Skip to main content
Log in

Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Efficient regeneration of NADPH is one of the limiting factors that constrain the productivity of biotransformation processes. In order to increase the availability of NADPH for enhanced biotransformation by engineered Escherichia coli, modulation of the pentose phosphate pathway and amplification of the transhydrogenases system have been conventionally attempted as primary solutions. Recently, other approaches for stimulating NADPH regeneration during glycolysis, such as replacement of native glyceradehdye-3-phosphate dehydrogenase (GAPDH) with NADP-dependent GAPDH from Clostridium acetobutylicum and introduction of NADH kinase catalyzing direct phosphorylation of NADH to NADPH from Saccharomyces cerevisiae, were attempted and resulted in remarkable impacts on NADPH-dependent bioprocesses. This review summarizes several metabolic engineering approaches used for improving the NADPH regenerating capacity in engineered E. coli for whole-cell-based bioprocesses and discusses the key features and progress of those attempts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akinterinwa O, Cirino PC (2011) Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways. Appl Environ Microbiol 77:706–709

    Article  CAS  Google Scholar 

  • Alper H, Jin YS, Moxley JF, Stephanopoulos G (2005) Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng 7:155–164

    Article  CAS  Google Scholar 

  • Bastian S, Liu X, Meyerowitz JT, Snow CD, Chen MMY, Arnold FH (2011) Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. Metab Eng 13:345–352

    Article  CAS  Google Scholar 

  • Boonstra B, French CE, Wainwright I, Bruce NC (1999) The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181:1030–1034

  • Boonstra B, Rathbone DA, French CE, Walker EH, Bruce NC (2000) Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone. Appl Environ Microbiol 66:5156–5166

    Article  Google Scholar 

  • Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204:247–252

    Article  CAS  Google Scholar 

  • Cao Z, Song P, Xu Q, Su R, Zhu G (2011) Overexpression and biochemical characterization of soluble pyridine nucleotide transhydrogenase from Escherichia coli. FEMS Microbiol Lett 320:9–14

    Article  CAS  Google Scholar 

  • Chemler JA, Fowler ZL, McHugh KP, Koffas MAG (2010) Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng 12:96–104

    Article  CAS  Google Scholar 

  • Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2008) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102:209–220

    Article  Google Scholar 

  • De Mey M, De Maeseneire S, Soetaert W, Vandamme E (2007) Minimizing acetate formation in E. coli fermentations. J Ind Microbiol Biotechnol 34:689–700

    Article  Google Scholar 

  • Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, Rosenau F, Wilhelm S, Jaeger KE (2006) Novel biocatalysts for white biotechnology. Biotechnol J 1:777–786

    Article  CAS  Google Scholar 

  • Duetz WA, van Beilen JB, Witholt B (2001) Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr Opin Biotechnol 12:419–425

    Article  CAS  Google Scholar 

  • Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH (2011) Improved product–per–glucose yields in P450–dependent propane biotransformations using engineered Escherichia coli. Biotechnol Bioeng 108:500–510

    Article  CAS  Google Scholar 

  • Holm AK, Blank LM, Oldiges M, Schmid A, Solem C, Jensen PR, Vemuri GN (2010) Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. J Biol Chem 285:17498–17506

    Article  CAS  Google Scholar 

  • Johannes TW, Woodyer RD, Zhao H (2006) Efficient regeneration of NADPH using an engineered phosphite dehydrogenase. Biotechnol Bioeng 96:18–26

    Article  Google Scholar 

  • Kabus A, Georgi T, Wendisch V, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75:47–53

    Article  CAS  Google Scholar 

  • Kawai S, Mori S, Mukai T, Hashimoto W, Murata K (2001) Molecular characterization of Escherichia coli NAD kinase. Eur J Biochem 268:4359–4365

    Article  CAS  Google Scholar 

  • Kwon YD, Kwon OH, Lee HS, Kim P (2007) The effect of NADP–dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes. J Appl Microbiol 103:2340–2345

    Article  CAS  Google Scholar 

  • Lee WH, Park JB, Park K, Kim MD, Seo JH (2007) Enhanced production of ε-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76:329–338

    Article  CAS  Google Scholar 

  • Lee HC, Kim JS, Jang W, Kim SY (2009) Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain. Biotechnol lett 31:1929–1936

    Article  CAS  Google Scholar 

  • Lee HC, Kim JS, Jang W, Kim SY (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149:24–32

    Article  CAS  Google Scholar 

  • Lee WH, Chin YW, Han NS, Kim MD, Seo JH (2011) Enhanced production of GDP-l-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli. Appl Microbiol Biotechnol 91:967–976

    Article  CAS  Google Scholar 

  • Lee WH, Kim JW, Park EH, Han NS, Kim MD, Seo JH (2013) Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli. Appl Microbiol Biotechnol 97:1561–1569

    Google Scholar 

  • Li ZJ, Cai L, Wu Q, Chen GQ (2009) Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly (3-hydroxybutyrate) production. Appl Microbiol Biotechnol 83:939–947

    Article  CAS  Google Scholar 

  • Lim SJ, Jung YM, Shin HD, Lee YH (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93:543–549

    CAS  Google Scholar 

  • Martínez I, Zhu J, Lin H, Bennett GN, San KY (2008) Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. Metab Eng 10:352–359

    Article  Google Scholar 

  • Outten CE, Culotta VC (2003) A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae. EMBO J 22:2015–2024

    Article  CAS  Google Scholar 

  • Park JB (2007) Oxygenase-based whole-cell biocatalysis in organic synthesis. J Microbiol Biotechnol 17:379–392

    CAS  Google Scholar 

  • Park H, Jung J, Choi H, Uhm KN, Kim HK (2010) Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. J Microbiol Biotechnol 20:1300–1306

    Article  CAS  Google Scholar 

  • Rathnasingh C, Raj SM, Lee Y, Catherine C, Ashok S, Park S (2012) Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli. J Biotechnol 157:633–640

    Article  CAS  Google Scholar 

  • Rioz-Martínez A, Kopacz M, De Gonzalo G, Pazmiño DET, Gotor V, Fraaije MW (2011) Exploring the biocatalytic scope of a bacterial flavin-containing monooxygenase. Org Biomol Chem 9:1337–1341

    Article  Google Scholar 

  • Sanchez AM, Andrews J, Hussein I, Bennett GN, San KY (2006) Effect of overexpression of a soluble pyridine nucleotide transhydrogenase (UdhA) on the production of poly(3-hydroxybutyrate) in Escherichia coli. Biotechnol Prog 22:420–425

    Article  CAS  Google Scholar 

  • Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wüthrich K, Bailey JE (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679–6688

    CAS  Google Scholar 

  • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619

    Article  CAS  Google Scholar 

  • Schewe H, Kaup BA, Schrader J (2008) Improvement of P450 BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli. Appl Microbiol Biotechnol 78:55–65

    Article  CAS  Google Scholar 

  • Shi A, Zhu X, Lu J, Zhang X, Ma Y (2013) Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metab Eng 16:1–10

    Article  Google Scholar 

  • Siedler S, Bringer S, Bott M (2011) Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol 92:929–937

    Article  CAS  Google Scholar 

  • Strand MK, Stuart GR, Longley MJ, Graziewicz MA, Dominick OC, Copeland WC (2003) POS5 gene of Saccharomyces cerevisiae encodes a mitochondrial NADH kinase required for stability of mitochondrial DNA. Eukaryot Cell 2:809–820

    Article  CAS  Google Scholar 

  • van der Donk WA, Zhao H (2003) Regeneration of cofactors for use in biocatalysis. Curr Opin Biotechnol 14:583–589

    Article  Google Scholar 

  • Wang B, Wang P, Zheng E, Chen X, Zhao H, Song P, Su R, Li X, Zhu G (2011) Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli. J Microbiol 49:797–802

    Article  CAS  Google Scholar 

  • Weckbecker A, Hummel W (2004) Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol Lett 26:1739–1744

    Article  CAS  Google Scholar 

  • Woodyer R, Zhao H, van der Donk WA (2005) Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration. FEBS J 272:3816–3827

    Article  CAS  Google Scholar 

  • Xu Z, Jing K, Liu Y, Cen P (2007) High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J Ind Microbiol Biotechnol 34:83–90

    Article  CAS  Google Scholar 

  • Zhang JD, Li AT, Yu HL, Imanaka T, Xu JH (2011) Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes. J Ind Microbiol Biotechnol 38:633–641

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Advanced Biomass R&D Center (ABC) (2011-0031359) and WCU (World Class University) program (R320110001018530) through the National Research Foundation of Korea (NRF) both funded by the Ministry of Education, Science and Technology. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2011-0003791). M.D.K. was supported by the Ministry of Knowledge Economy (MKE) and the Korea Institute for Advancement of Technology (KIAT) through the Research and Development for Regional Industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ho Seo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, WH., Kim, MD., Jin, YS. et al. Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation. Appl Microbiol Biotechnol 97, 2761–2772 (2013). https://doi.org/10.1007/s00253-013-4750-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-013-4750-z

Keywords

Navigation