Skip to main content

Role of Microorganisms in Production of Biofuels

  • Chapter
  • First Online:
Novel Feedstocks for Biofuels Production

Abstract

Several types of microbes such as whole cells of algae, fungi, yeast, and bacteria are employed to produce biofuel which include several steps such as aerobic and anaerobic fermentation, transesterification, etc. for biofuel production. Present chapter aims to review the wide range of applications of microbes and enzymes used in the pretreatment of diversified lignocellulosic biomass, starchy biomass, and oily biomass having complex structure for the development of a sustainable and economically significant biofuel. Numerous microorganisms have been reported to be involved in biofuel productions such as bioethanol/biobutanol, biogas, biohydrogen, and bioelectricity production. A special focus has been laid on recent microbial resources identified for these purposes from saline and other environmental conditions. Specific applications of microorganisms in pretreatment of solid waste and wastewater are also discussed.

Saccharomyces sp., Kluyveromyces sp., Clostridium sp., and Trichoderma sp. have been extensively exploited to obtain a high yield of simpler sugars, lower concentration of inhibitory compounds, and high biofuel yield. Several steps have been taken in recent years to develop genetically engineered microorganisms to enhance saccharification of lignocellulosic biomass, decrease the production of inhibitory sugars, and increase the tolerance level of the fermenting microorganisms for desirable end products.

To overcome the challenges associated with municipal solid waste-derived and agricultural feedstocks for enzymatic hydrolysis, potential of diverse microorganisms of biotechnological interest have been identified for fermenting this complex feedstock. This chapter further covers the collective approaches of genetic engineering and metabolic engineering currently being researched to develop mutant and engineered strain of microorganisms for the production of various biofuels (e.g., alcohol, hydrogen, biodiesel, and biogas) from multifarious feedstock materials. The concept of a rational and designed whole-cell catalyst for the production of fourth-generation biofuel and the prospects of microorganisms developed by genetic and metabolic engineering and synthetic biology for second- and fourth-generation biofuel production are also discussed. The chapter concludes with a discussion of metabolic engineering techniques being highly efficient, rapid, precise, and rational when compared to the conventional strategies for development of strain, for instance, mutagenesis. Biosynthetic pathways need to be altered, and it is even possible to introduce and optimize an entirely new pathway in microbes to ensure that we get the final product of our interest from them. There is a need to integrate biofuel fermentation technology and metabolic engineering with an aim to improve metabolism and enhance heterogeneity in gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi M, Pishvaee MS, Mohseni S (2021) Third-generation biofuel supply chain: a comprehensive review and future research directions. J Clean Prod 323:129100

    Article  Google Scholar 

  • Abu-Khader MM (2006) Recent progress in CO2 capture/sequestration: a review. EnergySources Part A 28:1261–1279

    Article  CAS  Google Scholar 

  • Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2014) Kinetic studies and thermodynamics of oil extraction and transesterification of chlorella sp. for biodiesel production. Environ Technol 35:891–897

    Article  CAS  PubMed  Google Scholar 

  • Ali I, Akbar A, Anwar M, Prasongsuk S, Lotrakul P, Punnapayak H (2015) Purification and characterization of a polyextremophilic α-amylase from an obligate halophilic Aspergillus penicillioides isolate and its potential for souse with detergents. Biomed Res Int 9:2015

    Google Scholar 

  • Ali SS, Abomohra AE, Sun J (2017) Effective bio-pretreatment of sawdust waste with a novel microbial consortium for enhanced biomethanation. Bioresour Technol 238:425–432

    Article  CAS  PubMed  Google Scholar 

  • Almaraz-Delgado AL, Flores-Uribe J, Pérez-España VH, Salgado-Manjarrez E, Badillo-Corona JA (2013) Production of therapeutic proteins in the chloroplast of Chlamydomonas reinhardtii. AMB Express 4:57

    Article  Google Scholar 

  • Althuri A, Venkata Mohan S (2020) Sequential and consolidated bioprocessing of biogenic municipal solid waste: a strategic pairing of thermophilic anaerobe and mesophilic microaerobe for ethanol production. Bioresour Technol 308:123260

    Article  CAS  PubMed  Google Scholar 

  • Aman A (2018) Hydrogen as an alternative fuel—an overview. Int J Sci Res (IJSR) 7(11):1232–1237. https://www.ijsr.net/search_index_results_paperid.php?id=ART20193015

    Google Scholar 

  • Anderson DG, Salm SN, Allen DP, Nester EW (2016) Nester’s microbiology: a human perspective, 9th edn. McGraw-Hill Education, New York, NY

    Google Scholar 

  • Andre A, Diamantopoulou P, Philippoussis A, Sarris D (2010) Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crop Prod 31:407–416

    Article  CAS  Google Scholar 

  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM (2008) Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol 99:3051–3056

    Article  CAS  PubMed  Google Scholar 

  • Antoni D, Zverlov VV, Schwarz WH (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35. https://doi.org/10.1007/s00253-007-1163-x

    Article  CAS  PubMed  Google Scholar 

  • Archambault-Leger V, Shao X, Lynd LR (2012) Integrated analysis of hydrothermal flow through pretreatment. Biotechnol Biofuels 5(1):49. https://doi.org/10.1186/1754-6834-5-49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA study. Fuel Process Technol 86(14–15):1679–1693

    Article  CAS  Google Scholar 

  • Asachi R, Karimi K (2013) Enhanced ethanol and chitosan production from wheat straw by Mucor indicus with minimal nutrient consumption. Process Biochem 48(10):1524–1531

    Article  CAS  Google Scholar 

  • Ataya F, Dube MA, Ternan M (2008) Variables affecting the induction period during acid-catalyzed transesterification of canola oil to FAME. Energy Fuel 22(1):679–685

    Article  CAS  Google Scholar 

  • Azizi A, Bazyar A, Elbeshbishy E (2019) Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production—a review. J Environ Manag 233:774–784

    Article  Google Scholar 

  • Bakhat K, Rasul I, Azeem F, Hussain S, Siddique MH, Muzammil S, Riaz M, Bari A, Liaqat S, Nadeem H (2019) Microbial Production of Ethanol. https://doi.org/10.21741/9781644900116-12

  • Ban K et al (2001) Whole-cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8:39–43

    Article  CAS  PubMed  Google Scholar 

  • Bao JJ, Jiang MY (2012) The research status and development trend of microbial flocculant. Phys Procedia 24:425–428

    Article  Google Scholar 

  • Barancewicz M, Gryta M (2012) Ethanol production in a bioreactor with an integrated membrane distillation module. Chem Pap 66:85–91. https://doi.org/10.2478/s11696-011-0088-0

    Article  CAS  Google Scholar 

  • Barchiesi J, Velazquez MB, Palopoli N, Iglesias AA, Gomez-Casati DF, Ballicora MA, Busi MV (2018) Starch synthesis in Ostreococcus tauri: the starch-binding domains of starch synthase III-B are essential for catalytic activity. Front Plant Sci 9:1541. https://doi.org/10.3389/fpls.2018.01541

    Article  PubMed  PubMed Central  Google Scholar 

  • Beetul K, Sadally SB, Taleb-Hossenkhan N, Bhagooli R, Puchooa D (2014) An investigation of biodiesel production from microalgae found in Mauritian waters. Biofuel Res J 1(2):58–64

    Article  CAS  Google Scholar 

  • Behera M, Ghangrekar JMM, Jana PS (2010) Performance evaluation of low-cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode. Bioresour Technol 101:1183–1189

    Article  CAS  PubMed  Google Scholar 

  • Beldman G, Rombouts FM, Voragen AG, Pilnik W (1984) Application of cellulase and pectinase from fungal origin for the liquefaction and saccharification of biomass. Enzym Microb Technol 6(11):503–507

    Article  CAS  Google Scholar 

  • Ben Atitallah I, Arous F, Louati I, Zouari-Mechichi H, Brysch-Herzberg M, Woodward S, Mechichi T (2021) Efficient bioethanol production from date palm (Phoenix dactylifera L.) sap by a newly isolated Saccharomyces cerevisiae X19G2. Process Biochem 105:102–112. https://doi.org/10.1016/j.procbio.2021.03.019

    Article  CAS  Google Scholar 

  • Bhatia SK, Ravi SM, Bhatia K, Kumar M, Pugazhendhi A, Awasthi MK (2021) Wastewater based microalgal biorefinery for bioenergy production: progress and challenges. Sci Total Environ 751:14159

    Article  Google Scholar 

  • Bischoff KM, Wicklow DT, Jordan DB, de Rezende ST, Liu S, Hughes SR, Rich JO (2009) Extracellular hemicellulolytic enzymes from the maize endophyte Acremonium zeae. Curr Microbiol 58(5):499–503

    Article  CAS  PubMed  Google Scholar 

  • Black G, Rixon J, Clarke J, Hazlewood G, Theodorou M, Morris P, Gilbert H (1996) Evidence that linker sequences and cellulose-binding domains enhance the activity of hemicellulases against complex substrates. Biochem J 319(Pt 2):515–520. https://doi.org/10.1042/bj3190515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bok JD, Yernool DA, Eveleigh DE (1998) Purification, characterization, and molecular analysis of thermostable cellulases CelA and CelB from Thermotoga neapolitana. Appl Environ Microbiol 64(12):4774–4781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokhari S, Latif F, Rajoka MI (2008) Purification and characterization of xylanases from Thermomyces lanuginosus and its mutant derivative possessing novel kinetic and thermodynamic properties. World J Microbiol Biotechnol 25:493–502. https://doi.org/10.1007/s11274-008-9915-z

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM (2002) Electrode reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  PubMed  Google Scholar 

  • Bond-Watts BB, Chang MC, Wen M (2013) Production of advanced biofuels in engineered E. coli. Curr Opin Chem Biol 17(3):472–479

    Article  PubMed  Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustian Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Brown D, Shi J (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386

    Article  CAS  PubMed  Google Scholar 

  • Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  CAS  PubMed  Google Scholar 

  • Cao B, Zhao Z, Peng L, Shiu HY, Ding M, Song F, Guan X, Lee CK, Huang J, Zhu D, Fu X, Wong G, Liu C, Nealson K, Weiss PS, Duan X, Huang Y (2021) Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells. Science (New York) 373(6561):1336–1340. https://doi.org/10.1126/science.abf3427

    Article  CAS  Google Scholar 

  • Cardone M, Mazzoncini M, Menini S, Rocco V, Senatore A, Seggiani M, Vitolo S (2003) Brassica carinata as alternative oil crop for the production of biodiesel in Italy: agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenergy 25:623–636. https://doi.org/10.1016/S0961-9534(03)00058-8

    Article  CAS  Google Scholar 

  • Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 32:1634–1650

    Article  CAS  PubMed  Google Scholar 

  • Carol D (2011) Litchfield, Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol 38(10):1635. https://doi.org/10.1007/s10295-011-1021-9

    Article  CAS  Google Scholar 

  • Chai KP, Othman NF, Teh AH, Ho KL, Chan KG, Shamsir MS, Goh KM, Ng CL (2016) Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci Rep 6:23126. https://doi.org/10.1038/srep23126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandel AK, Antunes FF, Anjos V, Bell MJ, Rodrigues LN, Singh OV, Rosa CA, Pagnocca FC, da Silva SS (2013) Ultra-structural mapping of sugarcane bagasse after oxalic acid fiber expansion (OAFEX) and ethanol production by Candida shehatae and Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):4. https://doi.org/10.1186/1754-6834-6-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra R, Takeuchi H, Hasegawa T (2012) Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew Sust Energ Rev 16(3):1462–1476. https://doi.org/10.1016/j.rser.2011.11.035. ISSN 1364-0321 (https://www.sciencedirect.com/science/article/pii/S1364032111005818)

    Article  CAS  Google Scholar 

  • Chang JJ, Ho FJ, Ho CY, Wu YC, Hou YH, Huang CC et al (2013) Assembling a cellulose cocktail and a cellodextrin transporter into a yeast host for CBP ethanol production. Biotechnol Biofuels 6:19–31. https://doi.org/10.1186/1754-6834-6-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan PS, Puri N, Sharma P et al (2012) Mannanases: microbial sources, production, properties and potential biotechnological applications. Appl Microbiol Biotechnol 93:1817–1830. https://doi.org/10.1007/s00253-012-3887-5

    Article  CAS  PubMed  Google Scholar 

  • Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC (2017) Microalgae biorefinery: high-value products perspectives. Bioresour Technol 229:53–62

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cho HU, Park JM (2018) Biodiesel production by various oleaginous microorganisms from organic wastes. Bioresour Technol 1(256):502–508

    Article  Google Scholar 

  • Chou TY, Whiteley CG (2014) Anodic potential on dual-chambered microbial fuel cell with sulphate reducing bacteria biofilm. Int J Hydrog Energy 39:19225–19231

    Article  CAS  Google Scholar 

  • Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25(5):425–441. https://doi.org/10.1016/j.biotechadv.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  • Clomburg JM, Gonzalez R (2010) Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 86(2):419–434

    Article  CAS  PubMed  Google Scholar 

  • Devi S (2012) Biochemical conversion process of producing bioethanol from lignocellulosic biomass. Int J Microb Resour Technol 1:28–32

    Google Scholar 

  • Dheeran P, Nandhagopal N, Kumar S, Jaiswal YK, Adhikari DK (2012) A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J Ind Microbiol Biotechnol 39(6):851–860

    Article  CAS  PubMed  Google Scholar 

  • Eleonora, Cano Carmona, Marcia Regina Brochetto-braga, Aline Aparecida Pizzirani-Kleiner, João Atilio Jorge, Purification and biochemical characterization of an endoxylanase from Aspergillus versicolor, FEMS Microbiol Lett, 166, 2, September 1998, Pages 311–315, https://doi.org/10.1111/j.1574-6968.1998.tb13906.x

  • Fujita Y et al (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima T, Mizuki T, Echigo A, Inoue A, Usami R (2005) Organic solvent tolerance of halophilic α-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9(1):85–89

    Article  CAS  PubMed  Google Scholar 

  • Gao D, Uppugundla N, Chundawat SP et al (2011) Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides. Biotechnol Biofuels 4:5. https://doi.org/10.1186/1754-6834-4-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldemberg J, Coelho S, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energy Policy 36:2086–2097. https://doi.org/10.1016/j.enpol.2008.02.028

    Article  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Micro algae as a raw material for biofuels production. J Ind Microbial Biotech 36:269–274

    Article  CAS  Google Scholar 

  • Goyal M, Soni G (2011) Production and characterization of cellulolytic enzymes by Pleurotus florida. Afr J Microbiol Res 5(10):1131–1136

    Article  CAS  Google Scholar 

  • Greenwell HC, Laurens LML, Shields RJ, Lovitt RW, Flynn KJ (2010) Placing microalgae on the biofuel’s priority list: a review of the technological challenges. J R Soc Interface 7:703–726

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Yang C, Zeng G (2013) Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge. Bioresour Technol 143:289–297

    Article  CAS  PubMed  Google Scholar 

  • Hama S et al (2007) Biodiesel fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 34:273–278

    Article  CAS  Google Scholar 

  • Haque RU, Paradisi F, Allers T (2020) Haloferax volcanii for biotechnology applications: challenges, current state and perspectives. Appl Microbiol Biotechnol 104:1371–1382. https://doi.org/10.1007/s00253-019-10314-2

    Article  CAS  PubMed  Google Scholar 

  • Hemansi SC, Yadav G, Saini JK, Kuhad RC (2019) Chapter 7—Comparative Study of Cellulase Production Using Submerged and Solid-State Fermentation. In: Srivastava N, Srivastava M, Mishra PK, Ramteke PW, Singh RL (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 99–113. isbn:9780444642233. https://doi.org/10.1016/B978-0-444-64223-3.00007-2. https://www.sciencedirect.com/science/article/pii/B9780444642233000072

    Chapter  Google Scholar 

  • Hendriks A, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  • Hossain S (2013) Bioethanol fermentation from non-treated and pretreated corn stover using Aspergillus oryzae. Chem Eng Res Bull 16. https://doi.org/10.3329/cerb.v16i1.6659

  • Hou Z, Liu Z, Wang T (2013) Experimental research on Phanerochaete chrysosporium as coal microbial flocculant. Int J Min Sci Technol 23:521–524

    Article  Google Scholar 

  • Hreggvidsson GO, Kaiste E, Holst O, Eggertsson G, Palsdottir A, Kristjansson JK (1996) An extremely thermostable cellulase from the thermophilic eubacterium Rhodothermus marinus. Applied and environmental microbiology. 62(8):3047–3049

    Article  CAS  Google Scholar 

  • Hsieh YSY, Harris PJ (2019) Xylans of red and green algae: what is known about their structures and how they are synthesized? Polymers 11(2). https://doi.org/10.3390/polym11020354

  • Huang J, Chen D, Wei Y, Wang Q, Li Z, Chen Y, Huang R (2014) Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. Sci World J 2014:798683. https://doi.org/10.1155/2014/798683. Epub 2014 Jun 2. PMCID: PMC4060538

    Google Scholar 

  • Huang XP, Monk C (2004) Purification and characterization of a cellulase (CMCase) from a newly isolated thermophilic aerobic bacterium Caldibacillus cellulovorans gen. nov., sp. nov. World J Microbiol Biotechnol 20(1):85–92

    Article  CAS  Google Scholar 

  • Hung KS, Liu SM, Tzou WS, Lin FP, Pan CL, Fang TY, Sun KH, Tang SJ (2011) Characterization of a novel GH10 thermostable, halophilic xylanase from the marine bacterium Thermoanaerobacterium saccharolyticum NTOU1. Process Biochemistry. 46(6):1257–1263

    Article  CAS  Google Scholar 

  • Jang YS, Park JM, Choi S, Choi YJ, do Seung Y, Cho JH, Lee SY (2012) Engineering of microorganisms for the production of biofuels and perspectives based on systems metabolic engineering approaches. Biotechnol Adv 30(5):989–1000. https://doi.org/10.1016/j.biotechadv.2011.08.015

    Article  CAS  PubMed  Google Scholar 

  • Jeong D, Park H, Jang BK, Ju Y, Shin MH, Oh EJ et al (2021) Recent advances in the biological valorization of citrus peel waste into fuels and chemicals. Bioresour Technol 323:124603

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Chen L, Wang J, Zhang W (2014) Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol Adv 32(2):541–548

    Article  CAS  PubMed  Google Scholar 

  • Jorge I, de la Rosa O, Navas-Cortés JA et al (2005) Extracellular xylanases from two pathogenic races of Fusarium oxysporum f. sp. ciceris: enzyme production in culture and purification and characterization of a major isoform as an alkaline endo-β-(1,4)-xylanase of low molecular weight. Antonie Van Leeuwenhoek 88:48–59. https://doi.org/10.1007/s10482-004-7584-y

    Article  CAS  PubMed  Google Scholar 

  • Kaieda M, Samukawa T, Kondo A, Fukuda H (2001) Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng 91(1):12–15, 1389-1723

    Article  CAS  PubMed  Google Scholar 

  • Khasin A, Alchanati I, Shoham Y (1993) Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl Environ Microbiol 59(6):1725–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kis-Papo T, Kirzhner V, Wasser SP, Nevo E (2003) Evolution of genomic diversity and sex at extreme environments: fungal life under hypersaline Dead Sea stress. Proc Natl Acad Sci 100(25):14970–14975. https://doi.org/10.1073/pnas.2036284100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klanchui A, Dulsawat S, Chaloemngam K, Cheevadhanarak S, Prommeenate P, Meechai A (2018) An improved genome-scale metabolic model of Arthrospira platensis C1 (iAK888) and its application in glycogen overproduction. Metabolites 8(4):84. https://doi.org/10.3390/metabo8040084

    Article  CAS  PubMed Central  Google Scholar 

  • Ko CH, Tsai CH, Lin PH, Chang KC, Tu J, Wang YN, Yang CY (2010) Characterization and pulp refining activity of a Paenibacillus campinasensis cellulase expressed in Escherichia coli. Bioresour Technol 101(20):7882–7888

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Kanai HA, Hayashi TA, Akiba TE, Akaboshi R, Horikoshi K (1992) Haloalkaliphilic maltotriose-forming alpha-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 174(11):3439–3444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosa M, Ragauskas AJ (2012) Bioconversion of lignin model compounds with oleaginous Rhodococci. Appl Microbiol Biotechnol 93(2):891–900

    Article  CAS  PubMed  Google Scholar 

  • Kosa M, Ragauskas AJ (2013) Lignin to lipid bioconversion by oleaginous Rhodococci. Green Chem 15:2070–2074. https://doi.org/10.1039/c3gc40434j

    Article  CAS  Google Scholar 

  • Kui H, Luo H, Shi P, Bai Y, Yuan T, Wang Y, Yang P, Dong S, Yao B (2010) Gene cloning, expression, and characterization of a thermostable xylanase from Nesterenkonia xinjiangensis CCTCC AA001025. Appl Biochem Biotechnol 162(4):953–965

    Article  PubMed  Google Scholar 

  • Kumar A, Sehgal M (2018) Hydrogen fuel cell technology for a sustainable future: a review. SAE Technical Paper 2018-01-1307. https://doi.org/10.4271/2018-01-1307.

  • Kumar L, Kumar D, Nagar S, Gupta R, Garg N, Kuhad RC, Gupta VK (2014) Modulation of xylanase production from alkaliphilic Bacillus pumilus VLK-1 through process optimization and temperature shift operation. 3 Biotech 4(4):345–356. https://doi.org/10.1007/s13205-013-0160-2

    Article  PubMed  Google Scholar 

  • Kumari A, Shah S, Gupta M, N. (2007) Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy Fuels 21(1 January):368–371, 0087-0624

    Article  CAS  Google Scholar 

  • Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155(4):283–289

    Article  CAS  PubMed  Google Scholar 

  • Lan EI, Liao JC (2013) Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresour Technol 135:339–349

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Chou H, Ham TS, Lee TS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19(6):556–563

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yu HY (2011) Extracellular production of beta-amylase by a halophilic isolate, Halobacillus sp. LY9. J Ind Microbiol Biotechnol 38(11):1837–1843

    Article  CAS  PubMed  Google Scholar 

  • Li X, Yu HY (2012) Purification and characterization of novel organic-solvent-tolerant β-amylase and serine protease from a newly isolated Salimicrobium halophilum strain LY20. FEMS Microbiol Lett 329(2):204–211

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2007) Rhizopus orzae IFO 4697l whole cell catalyzed methanolysis of crude and acidified rapeseed oils for biodiesel production in ter-butanol system. Process Biochem 42:1481–1485

    Article  CAS  Google Scholar 

  • Li N, Zong M, Wu H (2009) Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem 44(6 June):685–688, 1359-5113

    Article  CAS  Google Scholar 

  • Li YH, Zhang XY, Zhang F, Peng LC, Zhang DB, Kondo A et al (2018) Optimization of cellulolytic enzyme components through engineering Trichoderma reesei and on-site fermentation using the soluble inducer for cellulosic ethanol production from corn stover. Biotechnol Biofuels 11(1):1–14

    Article  Google Scholar 

  • Liang C, Xue Y, Fioroni M, Rodríguez-Ropero F, Zhou C, Schwaneberg U, Ma Y (2011) Cloning and characterization of a thermostable and halo-tolerant endoglucanase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 89(2):315–326

    Article  CAS  PubMed  Google Scholar 

  • Liang MH, Xue LL, Jiang JG (2019) Two-stage cultivation of Dunaliella tertiolecta with glycerol and triethylamine for lipid accumulation: a viable way to alleviate the inhibitory effect of triethylamine on biomass. Appl Environ Microbiol 85(4):e02614–e02618. https://doi.org/10.1128/AEM.02614-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14(5):288–304. https://doi.org/10.1038/nrmicro.2016.32

    Article  CAS  PubMed  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12(1):70–79. https://doi.org/10.1016/j.ymben.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  • Lindenmuth BE, McDonald KA (2011) Production and characterization of Acidothermus cellulolyticus endoglucanase in Pichia pastoris. Protein expression and purification. 77(2):153–158

    Article  CAS  PubMed  Google Scholar 

  • Lo YC, Huang CY, Cheng CL, Lin CY, Chang JS (2011) Characterization of cellulolytic enzymes and bioH2 production from anaerobic thermophilic Clostridium sp. TCW1. Bioresour Technol 102(18):8384–8392

    Article  CAS  PubMed  Google Scholar 

  • Lotti M, Pleiss J, Valero F et al (2015) Effect of methanol on lipases: molecular, kinetic and process issues in the production of biodiesel. Biotechnol J 10:22–30

    Article  CAS  PubMed  Google Scholar 

  • Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4(7):2451–2466

    Article  Google Scholar 

  • Lynd LR et al (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. https://doi.org/10.1128/MMBR.66.3.506-577.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madigan TM, Kelly BS, Daniel BH, Sattley Matthew W, David SA (2021) Brock biology of microorganisms, 16th edn. Pearson Education

    Google Scholar 

  • Matsumoto T et al (2001) Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhyzopus oryzae lipase is applicable to biodiesel fuel production. Appl Microbiol Biotechnol 57:515–520

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto T et al (2002) Construction of yeast strains with high cell surface lipase activity by using novel display systems based on the Flo1p flocculation functional domain. Appl Environ Microbiol 68:4517–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meher LC, Vidya Sagar D, Naik SN (2006) A review. Renew Sustain Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  • Menzel T, Neubauer P, Junne S (2020) Role of microbial hydrolysis in anaerobic digestion. Energies 13(21):5555. https://doi.org/10.3390/en13215555

    Article  CAS  Google Scholar 

  • Mesbah NM, Wiegel J (2018) Biochemical characterization of halophilic, alkali thermophilic amylopullulanase PulD7 and truncated amylopullulanase PulD7ΔN and PulD7ΔC. International journal of biological macromolecules. (111):632–638

    Google Scholar 

  • Mittal S, Ahlgren EO, Shukla PR (2018) Barriers to biogas dissemination in India: a review. Energy Policy 112:361–370. https://doi.org/10.1016/j.enpol.2017.10.027. ISSN:0301-4215. https://www.sciencedirect.com/science/article/pii/S0301421517306869

    Article  CAS  Google Scholar 

  • Mohd Azhar SH, Abdulla R, Jambo SA, Marbawi H, Gansau JA, Mohd Faik AA, Rodrigues KF (2017) Yeasts in sustainable bioethanol production: a review. Biochem Biophys Rep. 6(10):52–61. https://doi.org/10.1016/j.bbrep.2017.03.003

    Google Scholar 

  • Møller MF, Kjeldsen KU, Ingvorsen K (2010) Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah. Antonie van Leeuwenhoek 98(4):553–565. https://doi.org/10.1007/s10482-010-9472-y. PMID: 20574646

    Article  CAS  PubMed  Google Scholar 

  • Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR (2005) Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96(18):1986–1993. https://doi.org/10.1016/j.biortech.2005.01.013

    Article  CAS  PubMed  Google Scholar 

  • Motamedi E, Sadeghian Motahar SF, Maleki M et al (2021) Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel. Cellulose 28:3485–3503. https://doi.org/10.1007/s10570-021-03727-8

    Article  CAS  Google Scholar 

  • Moysés DN, Reis VC, de Almeida JR, de Moraes LM, Torres FA (2016) Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int J Mol Sci. 17(3):207. https://doi.org/10.3390/ijms17030207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597

    Article  CAS  Google Scholar 

  • Nakashima T et al (1990) Cell aggregation as a trigger for enhancement of intracellular lipase production by a Rhizopus species. J Ferment Bioeng 70:83–89

    Article  Google Scholar 

  • Narita J et al (2006) Display of active enzymes on the cell surface of Escherichia coli using PgsA anchor protein and their application to bioconversion. Appl Microbiol Biotechnol 70:564–572

    Article  CAS  PubMed  Google Scholar 

  • Nilsson A, Shabestary K, Brandão M, Hudson EP (2019) Environmental impacts and limitations of third-generation biobutanol: life cycle assessment of n-butanol produced by genetically-engineered cyanobacteria. J Ind Ecol:1–12. https://doi.org/10.1111/jiec.12843

  • Oliver CD, Nassar NT, Lippke BR, McCarter JB (2014) Carbon, fossil fuel, and biodiversity mitigation with wood and forests. J Sustain For 33(3):248–275. https://doi.org/10.1080/10549811.2013.839386

    Article  Google Scholar 

  • Olson DG, Sparling R, Lynd LR (2015) Ethanol production by engineered thermophiles. Curr Opin Biotechnol 33:130–141

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Hidaka O (1978) Purification and properties of amylase produced by a moderately halophilic Acinetobacter sp. Can J Microbiol 24(9):1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Onishi H, Sonoda K (1979) Purification and some properties of an extracellular amylase from a moderate halophile, Micrococcus halobius. Appl Environ Microbiol 38(4):616–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A, Gunde-Cimerman N (2012) Fungal life in the dead sea. In: Raghukumar C (ed) Biology of marine fungi. Progress in molecular and subcellular biology, vol 53. Springer, Berlin. https://doi.org/10.1007/978-3-642-23342-5_6

    Google Scholar 

  • Pan W, Wang H, Qiu Y, Ren L, Jiang B (2018) Microbial characteristics in anaerobic digestion process of food waste for methane production–A review. Bioresour Technol 248(Part A):29–36. issn:0960-8524, https://doi.org/10.1016/j.biortech.2017.06.152. https://www.sciencedirect.com/science/article/pii/S0960852417310568

    Google Scholar 

  • Parawira W (2012) Enzyme research and applications in biotechnological intensification of biogas production. Crit Rev Biotechnol 32:172–186

    Article  CAS  PubMed  Google Scholar 

  • Patel SK, Kalia VC (2013) Integrative biological hydrogen production: an overview. Ind J Microbiol 53(1):3–10. https://doi.org/10.1007/s12088-012-0287-6

    Article  CAS  Google Scholar 

  • Patel A, Arora N, Mehtani J, Pruthi V, Pruthi PA (2017) Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production. Renew Sustain Energy Rev 77:604–616

    Article  CAS  Google Scholar 

  • Paul D, Arora A, Verma ML (2021) Advances in microbial biofuel production. Front Microbiol 12:2768. issn:1664-302X. https://www.frontiersin.org/article/10.3389/fmicb.2021.746216. https://doi.org/10.3389/fmicb.2021.746216

    Article  Google Scholar 

  • Peng J, Wang W, Jiang Y, Liu M, Zhang H, Shao W (2011) Enhanced soluble expression of a thermostable cellulase from Clostridium thermocellum in Escherichia coli. Current Microbiol 63(6):523–530

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Pomares F, Bautista V, Ferrer J, Pire C, Marhuenda-Egea FC, Bonete MJ (2003) α-Amylase activity from the halophilic archaeon Haloferax mediterranei. Extremophiles 7(4):299–306

    Article  PubMed  Google Scholar 

  • Pommerville JC (2011) Alcamo’s fundamentals of microbiology, 9th edn. Jones and Bartlett Publishers

    Google Scholar 

  • Prasertsit K, Mueanmas C, Tongurai C (2013) Transesterification of palm oil with methanol in a reactive distillation column. Chem Eng Process 70:21–26

    Article  CAS  Google Scholar 

  • Qin HE et al (2008) Biodiesel production catalyzed by whole-cell lipase from Rhizopus chinensis. Chin J Catal 29:41–46

    Article  CAS  Google Scholar 

  • Reiter J, Strittmatter H, Wiemann LO, Schieder D, Sieber V (2013) Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chem 15(5):1373–1381

    Article  CAS  Google Scholar 

  • Riedel S, Stephen MA, Timothy M, Steve M (2019) Jawetz, Melnick and Adelberg’s medical microbiology, 28th edn. McGraw-Hill Education

    Google Scholar 

  • Rodionova M, Poudyal R, Tiwari I, Voloshin R, Zharmukhamedov S, Nam HG, Zayadan B, Bruce B, Hou H, Allakhverdiev S (2017) Biofuel production: challenges and opportunities. Int J Hydr Energy 42. https://doi.org/10.1016/j.ijhydene.2016.11.125

  • Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98(3 February):648–653, 0960-8524

    Article  CAS  PubMed  Google Scholar 

  • Runguphan W, Keasling JD (2014) Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metabol Eng 1(21):103–113

    Article  Google Scholar 

  • Ryabova O, Vršanská M, Kaneko S, van Zyl WH, Biely P (2009) A novel family of hemicellulolytic α-glucuronidase. FEBS Lett 583(9):1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Ryan KJ (2018) Sherris medical microbiology, 7th edn. McGraw-Hill Education

    Google Scholar 

  • Saini JK, Saini R, Tewari L (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech 5:337–353

    Article  PubMed  Google Scholar 

  • Saleem M, Aslam F, Akhtar MS, Tariq M, Rajoka MI (2012) Characterization of a thermostable and alkaline xylanase from Bacillus sp. and its bleaching impact on wheat straw pulp. World J Microbiol Biotechnol 28(2):513–522

    Article  CAS  PubMed  Google Scholar 

  • Salim S, Bosma R, Vermuë MH, Wijffels RH (2011) Harvesting of microalgae by bio-flocculation. J Appl Phycol 23(5):849–855

    Article  PubMed  Google Scholar 

  • Sanghvi G, Jivrajani M, Patel N et al (2014) Purification and characterization of haloalkaline, organic solvent stable xylanase from newly isolated halophilic bacterium-OKH. Int Scholar Res Notices 2014:198251. https://doi.org/10.1155/2014/198251

    Article  Google Scholar 

  • Sarikhan S, Azarbaijani R, Yeganeh LP, Fazeli AS, Amoozegar MA, Salekdeh GH (2011) Draft genome sequence of Nesterenkonia sp. strain F, isolated from Aran-Bidgol Salt Lake in Iran. J Bacteriol 193(19):5580. https://doi.org/10.1128/jb.05808-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saritha M, Arora A, Nain L (2012) Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresour Technol (104):459–465

    Google Scholar 

  • Sawatdeenarunat C, Surendra KC (2015) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186

    Article  CAS  PubMed  Google Scholar 

  • Schuster BG, Chinn MS (2013) Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. Bioenergy Res 6:416–435. https://doi.org/10.1007/s12155-012-9278-z

    Article  CAS  Google Scholar 

  • Seungwoo C, Kim HM, Gustavsson M, Lee SY (2016) Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Curr Opin Chem Biol 35:10–21. issn:1367-5931. https://doi.org/10.1016/j.cbpa.2016.08.003. https://www.sciencedirect.com/science/article/pii/S1367593116301004

    Article  Google Scholar 

  • Shafiei M, Ziaee AA, Amoozegar MA (2012) Purification and characterization of a halophilic α-amylase with increased activity in the presence of organic solvents from the moderately halophilic Nesterenkonia sp. strain F. Extremophiles 16(4):627–635

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Gupta M, N. (2007) Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem 42(2 March):409–414, 1359-5113

    Article  CAS  Google Scholar 

  • Sharma P, Chapadgaonkar S (2021) Optimization of a-amylase production from bacillus amyloliquefaciens using Taguchi method. Biosci Biotechnol Res Asia 18:337–345. https://doi.org/10.13005/bbra/2920

    Article  Google Scholar 

  • Sharma A, Tewari R, Rana SS, Soni R, Soni SK (2016) Cellulases: classification, methods of determination and industrial applications. Appl Biochem Biotechnol 179(8):1346–1380. https://doi.org/10.1007/s12010-016-2070-3

    Article  CAS  PubMed  Google Scholar 

  • Shen YP, Liao YL, Lu Q, He X, Yan ZB, Liu JZ (2021) ATP and NADPH engineering of Escherichia coli to improve the production of 4-hydroxyphenylacetic acid using CRISPRi. Biotechnol Biofuels 14(1):100. https://doi.org/10.1186/s13068-021-01954-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Zhang M, Zhang L, Wang P, Jiang L, Deng H (2014) Xylose-fermenting Pichia stipitis by genome shuffling for improved ethanol production. Microb Biotechnol 7(2):90–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinke R, Nishira H, Mugibayashi N (1974) Isolation of β-amylase producing microorganisms. Agric Biol Chem 38(3):665–666

    Article  CAS  Google Scholar 

  • Shuba ES, Kifle D (2018) Microalgae to biofuels: ‘promising’ alternative and renewable energy, review. Renew Sust Energ Rev 81:743–755

    Article  CAS  Google Scholar 

  • Silva Benavides AM, Torzillo G, Kopecký J, Masojídek J (2013) Productivity and biochemical composition of Phaeodactylum tricornutum (Bacillariophyceae) cultures grown outdoors in tubular photobioreactors and open ponds. Biomass Bioenergy 54:115–122

    Article  CAS  Google Scholar 

  • Singh S, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Singh DP, Trivedi RK (2013) Production of biofuel from lignocellulosic biomass. Int J Eng Res Technol (IJERT) 02:06. (June 2013)

    Google Scholar 

  • Siroosi M, Amoozegar MA, Khajeh K, Fazeli M, Rezaei MH (2014) Purification and characterization of a novel extracellular halophilic and organic solvent-tolerant amylopullulanase from the haloarchaeon, Halorubrum sp. strain Ha25. Extremophiles 18(1):25–33

    Article  CAS  PubMed  Google Scholar 

  • Sittipol D, Saelao P, Lohnoo T, Lerksuthirat T, Kumsang Y, Yingyong W, Khunrae P, Rattanarojpong T, Jongruja N (2019) Cloning, expression, purification and characterization of a thermo- and surfactant-stable protease from Thermomonospora curvata. Biocatal Agric Biotechnol 19:101111. issn:1878-8181, https://doi.org/10.1016/j.bcab.2019.101111. https://www.sciencedirect.com/science/article/pii/S1878818118309228

    Article  Google Scholar 

  • Sriwongchai S, Pokethitiyook P, Pugkaew W, Kruatrachue M, Lee H (2012) Optimization of lipid production in the oleaginous bacterium Rhodococcus erythropolis growing on glycerol as the sole carbon source. Afr J Biotechnol 11(79):14440–14447

    Article  CAS  Google Scholar 

  • Sriyapai T, Somyoonsap P, Matsui K, Kawai F, Chansiri K (2011) Cloning of a thermostable xylanase from Actinomadura sp. S14 and its expression in Escherichia coli and Pichia pastoris. J Biosci Bioeng 111(5):528–536

    Article  CAS  PubMed  Google Scholar 

  • Sunna A, Prowe SG, Stoffregen T, Antranikian G (1997) Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiol Lett 148(2):209–216

    Article  CAS  PubMed  Google Scholar 

  • Tajudeen S, Sairam K, Gopinath A, Govindaraj K, Velraj R (2015) Effect of dispersion of various nanoadditives on the performance and emission characteristics of a CI engine fuelled with diesel, biodiesel and blends—A review. Renew Sust Energ Rev 49:563–573. https://doi.org/10.1016/j.rser.2015.04.086

    Article  CAS  Google Scholar 

  • Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci 4(7):2575–2581

    Article  CAS  Google Scholar 

  • Tamalampudi S et al (2008) Enzymatic production of biodiesel from jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J 39:185–189

    Article  CAS  Google Scholar 

  • Thite VS, Nerurkar AS (2020) Crude xylanases and pectinases from Bacillus spp. Along with commercial cellulase formulate an efficient tailor-made cocktail for sugarcane bagasse saccharification. BioEnergy Res 13(1):286–300

    Article  CAS  Google Scholar 

  • Thomas CM, Scheel RA, Nomura CT, Ramarao B, Kumar D (2021) Production of polyhydroxybutyrate and polyhydroxybutyrate-co-MCL copolymers from brewer’s spent grains by recombinant Escherichia coli LSBJ. Biomass Conv Bioref:1–12

    Google Scholar 

  • Tu W-C, Hallett JP (2019) Recent advances in the pretreatment of lignocellulosic biomass. Curr Opin Green Sustain Chem 20:11–17. Issn:2452-2236, https://doi.org/10.1016/j.cogsc.2019.07.004. (https://www.sciencedirect.com/science/article/pii/S2452223619300185)

    Article  Google Scholar 

  • Van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microb 6(3):213–218. https://doi.org/10.1016/s1369-5274(03)00060-2

    Article  Google Scholar 

  • Ventorino V, Romano I, Pagliano G, Robertiello A, Pepe O (2018) Pre-treatment and inoculum affect the microbial community structure and enhance the biogas reactor performance in a pilot-scale biodigestion of municipal solid waste. Waste Manag 73:69–77. https://doi.org/10.1016/j.wasman.2017.12.005

    Article  CAS  PubMed  Google Scholar 

  • Verma D, Satyanarayana T (2012) Cloning, expression and applicability of thermo-alkali-stable xylanase of Geobacillus thermoleovorans in generating xylooligosaccharides from agro-residues. Bioresour Technol 1(107):333–338

    Article  Google Scholar 

  • Victor H, Díaz G, Willis MJ (2019) Ethanol production using Zymomonas mobilis: development of a kinetic model describing glucose and xylose co-fermentation. Biomass Bioenergy 123:41–50. issn:0961-9534, https://doi.org/10.1016/j.biombioe.2019.02.004. (https://www.sciencedirect.com/science/article/pii/S0961953419300649)

    Article  Google Scholar 

  • Vite-Vallejo O, Palomares LA, Dantán-González E, Ayala-Castro HG, Martínez-Anaya C, Valderrama B, Folch-Mallol J (2009) The role of N-glycosylation on the enzymatic activity of a Pycnoporus sanguineus laccase. Enzyme Microbial Technol 45(3):233–239. issn:0141-0229. https://doi.org/10.1016/j.enzmictec.2009.05.007. https://www.sciencedirect.com/science/article/pii/S0141022909000994

    Article  CAS  Google Scholar 

  • Wang Q, Wang X, Wang X, Ma H (2008) Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochem 43(3):280–286

    Article  Google Scholar 

  • Wang J, Bai Y, Yang P, Shi P, Luo H, Meng K, Huang H, Yin J, Yao B (2010) A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J Microbiol Biotechnol 26(5):917–924

    Article  CAS  Google Scholar 

  • Wang C, Chen L, Rakesh B et al (2012) Technologies for extracting lipids from oleaginous microorganisms for biodiesel production. Front Energy 6:266–274. https://doi.org/10.1007/s11708-012-0193-y

    Article  Google Scholar 

  • Watanabe T, Watanabe I, Yamamoto M, Ando A, Nakamura T (2011) A UV-induced mutant of Pichia stipitis with increased ethanol production from xylose and selection of a spontaneous mutant with increased ethanol tolerance. Bioresour Technol 102(2):1844–1848. https://doi.org/10.1016/j.biortech.2010.09.087. ISSN 0960-8524 (https://www.sciencedirect.com/science/article/pii/S0960852410016196)

    Article  CAS  PubMed  Google Scholar 

  • Wei L et al (2007) Optimization of whole cell catalyze methanolysis of soybean oil for biodiesel production using response surface methodology. J Mol Catal B Enzym 45:122–127

    Article  Google Scholar 

  • Wei Z, Zeng G, Huang F, Kosa M, Huang D, Ragauskas AJ (2015) Bioconversion of oxygen-pretreated Kraft lignin to microbial lipid with oleaginous Rhodococcus opacus DSM 1069. Green Chem 17(5):2784–2789

    Article  CAS  Google Scholar 

  • Wells T Jr, Wei Z, Ragauskas A (2015) Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069. Biomass Bioenergy 1(72):200–205

    Article  Google Scholar 

  • Willey JM, Sandman KM, Wood DH (2020) Prescott’s microbiology, 11th edn. McGraw-Hill Education, New York, NY

    Google Scholar 

  • Wong DWS (1995) Cellulolytic enzymes. In: Food enzymes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2349-6_4

    Chapter  Google Scholar 

  • Wu WH, Foglia TA, Marmer WN, Phillips JG (1999) Optimizing production of ethyl esters of grease using 95% ethanol by response surface methodology. J Am Oil Chem Soc 76(4):517–521

    Article  CAS  Google Scholar 

  • Wu R, Chen D, Cao S, Lu Z, Huang J, Lu Q et al (2020) Enhanced ethanol production from sugarcane molasses by industrially engineered Saccharomyces cerevisiae via replacement of the PHO4 gene. RSC Adv 10(4):2267–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao M-Z, Chen W-J, Hong S, Pang B, Cao X-F, Wang Y-Y, Yuan T-Q, Sun R-C (2019) Structural characterization of lignin in heartwood, sapwood, and bark of eucalyptus. Int J Biol Macromol 138:519–527. issn:0141-8130, https://doi.org/10.1016/j.ijbiomac.2019.07.137. https://www.sciencedirect.com/science/article/pii/S0141813019346483

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Li X, Xiang J et al (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl Microbiol Biot 78:29–36

    Article  CAS  Google Scholar 

  • Xu ZH, Bai YL, Xu X et al (2005) Production of alkali-tolerant cellulase-free xylanase by Pseudomonas sp. WLUN024 with wheat bran as the main substrate. World J Microbiol Biotechnol 21:575–581. https://doi.org/10.1007/s11274-004-3491-7

    Article  CAS  Google Scholar 

  • Yang W et al (2014) Isolation and identification of a cellulolytic bacterium from the Tibetan pig’s intestine and investigation of its cellulase production. https://doi.org/10.1016/j.ejbt.2014.08.002

  • Ying M, Chen G (2007) Study on the production of biodiesel by magnetic cell biocatalyst based on lipase-producing Bacillus subtilis. In: Applied biochemistry and biotechnology. Humana Press, pp 793–803

    Chapter  Google Scholar 

  • Yu HY, Li X (2014) Characterization of an organic solvent-tolerant thermostable glucoamylase from a halophilic isolate, Halolactibacillus sp. SK 71 and its application in raw starch hydrolysis for bioethanol production. Biotechnol Prog 30(6):1262–1268

    Article  CAS  PubMed  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN Jr (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13(8):421–429

    Article  CAS  PubMed  Google Scholar 

  • Zanivan J, Bonatto C, Scapini T et al (2022) Evaluation of bioethanol production from a mixed fruit waste by Wickerhamomyces sp. UFFS-CE-3.1.2. Bioenergy Res 15:175–182. https://doi.org/10.1007/s12155-021-10273-5

    Article  CAS  Google Scholar 

  • Zhang J, Zhang Z (2013) Preparation of microbial flocculant from excess sludge of municipal wastewater treatment plant. Fresenius Environ Bull 22:142–145

    Google Scholar 

  • Zhang F, Chen JJ, Ren WZ, Nie GX, Ming H, Tang SK, Li WJ (2011) Cloning, expression and characterization of an alkaline thermostable GH9 endoglucanase from Thermobifida halotolerans YIM 90462T. Bioresour Technol 102(21):10143–10146

    Article  CAS  PubMed  Google Scholar 

  • Zhang MY, Zhao S, Ning YN et al (2019) Identification of an essential regulator controlling the production of raw-starch-digesting glucoamylase in Penicillium oxalicum. Biotechnol Biofuels 12:7. https://doi.org/10.1186/s13068-018-1345-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Yomano LP, Shanmugam KT, Ingram LO (2005) Fermentation of 10%(w/v) sugar to D (−)-lactate by engineered Escherichia coli B. Biotechnology letters. 27(23):18916

    Google Scholar 

  • Zhu D, Adebisi W, Ahmad F, Sethupathy S, Danso B, Sun J (2020) Recent development of extremophilic bacteria and their application. Front Bioeng Biotechnol 8:483. https://doi.org/10.3389/fbioe.2020.00483

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abha Kumari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, A. et al. (2022). Role of Microorganisms in Production of Biofuels. In: Guldhe, A., Singh, B. (eds) Novel Feedstocks for Biofuels Production. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-19-3582-4_4

Download citation

Publish with us

Policies and ethics