Skip to main content
Log in

Improvement of P450BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Escherichia coli BL21, expressing a quintuple mutant of P450BM-3, oxyfunctionalizes α-pinene in an NADPH-dependent reaction to α-pinene oxide, verbenol, and myrtenol. We optimized the whole-cell biocatalyst by integrating a recombinant intracellular NADPH regeneration system through co-expression of a glucose facilitator from Zymomonas mobilis for uptake of unphosphorylated glucose and a NADP+-dependent glucose dehydrogenase from Bacillus megaterium that oxidizes glucose to gluconolactone. The engineered strain showed a nine times higher initial α-pinene oxide formation rate corresponding to a sixfold higher yield of 20 mg g−1 cell dry weight after 1.5 h. The initial total product formation rate was 1,000 μmol h−1 μmol−1 P450 leading to a total of 32 mg oxidized products per gram cell of dry weight after 1.5 h. The physiological functioning of the heterologous cofactor regeneration system was illustrated by a sevenfold increased α-pinene oxide yield in the presence of glucose compared to glucose-free conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bell SG, Sowden RJ, Wong LL (2001) Engineering the haem monooxygenase cytochrome P450cam for monoterpene oxidation. Chem Commun 7:635–636

    Article  Google Scholar 

  • Bell SG, Chen X, Sowden RJ, Xu F, Williams JN, Wong LL, Rao Z (2003a) Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam. J Am Chem Soc 125(3):705–714

    Article  CAS  PubMed  Google Scholar 

  • Bell SG, Chen X, Xu F, Rao Z, Wong LL (2003b) Engineering substrate recognition in catalysis by cytochrome P450cam. Biochem Soc Trans 31(Pt 3):558–562

    Article  CAS  PubMed  Google Scholar 

  • Boddupalli SS, Pramanik BC, Slaughter CA, Estabrook RW, Peterson JA (1992) Fatty acid monooxygenation by P450BM-3: product identification and proposed mechanisms for the sequential hydroxylation reactions. Arch Biochem Biophys 292(1):20–28

    Article  CAS  PubMed  Google Scholar 

  • Ernst M, Kaup B, Muller M, Bringer-Meyer S, Sahm H (2005) Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl Microbiol Biotechnol 66(6):629–634

    Article  CAS  PubMed  Google Scholar 

  • Farinas ET, Alcalde M, Arnold F (2004) Alkene epoxidation catalyzed by cytochrome P450 BM-3 139-3. Tetrahedron 60:525–528

    Article  CAS  Google Scholar 

  • Freeman A, Woodley JM, Lilly MD (1993) In situ product removal as a tool for bioprocessing. Biotechnology (N Y) 11(9):1007–1012

    CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  CAS  PubMed  Google Scholar 

  • Hill RA (1993) Terpenoids. In: Thomson RH (ed) The chemistry of natural products. Blackie Academic & Professional, Chapman & Hall, London, pp 106–139

    Chapter  Google Scholar 

  • Kataoka M, Sri Rohani LP, Wada M, Kita K, Yanase H, Urabe I, Shimizu S (1998) Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system. Biosci Biotechnol Biochem 62(1):167–169

    Article  CAS  PubMed  Google Scholar 

  • Kataoka M, Kita K, Wada M, Yasohara Y, Hasegawa J, Shimizu S (2003) Novel bioreduction system for the production of chiral alcohols. Appl Microbiol Biotechnol 62(5–6):437–445

    Article  CAS  PubMed  Google Scholar 

  • Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64(3):333–339

    Article  CAS  PubMed  Google Scholar 

  • Kelly SL, Kelly DE, Jackson CJ, Warrilow AGS, Lamb DC (2005) The diversity and importance of microbial cytochrome P450. In: Ortiz de Montellano PR (ed) Cytochrome P450: structure, mechanism, and biochemistry, 2nd edn. Kluwer, New York, pp 585–617

    Chapter  Google Scholar 

  • Lentz O, Li Q-S, Schwaneberg U, Lutz-Wahl S, Fischer P, Schmid RD (2001) Modification of the fatty acid specificity of cytochrome P450 BM-3 from Bacillus megaterium by directed evolution: a validated assay. J Mol Catal B Enzym 15(4–6):123–133

    Article  CAS  Google Scholar 

  • León R, Fernandes P, Pinheiro HM, Cabral JMS (1998) Whole-cell biocatalysis in organic media. Enzyme Microb Technol 23:483–500

    Article  Google Scholar 

  • Lewis D (1996) P450: Structure, function and mechanism, vol. 1. Taylor&Francis, London

    Google Scholar 

  • Lu Y, Mei L (2007) Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigo production system. J Ind Microbiol Biotechnol 34(3):247–253

    Article  CAS  PubMed  Google Scholar 

  • Mouri T, Michizoe J, Ichinose H, Kamiya N, Goto M (2006) A recombinant Escherichia coli whole cell biocatalyst harboring a cytochrome P450cam monooxygenase system coupled with enzymatic cofactor regeneration. Appl Microbiol Biotechnol 72(3):514–520

    Article  CAS  PubMed  Google Scholar 

  • Nagao T, Mitamura T, Wang XH, Negoro S, Yomo T, Urabe I, Okada H (1992) Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030. J Bacteriol 174(15):5013–5020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000 Dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    Article  CAS  PubMed  Google Scholar 

  • Nebert DW, Gonzalez FJ (1987) P450 genes: structure, evolution, and regulation. Annu Rev Biochem 56:945–993

    Article  CAS  PubMed  Google Scholar 

  • Noble MA, Miles CS, Chapman SK, Lysek DA, Mackay AC, Reid GA, Hanzlik RP, Munro AW (1999) Roles of key active-site residues in flavocytochrome P450 BM3. Biochem J 339:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okochi M, Kurimoto M, Shimizu K, Honda H (2007) Increase of organic solvent tolerance by overexpression of manXYZ in Escherichia coli. Appl Microbiol Biotechnol 73(6):1394–1399

    Article  CAS  PubMed  Google Scholar 

  • Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. I. Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  PubMed  Google Scholar 

  • Ortiz de Montellano PR (1995) Cytochrome P450: structure, mechanism and biochemistry. Plenum, New York

    Book  Google Scholar 

  • Panke S, Wubbolts MG, Schmid A, Witholt B (2000) Production of enantiopure styrene oxide by recombinant Escherichia coli synthesizing a two-component styrene monooxygenase. Biotechnol Bioeng 69(1):91–100

    Article  CAS  PubMed  Google Scholar 

  • Panke S, Held M, Wubbolts MG, Witholt B, Schmid A (2002) Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase. Biotechnol Bioeng 80(1):33–41

    Article  CAS  PubMed  Google Scholar 

  • Ruettinger RT, Wen LP, Fulco AJ (1989) Coding nucleotide, 5′ regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. J Biol Chem 264(19):10987–10995

    Article  CAS  PubMed  Google Scholar 

  • Savithiry N, Cheong TK, Oriel P (1997) Production of alpha-terpineol from Escherichia coli cells expressing thermostable limonene hydratase. Appl Biochem Biotechnol 63–65:213–220

    Article  PubMed  Google Scholar 

  • Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B (2001) Industrial biocatalysis today and tomorrow. Nature 409(6817):258–268

    Article  CAS  PubMed  Google Scholar 

  • Schrader J, Berger RG (2001) Biotechnological production of terpenoid flavor and fragrance compounds. In: Rehm HJ, Reed G (eds) Biotechnology, 10 edn. Wiley, Weinheim, pp 374–422

    Google Scholar 

  • Schuler MA, Sligar SG (2006) Diversities and similarities in P450 systems: an introduction. In: Sigel A, Sigel H, Sigel RKO (eds) Metal ions in life sciences, vol. 3. The ubiquitous roles of cytochrome P450 proteins. Wiley, Chichester, pp 1–26

    Google Scholar 

  • Schwaneberg U, Schmidt-Dannert C, Schmitt J, Schmid RD (1999) A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A. Anal Biochem 269(2):359–366

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1994) Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem 269(11):8022–8028

    Article  CAS  PubMed  Google Scholar 

  • Sikkema J, de Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowden RJ, Yasmin S, Rees NH, Bell SG, Wong LL (2005) Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3. Org Biomol Chem 3(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Lutz-Wahl S, Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64(3):317–325

    Article  CAS  PubMed  Google Scholar 

  • Urlacher VB, Eiben S (2006) Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 24(7):324–330

    Article  CAS  PubMed  Google Scholar 

  • Vermuë M, Sikkema J, Verheul A, Bakker R, Tramper J (1993) Toxicity of homologous series of organic solvents for the gram-positive bacteria Arthrobacter and Nocardia Sp. and the Gram-negative bacteria Acinetobacter and Pseudomonas sp. Biotechnol Bioeng 42(6):747–758

    Article  PubMed  Google Scholar 

  • Weisser P, Kramer R, Sahm H, Sprenger GA (1995) Functional expression of the glucose transporter of Zymomonas mobilis leads to restoration of glucose and fructose uptake in Escherichia coli mutants and provides evidence for its facilitator action. J Bacteriol 177(11):3351–3354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong LL, Bell SG, Carmichael A (2000) ISIS Innovation Limited, assignee. 19.11.99. Process for oxidising terpenes. International patent WO 00/31273

  • Woodley JM, Lilly MD (1990) Extractive biocatalysis: the use of two-liquid phase biocatalytic reactors to assist product recovery. Chem Eng Sci 45(8):2391–2396

    Article  CAS  Google Scholar 

  • Wubbolts MG, Hoven J, Melgert B, Witholt B (1994) Efficient production of optically active styrene epoxides in two-liquid phase cultures. Enzyme Microb Technol 16:887–893

    Article  CAS  Google Scholar 

  • Xu Z, Jing K, Liu Y, Cen P (2007) High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration. J Ind Microbiol Biotechnol 34(1):83–90

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the German Federal Ministry of Economics and Technology via the AiF ZUTECH program (project no. 119 ZN). We thank H. Sahm, Research Centre Juelich for plasmid pET24glcdh and pZY507glf, U. Schwaneberg, Jacobs University Bremen for the supply with 12-pNCA and R.D. Schmid, Institute of Technical Biochemstry, Stuttgart for the provision of pET28bm-3qm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Schrader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schewe, H., Kaup, BA. & Schrader, J. Improvement of P450BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli . Appl Microbiol Biotechnol 78, 55–65 (2008). https://doi.org/10.1007/s00253-007-1277-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1277-1

Keywords

Navigation