Skip to main content
Log in

Identification and mapping stripe rust resistance gene YrLM168a using extreme individuals and recessive phenotype class in a complicate genetic background

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The identification and characterization of resistance genes effective against stripe rust of wheat is beneficial for modern wheat breeding programs. Molecular markers to such genes facilitate their deployment. The variety Milan has resistance that is effective against the predominant stripe rust races in the Sichuan region. Two resistant and two susceptible F8 lines from a cross between Milan and the susceptible variety Chuannong 16 were used to investigate inheritance of the Milan resistance. Three F2 populations were developed from crosses between the resistant lines and their susceptible sibling lines (LM168a × LM168c, LM168c × LM168a, LM168b × LM168d) and used for genetic analysis and molecular mapping of the genes for resistance. The stripe rust resistance in LM168a and LM168b was conferred by a single dominant gene, temporarily designated as YrLM168a. Forty-five extreme susceptible plants from the F2 families of LM168d × LM168b were genotyped with 836 simple sequence repeat (SSR) markers to map YrLM168a. YrLM168a was mapped in chromosome 6BL. The nearest flanking markers Xwmc756 and Xbarc146 were 4.6 and 4.6 cM away from the gene at both sides, respectively. The amplification results of twenty extreme resistant (IT 0) and susceptible (IT 4) F2 plants of LM168c × LM168a and LM168a × LM168c with marker Xwmc756 further validated the mapping results. The study suggested that extreme individuals and recessive phenotype class can be successfully used for mapping genes, which should be efficient and reliable. In addition, the flanking markers near YrLM168a should be helpful in marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bansal UK, Kazi AG, Singh B, Hare RA, Bariana HS (2014) Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol Breed 33(1):51–59

    Article  CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1993) Cytogenetic studies in wheat XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome 36:476–482

    Article  CAS  PubMed  Google Scholar 

  • Bariana HS, Parry N, Barclay IR, Loughman R, Mclean RJ, Shankar M, Wilson RE, Willey NJ, Francki M (2006) Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet 112:1143–1148

    Article  CAS  PubMed  Google Scholar 

  • Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J, Lan C, Rudd JC (2013) Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breed 1–15

  • Bassam BJ, Caetano-Anolles G, Gressho PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust (Puccinia striiformis f. sp.tritici) on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM (2013) High-temperature adult-plant resistance, key for sustainable control of stripe rust in American. J Plant Sci 4:608–627

    Article  Google Scholar 

  • Chen X, Jones SS, Line RF (1996) Chromosomal location of genes for resistance to Puccinia striiformis in seven wheat cultivars with resistance genes at the Yr3 and Yr4 loci. Phytopathology 86(11):1228–1233

    Article  CAS  Google Scholar 

  • Chen WQ, Wu LR, Liu TG, Xu SC (2009) Race dynamics, diversity, and virulence evolution in Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis 93:1093–1101

    Article  Google Scholar 

  • Cheng P, Xu LS, Wang MN, See DR, Chen XM (2014) Molecular mapping of genes Yr65 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet 127(10): 2267–2277

    Article  CAS  PubMed  Google Scholar 

  • Christiansen MJ, Feenstra B, Skovgaard IM, Andersen SB (2006) Genetic analysis of resistance to yellow rust in hexaploid wheat using a mixture model for multiple crosses. Theor Appl Genet 112:581–591

    Article  CAS  PubMed  Google Scholar 

  • Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nѐgre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973

    Article  CAS  PubMed  Google Scholar 

  • Dou B, Hou B, Xu H, Lou X, Chi X, Yang J, Wang F, Ni Z, Sun Q (2009) Efficient mapping of a female sterile gene in wheat (Triticum aestivum L.). Genet Res Camb 91:337–343

    Article  CAS  PubMed  Google Scholar 

  • Doussinault G, Dosba F (1981) Analyse monosomique de la résistance a la rouille jaune du géniteur blé tendre VPM 1. Comptes rendus des seances de l’Academie d’agriculture de France. pp 133–138

  • Feng J, Chen G, Wei Y, Liu Y, Jiang Q, Li W, Pu Z, Lan X, Dai S, Zheng Y (2013) Identification and genetic mapping of a recessive gene for resistance to stripe rust in wheat line LM168-1. Mol Breed 33(3): 601–609

    Article  CAS  Google Scholar 

  • Jia QZ, Jin SL, Cao SQ, Lou HS, Jin MA, Zhang B, Huang J (2011) Physiologic specialization of wheat stripe rust in Gansu province during 2004–2009. Chin Agric Sci Bull 27:85–90 (in Chinese)

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lan CX, Liang SS, Zhou XC, Zhou G, Lu QL, Xia XC, He ZH (2010) Identification of genomic regions controlling adult-plant stripe rust resistance in Chinese landrace Pingyuan 50 through bulked segregant analysis. Phytopathology 100:313–318

    Article  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li ZQ, Shang HS (1989) Wheat rusts and their control. Shanghai Science and Technology Press, Shanghai

    Google Scholar 

  • Li Q, Chen XM, Wang MN, Jing JX (2011) Yr45, a new wheat gene for stripe rust resistance on the long arm of chromosome 3D. Theor Appl Genet 122:189–197

    Article  CAS  PubMed  Google Scholar 

  • Lin F, Chen XM (2007) Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet 114:1277–1287

    Article  CAS  PubMed  Google Scholar 

  • Line RF (2002) Stripe rust of wheat and barley in North America: a retrospective historical review. Annu Rev Phytopathol 40:75–118

    Article  CAS  PubMed  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas 3: 317–321

    Google Scholar 

  • Lu Y, Wang M, Chen X, See D, Chao S, Jing J (2014) Mapping of Yr62 and a small-effect QTL for high-temperature adult-plant resistance to stripe rust in spring wheat PI 192252. Theor Appl Genet 1–11

  • Marais GF, Pretorius ZA, Wellings CR, Mccallum B, Marais AS (2005) Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–123

    Article  CAS  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2010) Catalogue of gene symbols for wheat: 2010 supplement. Annu Wheat Newslett 56:273–282

    Google Scholar 

  • Mei M, Dai X, Xu C, Zhang Q (1999) Mapping and genetic analysis of the genes for photoperiod-sensitive genetic male sterility in rice using the original mutant nongken 58S. Crop Sci 39:1711–1715

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicol JM, Bolat N, Yıldırım AF, Yorgancılar A, Kılınç AT, Elekçioğlu Hİ, Şahin E, Erginbaş-Orakcı G, Braun HJ (2009) Identification of genetic resistance to cereal cyst nematode (Heterodera filipjevi) for international bread wheat improvement. In: Riley IT, Nicol JM, Dababat AA (eds) Cereal cyst nematodes: status, research and outlook, pp 160–165

  • Pu ZJ, Chen GY, Wei YM, Yang WY, Yan ZH, Zheng YL (2010) Identification and molecular tagging of a stripe rust resistance gene in wheat line P81. Plant Breed 129:53–57

    Article  CAS  Google Scholar 

  • Ren RS, Wang MN, Chen XM, Zhang ZJ (2012) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI 183527. Theor Appl Genet 125:847–857

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, He ZH, Li J, Lillemo M, Wu L, Bai B, Lu QX, Zhu HZ, Zhou G, Du JY, Lu QL, Xia XC (2012a) QTL mapping of adult-plant resistance to stripe rust in a population derived from common wheat cultivars Naxos and Shanghai 3/Catbird. Theor Appl Genet 125:1211–1221

    Article  PubMed  Google Scholar 

  • Ren Y, Li ZF, He ZH, Wu L, Bai B, Lan CX, Wang CF, Zhou G, Zhu HZ, Xia XC (2012b) QTL mapping of adult-plant resistances to stripe rust and leaf rust in Chinese wheat cultivar Bainong 64. Theor Appl Genet 125:1253–1262

    Article  CAS  PubMed  Google Scholar 

  • Robert O, Abelard C, Dedryver F (1999) Identification of molecular markers for the detection of the yellow rust resistance gene Yr17 in wheat. Mol Breed 5:167–175

    Article  CAS  Google Scholar 

  • Röder MS, Plaschke J, König SU, Börner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    Article  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K (1998) A microsatellite map of wheat. Genet 149: 2007–2023

    PubMed  Google Scholar 

  • Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of disease management. CIMMYT

  • Saghai Maroof MA, Biyashev RM, Yang GP, Zhang Q, Allard RW (1994) Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA 91:5466–5470

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santra DK, Chen XM, Santra M, Campbell KG, Kidwell KK (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar ‘Stephens’. Theor Appl Genet 117:793–802

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Steel RGD, Torrie JH (1980) Principles and procedures of statistics: a biometrical approach. McGraw-Hill, New York

    Google Scholar 

  • Suenaga K, Singh RP, Huerta-Espino J, William HM (2003) Microsatellite markers for genes Lr34/Yr18 and other quantitative trait loci for leaf rust and stripe rust resistance in bread wheat. Phytopathology 93:881–890

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Brevis JC, Chen XM, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High-temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 112:97–105

    Article  CAS  PubMed  Google Scholar 

  • Wan AM, Zhao ZH, Chen XM, He ZH, Jin SL, Jia QZ, Yao G, Yang JX, Wang BT, Li GB, Bi YQ, Yuan ZY (2004) Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici. Plant Dis 88:896–904

    Article  Google Scholar 

  • Wan AM, Chen XM, He ZH (2007) Wheat stripe rust in China. Aust J Agric Res 58:605–619

    Article  Google Scholar 

  • Wellings CR, Wright DG, Keiper F, Loughman R (2003) First detection of wheat stripe rust in Western Australia: evidence for a foreign incursion. Australas Plant Pathol 32:321–322

    Article  Google Scholar 

  • William HM, Singh RP, Huerta-Espino J, Palacios G, Suenaga K (2006) Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977–990

    Article  CAS  PubMed  Google Scholar 

  • Xu LS, Wang MN, Cheng P, Kang ZS, Hulbert SH, Chen XM (2013) Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat. Theor Appl Genet 126:523–533

    Article  CAS  PubMed  Google Scholar 

  • Yao F, Xu C, Yu S, Li J, Gao Y, Li X, Zhang Q (1997) Mapping and genetic analysis of two fertility restorer loci in the wild-abortive cytoplasmic male sterility system of rice (Oryza sativa L.). Euphytica 98:183–187

    Article  CAS  Google Scholar 

  • Zhang QF, Shen BZ, Dai XK, Mei MH, Saghai Maroofo MA, Li ZB (1994) Using bulked extremes and recessive class to map genes for photoperiod-sensitive genenic male sterility in rice. Proc Natl Acad Sci USA 91:8675

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhou XL, Wang MN, Chen XM, Lu Y, Kang ZS, Jing JX (2014) Identification of Yr59 conferring high-temperature adult-plant resistance to stripe rust in wheat germplasm PI 178759. Theor Appl Genet 127(4): 935–945

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 Program and 2011CB100100), the International Science & Cooperation Program of China (No. 2015DFA30600), the National Transgenic Major Program (Project No. 2011ZX08002-001) and the National Basic Research Special Program of China (Grant No. 2010CB134402). The authors are grateful to Prof. Q. Z. Jia, Plant Protection Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, People’s Republic of China, for providing the stripe rust isolates. We would like to thank Dr. Xianming Chen of US Department of Agriculture-Agricultural Research Service—US, Dr. Meinan Wang of Washington State University—US and Dr. Garry Mark Rosewarne of International Maize and Wheat Improvement Center (CIMMYT-China) for their critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youliang Zheng.

Additional information

Communicated by B. Yang.

J. Feng and G. Chen contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Chen, G., Wei, Y. et al. Identification and mapping stripe rust resistance gene YrLM168a using extreme individuals and recessive phenotype class in a complicate genetic background. Mol Genet Genomics 290, 2271–2278 (2015). https://doi.org/10.1007/s00438-015-1077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1077-8

Keywords

Navigation