW (1998) Pichia stipitis genes for alcohol dehydrogenase with fermentative and respiratory functions. Appl Environ Microbiol 64:1350–1358

    CAS  PubMed  Google Scholar 

  • Cho JY, Jeffries TW (1999) Transcriptional control of ADH genes in the xylose-fermenting yeast Pichia stipitis. Appl Environ Microbiol 65:2363–2368

    CAS  PubMed  Google Scholar 

  • Christensen B, Gombert AK, Nielsen J (2002) Analysis of flux estimates based on (13)C-labelling experiments. Eur J Biochem 269:2795–2800

    Article  CAS  PubMed  Google Scholar 

  • Claassen PAM, et al (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    CAS  Google Scholar 

  • Dahn KM, Davis BP, Pittman PE, Kenealy WR, Jeffries TW (1996) Increased xylose reductase activity in the xylose-fermenting yeast Pichia stipitis by overexpression of XYL1. Appl Biochem Biotechnol 57/58:267–276

  • Den Haan R, van Zyl WH (2001) Differential expression of the Trichoderma reesei beta-xylanase II (xyn2) gene in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 57:521–527

    Article  PubMed  Google Scholar 

  • Deng XX, Ho NW (1990) Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl Biochem Biotechnol 24/25:193–199

  • Dequin S (2001) The potential of genetic engineering for improving brewing, wine making and baking yeasts. Appl Microbiol Biotechnol 56:577–588

    Article  CAS  PubMed  Google Scholar 

  • Diderich JA, Schuurmans JM, Van Gaalen MC, Kruckeberg AL, Van Dam K (2001) Functional analysis of the hexose transporter homologue HXT5 in Saccharomyces cerevisiae. Yeast 18:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Dien BS, Kurtzman CP, Saha BC, Bothast RJ (1996) Screening for l-arabinose fermenting yeasts. Appl Biochem Biotechnol 57/58:233–242

  • Does AL, Bisson LF (1989) Characterization of xylose uptake in the yeasts Pichia heedii and Pichia stipitis. Appl Environ Microbiol 55:159–164

    CAS  Google Scholar 

  • Du Preez JC, Walt JP van der (1983) Fermentation of d-xylose to ethanol by a strain of Candida shehatae. Biotechnol Lett 5:357–362

    Google Scholar 

  • Du Preez JC, Prior BA, Monteiro AMT (1984) The effect of aeration on xylose fermentation by Candida shehatae and Pachysolen tannophilus—a comparative study. Appl Microbiol Biotechnol 19:261–266

    CAS  Google Scholar 

  • Du Preez JC, Bosch M, Prior BA (1986) Xylose fermentation by Candida shehatae and Pichia stipitis—effects of pH, temperature and substrate concentration. Enzyme Microb Technol 8:360–364

    Article  Google Scholar 

  • Eliasson A, et al (2000a) Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:376–382

    PubMed  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000b) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    CAS  PubMed  Google Scholar 

  • Fiaux J, Cakar ZP, Sonderegger M, Wuthrich K, Szyperski T, Sauer U (2003) Metabolic flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180

    Article  CAS  PubMed  Google Scholar 

  • Flores CL, Rodriguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529

    Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  CAS  PubMed  Google Scholar 

  • Gong CS, Cao NJ, Du J, Tsao GT (1999) Ethanol production from renewable resources. Adv Biochem Eng Biotechnol 65:207–241

    CAS  PubMed  Google Scholar 

  • Gupthar AS (1992) Segregation of altered parental properties in fusions between Saccharomyces cerevisiae and the d-xylose fermenting yeasts Candida shehatae and Pichia stipitis. Can J Microbiol 38:1233–1237

    CAS  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, Zyl WH van, Cordero Otero RR, Jönsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    PubMed  Google Scholar 

  • Hallborn J, et al (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology 9:1090–1095

    CAS  PubMed  Google Scholar 

  • Hallborn J, Gorwa MF, Meinander N, Penttilä M, Keranen S, Hahn-Hägerdal B (1994) The influence of cosubstrate and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol 42:326–333

    CAS  PubMed  Google Scholar 

  • Hallborn J, Walfridsson M, Penttilä M, Keranen S, Hahn-Hägerdal B (1995) A short-chain dehydrogenase gene from Pichia stipitis having d-arabinitol dehydrogenase activity. Yeast 11:839–847

    CAS  PubMed  Google Scholar 

  • Hamacher T, Becker J, Gardonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788

    CAS  PubMed  Google Scholar 

  • Handumrongkul C, Ma DP, Silva JL (1998) Cloning and expression of Candida guilliermondii xylose reductase gene (xyl1) in Pichia pastoris. Appl Microbiol Biotechnol 49:399–404

    Article  CAS  PubMed  Google Scholar 

  • Harhangi HR, et al (2003) Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol 180:134–141

    CAS  PubMed  Google Scholar 

  • Hespell RB (1998) Extraction and characterization of hemicellulose from the corn fiber produced by corn wet-milling processes. J Agric Food Chem 46:2615–2619

    Article  CAS  Google Scholar 

  • Hinmann ND, Wright JD, Hoagland W, Wyman CE (1989) Xylose fermentation—an economic analysis. Appl Biochem Biotechnol 20/21:391–401

  • Ho NW, Tsao GT (1993) Recombinant yeasts for effective fermentation of glucose and xylose. US Patent 5789210

  • Ho NW, Lin FP, Huang S, Andrews PC, Tsao GT (1990) Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb Technol 12:33–39

    Article  CAS  PubMed  Google Scholar 

  • Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective co-fermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    CAS  PubMed  Google Scholar 

  • Ho NW, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective co-fermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192

    Google Scholar 

  • Hohmann S, Neves MJ, Koning W de, Alijo R, Ramos J, Thevelein JM (1993) The growth and signalling defects of the ggs1 (fdp1/byp1) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr Genet 23:281–289

    CAS  PubMed  Google Scholar 

  • Hohmann S, Bell W, Neves MJ, Valckx D, Thevelein JM (1996) Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Mol Microbiol 20:981–991

    CAS  PubMed  Google Scholar 

  • Jeffries T (1981) Conversion of xylose to ethanol under aerobic conditions. Biotechnol Lett 3:213–218

    CAS  Google Scholar 

  • Jeffries TW (1982) A comparison of Candida tropicalis and Pachysolen tannophilus for conversion of xylose to ethanol. Biotechnol Bioeng Symp 12:103–110

    CAS  Google Scholar 

  • Jeffries T (1983) Utilization of xylose by bacteria yeasts and fungi. Adv Biochem Eng Biotechnol 27:1–32

    CAS  PubMed  Google Scholar 

  • Jeffries TW (1985) Emerging technology for fermenting d-xylose. Trends Biotechnol 3:208–212

    CAS  Google Scholar 

  • Jeffries TW, Jin YS (2000) Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol 2000:221–268

    Google Scholar 

  • Jeffries TW, Kurtzman CP (1994) Strain selection, taxonomy, and genetics of xylose fermenting yeasts. Enzyme Microb Technol 16:922–932

    CAS  Google Scholar 

  • Jeffries TW, Shi NQ (1999) Genetic engineering for improved xylose fermentation by yeasts. Adv Biochem Eng Biotechnol 65:117–161

    CAS  PubMed  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    CAS  PubMed  Google Scholar 

  • Jin YS (2002) Metabolic engineering of xylose fermentation in Saccharomyces cerevisiae. PhD thesis, University of Wisconsin, Madison

  • Jin YS, Jeffries TW (2003) Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 105/108:277–285

  • Jin YS, Jones S, Shi NQ, Jeffries TW (2002) Molecular cloning of XYL3 (d-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol 68:1232–1239

    Article  CAS  PubMed  Google Scholar 

  • Jin YS, Ni H, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl Environ Microbiol 69:495–503

    Article  CAS  PubMed  Google Scholar 

  • Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B (2001) Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol 67:4249–4255

    Article  CAS  PubMed  Google Scholar 

  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol 49:691–697

    Article  Google Scholar 

  • Kastner JR, Jones WJ, Roberts RS (1998) Simultaneous utilization of glucose and d-xylose by Candida shehatae in a chemostat. J Ind Microbiol Biotechnol 20:339–343

    Article  CAS  Google Scholar 

  • Kastner JR, Jones WJ, Roberts RS (1999) Oxygen starvation induces cell death in Candida shehatae fermentations of d-xylose, but not d-glucose. Appl Microbiol Biotechnol 51:780–785

    Article  CAS  PubMed  Google Scholar 

  • Kheshgi HS, Prince RC, Marland G (2000) The potential of biomass fuels in the context of global climate change: focus on transportation fuels. Annu Rev Energy Environ 25:199–244

    Article  Google Scholar 

  • Kilian SG, Uden N van (1988) Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol 27:545–548

    CAS  Google Scholar 

  • Kim KH, Tucker MP, Keller FA, Aden A, Nguyen QA (2001) Continuous countercurrent extraction of hemicellulose from pretreated wood residues. Appl Biochem Biotechnol 91/93:253–267

  • Kim YS, Kim SY, Kim JH, Kim SC (1999) Xylitol production using recombinant Saccharomyces cerevisiae containing multiple xylose reductase genes at chromosomal delta-sequences. J Biotechnol 67:159–171

    CAS  PubMed  Google Scholar 

  • Kordowska-Wiater M, Targonski Z (2001) Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Acta Microbiol Pol 50:291–299

    CAS  PubMed  Google Scholar 

  • Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Google Scholar 

  • Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500

    PubMed  Google Scholar 

  • Kou SC, Christensen MS, Cirillo VP (1970) Galactose transport in Saccharomyces cerevisiae. II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol 103:671–678

    CAS  PubMed  Google Scholar 

  • Krishnan MS, Ho NWY, Tsao GT (1999) Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400 (pLNH33). Appl Biochem Biotechnol 77/79:373–388

  • Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292

    CAS  PubMed  Google Scholar 

  • Kuyper M, et al (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res (in press)

  • La Grange DC, Pretorius IS, Claeyssens M, Zyl WH van (2001) Degradation of xylan to d-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger beta-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol 67:5512–5519

    Article  PubMed  Google Scholar 

  • Lagunas R (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol Rev 104:229–242

    Article  CAS  Google Scholar 

  • Larsson S, Cassland P, Jönsson LJ (2001) Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol 67:1163–1170

    CAS  PubMed  Google Scholar 

  • Lawford HG, Rousseau JD (1993) Production of ethanol from pulp-mill hardwood and softwood spent sulfite liquors by genetically engineered Escherichia coli. Appl Biochem Biotechnol 39:667–685

    Google Scholar 

  • Lee H, Biely P, Latta RK, Barbosa MFS, Schneider H (1986) Utilization of xylan by yeasts and Its conversion to ethanol by Pichia stipitis strains. Appl Environ Microbiol 52:320–324

    CAS  Google Scholar 

  • Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH (2002) Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:186–191

    Article  CAS  PubMed  Google Scholar 

  • Ligthelm ME, Prior BA, Du Preez JC (1988) The induction of d-xylose catabolizing enzymes in Pachysolen tannophilus and the relationship to anaerobic d-xylose fermentation. Biotechnol Lett 10:207–212

    CAS  Google Scholar 

  • Lönn A, Gardonyi M, Zyl W van, Hahn-Hägerdal B, Otero RC (2002) Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. Eur J Biochem 269:157–163

    Article  PubMed  Google Scholar 

  • Lucas C, Uden N van (1986) Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol 23:491–495

    CAS  Google Scholar 

  • Lynd LR (1996) Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu Rev Energy Environ 21:403–465

    Article  Google Scholar 

  • Maier A, Volker B, Boles E, Fuhrmann GF (2002) Characterisation of glucose transport in Saccharomyces cerevisiae with plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Res 2:539–550

    Article  CAS  Google Scholar 

  • Maleszka R, Schneider H (1982) Fermentation of d-xylose, xylitol, and d-xylulose by yeasts. Can J Microbiol 28:360–363

    CAS  PubMed  Google Scholar 

  • Maleszka R, Schneider H (1984) Involvement of oxygen and mitochondrial function in the metabolism of d-xylulose by Saccharomyces cerevisiae. Arch Biochem Biophys 228. 228:22–30

  • McMillan JD (1997) Bioethanol production: status and prospects. Renewable Energy 10:295–302

    Article  CAS  Google Scholar 

  • Meinander NQ, Hahn-Hägerdal B (1997) Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol 63:1959–1964

    CAS  PubMed  Google Scholar 

  • Meinander NQ, Boels I, Hahn-Hägerdal B (1999) Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol 68:79–87

    Article  CAS  Google Scholar 

  • Metzger MH, Hollenberg CP (1994) Isolation and characterization of the Pichia stipitis transketolase gene and expression in a xylose-utilising Saccharomyces cerevisiae transformant. Appl Microbiol Biotechnol 42:319–325

    Google Scholar 

  • Michal G (1999) Biochemical pathways. Wiley, New York

  • Moniruzzaman M, et al (1997) Fermentation of corn fibre sugars by an engineered xylose utilizing Saccharomyces yeast strain. World J Microbiol Biotechnol 13:341–346

    Google Scholar 

  • Morosoli R, Zalce E, Durand S (1993) Secretion of a Cryptococcus albidus xylanase in Pichia stipitis resulting in a xylan fermenting transformant. Curr Genet 24:94–99

    Google Scholar 

  • Nigam JN (2001a) Development of xylose-fermenting yeast Pichia stipitis for ethanol production through adaptation on hardwood hemicellulose acid prehydrolysate. J Appl Microbiol 90:208–215

    Article  CAS  PubMed  Google Scholar 

  • Nigam JN (2001b) Ethanol production from hardwood spent sulfite liquor using an adapted strain of Pichia stipitis. J Ind Microbiol Biotechnol 26:145–150

    Article  CAS  PubMed  Google Scholar 

  • Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218

    CAS  PubMed  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1996) Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb Technol 18:312–331

    CAS  Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    CAS  PubMed  Google Scholar 

  • Ozcan S, Kötter P, Ciriacy M (1991) Xylan-hydrolyzing enzymes of the yeast Pichia stipitis. Appl Microbiol Biotechnol 36:190–195

    Google Scholar 

  • Park NH, Yoshida S, Takakashi A, Kawabata Y, Sun HJ, Kusakabe I (2001) A new method for the preparation of crystalline l-arabinose from arabinoxylan by enzymatic hydrolysis and selective fermentation with yeast. Biotechnol Lett 23:411–416

    Article  CAS  Google Scholar 

  • Passoth V, Cohn M, Schafer B, Hahn-Hagerdal B, Klinner U (2003) Analysis of the hypoxia-induced ADH2 promoter of the respiratory yeast Pichia stipitis reveals a new mechanism for sensing of oxygen limitation in yeast. Yeast 20:39–51

    Article  CAS  PubMed  Google Scholar 

  • Pettersen RC (1984) The chemical composition of wood. Adv Chem Ser 1984:57–126

    Google Scholar 

  • Prior BA, Kilian SG, Dupreez JC (1989) Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis—prospects and problems. Process Biochem 24:21–32

    CAS  Google Scholar 

  • Rees DA (1977) Polysaccharide shapes. Wiley, New York

  • Richard P, Toivari MH, Penttilä M (2000) The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol Lett 190:39–43

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Londesborough J, Putkonen M, Kalkkinen N, Penttilä M (2001) Cloning and expression of a fungal l-arabinitol 4-dehydrogenase gene. J Biol Chem 276:40631–40637

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Putkonen M, Väänänen R, Londesborough J, Penttilä M (2002) The missing link in the fungal l-arabinose catabolic pathway, identification of the l-xylulose reductase gene. Biochemistry 41:6432–6437

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M (2003) Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res (in press)

  • Rizzi M, Erlemann P, Buithanh NA, Dellweg H (1988) Xylose fermentation by yeasts 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154

    CAS  Google Scholar 

  • Roca C, Olsson L (2003) Increasing ethanol productivity during xylose fermentation by cell recycling of recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 60:560–563

    PubMed  Google Scholar 

  • Rodrigues DC, Da Silva SS, Almeida ESJB, Vitolo M (2002) Xylose reductase activity of Candida guilliermondii during xylitol production by fed-batch fermentation: selection of process variables. Appl Biochem Biotechnol 98/100:875–883

  • Rodriguez-Pena JM, Cid VJ, Arroyo J, Nombela C (1998) The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 162:155–160

    Article  PubMed  Google Scholar 

  • Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77

    CAS  Google Scholar 

  • Saha BC, Dien BS, Bothast RJ (1998) Fuel ethanol production from corn fiber—current status and technical prospects. Appl Biochem Biotechnol 70/72:115–125

  • Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (1998) The production of xylitol from d-xylose by fermentation with Hansenula polymorpha. Appl Microbiol Biotechnol 50:608–611

    Article  CAS  Google Scholar 

  • Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (2002) The fermentation of mixtures Of d-glucose and d-xylose by Candida shehatae, Pichia stipitis or Pachysolen tannophilus to produce ethanol. J Chem Technol Biotechnol 77:641–648

    Article  CAS  Google Scholar 

  • Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD (1987) Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol 53:1996–2000

    CAS  PubMed  Google Scholar 

  • Schneider H, Wang PY, Chan YK, Maleszka R (1981) Conversion of d-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol Lett 3:89–92

    Google Scholar 

  • Sedlak M, Ho NWY (2001) Expression of E. coli araBAD operon encoding enzymes for metabolizing l-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol 28:16–24

    Article  CAS  PubMed  Google Scholar 

  • Shi NQ, Jeffries TW (1998) Anaerobic growth and improved fermentation of Pichia stipitis bearing a URA1 gene from Saccharomyces cerevisiae. Appl Microbiol Biotechnol 50:339–345

    Article  CAS  PubMed  Google Scholar 

  • Shi NQ, Davis B, Sherman F, Cruz J, Jeffries TW (1999) Disruption of the cytochrome c gene in xylose-utilizing yeast Pichia stipitis leads to higher ethanol production. Yeast 15:1021–1030

    CAS  PubMed  Google Scholar 

  • Shi NQ, et al (2000) Characterization and complementation of a Pichia stipitis mutant unable to grow on d-xylose or l-arabinose. Appl Biochem Biotechnol 84-86:201–216

  • Shi NQ, Cruz J, Sherman F, Jeffries TW (2002) SHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis. Yeast 19:1203–1220

    Article  CAS  PubMed  Google Scholar 

  • Slininger PJ, Bothast RJ, Van Cauwenberge JE, Kurtzman CP (1982) Conversion of d-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol Bioeng 24:371–384

    CAS  Google Scholar 

  • Smil V (1999) Crop residues: agriculture′s largest harvest—crop residues incorporate more than half of the world agricultural phytomass. Bioscience 49:299–308

    Google Scholar 

  • Smith CA, Rangarajan M, Hartley BS (1991) d-Xylose (d-glucose) isomerase from Arthrobacter strain NRRL B3728. Purification and properties. Biochem J 277:255–261

    CAS  PubMed  Google Scholar 

  • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998

    Article  CAS  PubMed  Google Scholar 

  • Sreenath HK, Jeffries TW (2000) Production of ethanol from wood hydrolyzate by yeasts. Bioresour Technol 72:253–260

    Article  CAS  Google Scholar 

  • Sreenath HK, Koegel RG, Moldes AB, Jeffries TW, Straub RJ (1999) Enzymic saccharification of alfalfa fiber after liquid hot water pretreatment. Process Biochem 35:33–41

    Article  CAS  Google Scholar 

  • Sreenath HK, Koegel RG, Moldes AB, Jeffries TW, Straub RJ (2001) Ethanol production from alfalfa fiber fractions by saccharification and fermentation. Process Biochem 36:1199–1204

    Article  CAS  Google Scholar 

  • Takuma S, et al (1991) Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol 28/29:327–340

  • Tantirungkij M, Nakashima N, Seki T, Yoshida T (1993) Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88

    CAS  Google Scholar 

  • Tantirungkij M, Seki T, Yoshida T (1994) Genetic improvement of Saccharomyces cerevisiae for ethanol production from xylose. Ann NY Acad Sci 721:138–147

    CAS  PubMed  Google Scholar 

  • Teusink B, Walsh MC, Dam K van, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169

    CAS  PubMed  Google Scholar 

  • Thestrup HN, Hahn-Hägerdal B (1995) Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene. Appl Environ Microbiol 61:2043–2045

    CAS  PubMed  Google Scholar 

  • Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast? Trends Biochem Sci 20:3–10

    CAS  PubMed  Google Scholar 

  • Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249

    Article  CAS  PubMed  Google Scholar 

  • Toivola A, Yarrow D, Bosch E van den, Dijken JP van, Scheffers WA (1984) Alcoholic fermentation of deuterium-xylose by yeasts. Appl Environ Microbiol 47:1221–1223

    CAS  Google Scholar 

  • Träff KL, Otero Cordero RR, Zyl WH van, Hahn-Hägerdal B (2001) Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol 67:5668–5674

    Article  PubMed  Google Scholar 

  • Vandeska E, Amartey S, Kuzmanova S, Jeffries TW (1996) Fed-batch culture for xylitol production by Candida boidinii. Proc Biochem 31:265–270

    Article  CAS  Google Scholar 

  • Verduyn C, Frank J, Dijken JP van, Scheffers WA (1985a) Multiple forms of xylose reductase in Pachysolen tannophilus CBS 4044. FEMS Microbiol Lett 30:313–317

    Article  CAS  Google Scholar 

  • Verduyn C, Kleef R van, Frank J, Schreuder H, Dijken JP van, Scheffers WA (1985b) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677

    CAS  PubMed  Google Scholar 

  • Verwaal R, Paalman JW, Hogenkamp A, Verkleij AJ, Verrips CT, Boonstra J (2002) HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast 19:1029–1038

    Article  CAS  PubMed  Google Scholar 

  • Wahlbom CF, Zyl WH van, Jonsson LJ, Hahn-Hagerdal B, Otero RR (2003) Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res 3:319–326

    Article  CAS  PubMed  Google Scholar 

  • Walfridsson M, Hallborn J, Penttilä M, Keranen S, Hahn-Hägerdal B (1995) Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol 61:4184–4190

    CAS  PubMed  Google Scholar 

  • Walfridsson M, Bao X, Anderlund M, Lilius G, Bulow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4648–4651

    CAS  PubMed  Google Scholar 

  • Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224

    Article  CAS  PubMed  Google Scholar 

  • Wang PY, Schneider H (1980) Growth of yeasts on d-xylulose 1. Can J Microbiol 26:1165–1168

    CAS  PubMed  Google Scholar 

  • Wang PY, Shopsis C, Schneider H (1980) Fermentation of a pentose by yeasts. Biochem Biophys Res Commun 94:248–254

    CAS  PubMed  Google Scholar 

  • Weierstall T, Hollenberg CP, Boles E (1999) Cloning and characterization of three genes (SUT13) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol 31:871–883

    CAS  PubMed  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    CAS  PubMed  Google Scholar 

  • Wijsman MR, Bruinenberg PM, Dijken JP van, Scheffers WA (1985) Incapacity for anaerobic growth in xylose-fermenting yeasts. Antonie Van Leeuwenhoek 51:563–564

    Google Scholar 

  • Winkelhausen E, Pittman P, Kuzmanova S, Jeffries TW (1996) Xylitol formation by Candida boidinii in oxygen limited chemostat culture. Biotechnol Lett 18:753–758

    CAS  Google Scholar 

  • Witteveen CFB, Busink R, Vandevondervoort P, Dijkema C, Swart K, Visser J (1989) l-Arabinose and d-xylose catabolism in Aspergillus niger. J Gen Microbiol 135:2163–2171

    CAS  Google Scholar 

  • Wyman CE (1999) Biomass ethanol: technical progress, opportunities, and commercial challenges. Annu Rev Energy Environ 24:189–226

    Article  Google Scholar 

  • Yoon G-S, Lee T-S, Kim C, Seo J-H, Ryu Y-W (1996) Characterization of alcohol fermentation and segregation of protoplast fusant of Saccharomyces cerevisiae and Pichia stipitis. J Microbiol Biotechnol 6:286–291

    CAS  Google Scholar 

  • Zaldivar J, et al (2002) Fermentation performance and intracellular metabolite patterns in laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 59:436–442

    Article  CAS  PubMed  Google Scholar 

  • Zyl C van, Prior BA, Kilian SG, Brandt EV (1993) Role of d-ribose as a cometabolite in d-xylose metabolism by Saccharomyces cerevisiae. Appl Environ Microbiol 59:1487–1494

    PubMed  Google Scholar 

  • Zyl WH van, Eliasson A, Hobley T, Hahn-Hägerdal B (1999) Xylose utilisation by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Appl Microbiol Biotechnol 52:829–833

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Richard, E. Boles and J. Becker for early access to reviewed manuscripts and to J. Laplaza for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. W. Jeffries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeffries, T.W., Jin, YS. Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63, 495–509 (2004). https://doi.org/10.1007/s00253-003-1450-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1450-0

Keywords

Navigation