Skip to main content
Log in

Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Malic enzymes catalyze the reversible oxidative decarboxylation of L-malate using NAD(P)+ as a cofactor. NADP-dependent malic enzyme (MaeB) from Escherichia coli MG1655 was expressed and purified as a fusion protein. The molecular weight of MaeB was about 83 kDa, as determined by SDS-PAGE. The recombinant MaeB showed a maximum activity at pH 7.8 and 46°C. MaeB activity was dependent on the presence of Mn2+ but was strongly inhibited by Zn2+. In order to understand the physiological roles, recombinant E. coli strains (icd NADPmaeB and icd NADmaeB) containing NADP-dependent isocitrate dehydrogenase (IDH), or engineered NAD-dependent IDH with the deletion of the maeB gene, were constructed using homologous recombination. During growth on acetate, icd NADmaeB grew poorly, having a growth rate only 60% that of the wild-type strain (icd NADP). Furthermore, icd NADPmaeB exhibited a 2-fold greater adaptability to acetate than icd NADmaeB, which may be explained by more NADPH production for biosynthesis in icd NADPmaeB due to its NADP-dependent IDH. These results indicated that MaeB was important for NADPH production for bacterial growth on acetate. We also observed that MaeB activity was significantly enhanced (7.83-fold) in icd NAD, which was about 3-fold higher than that in icd NADP, when switching from glucose to acetate. The marked increase of MaeB activity was probably induced by the shortage of NADPH in icd NAD. Evidently, MaeB contributed to the NADPH generation needed for bacterial growth on two carbon compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bartolucci, S., R. Rella, A. Guagliardi, C.A. Raia, A. Gambacorta, M. De Rosa, and M. Rossi. 1987. Malic enzyme from archaebacterium Sulfolobus solfataricus. Purification, structure, and kinetic properties. J. Biol. Chem. 262, 7725–7731.

    PubMed  CAS  Google Scholar 

  • Bologna, F.P., C.S. Andreo, and M.F. Drincovich. 2007. Escherichia coli malic enzymes: Two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure. J. Bacteriol. 189, 5937–5946.

    Article  PubMed  CAS  Google Scholar 

  • Chang, G.G. and L. Tong. 2003. Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry 42, 12721–12733.

    Article  PubMed  CAS  Google Scholar 

  • Datsenko, K.A. and B.L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  • Detarsio, E., C.S. Andreo, and M.F. Drincovich. 2004. Basic residues play key roles in catalysis and NADP(+)-specificity in maize (Zea mays L.) photosynthetic NADP(+)-dependent malic enzyme. Biochem. J. 382, 1025–1030.

    Article  PubMed  CAS  Google Scholar 

  • Doležal, P., S. Vaňáčová, J. Tachezy, and I. Hrdý. 2004. Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins. Gene 329, 81–92.

    Article  PubMed  Google Scholar 

  • Fukuda, W., Y.S. Ismail, T. Fukui, H. Atomi, and T. Imanaka. 2005. Characterization of an archaeal malic enzyme from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Archaea 1, 293–301.

    Article  PubMed  CAS  Google Scholar 

  • Garrido-Pertierra, A., C. Martinez Marcos, M. Martin Fernandez, and M. Ruiz-Amil. 1983. Properties and function of malate enzyme from Pseudomonas putida. Biochimie. 65, 629–635.

    Article  PubMed  CAS  Google Scholar 

  • Gourdon, P., M.F. Baucher, N.D. Lindley, and A. Guyonvarch. 2000. Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl. Environ. Microbiol. 66, 2981–2987.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J.L. and R.J. Brooker. 1999. A K319N/E325Q double mutant of the lactose permease cotransports H+ with lactose — Implications for a proposed mechanism of H+ lactose symport. J. Biol. Chem. 274, 4074–4081.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, K., S. Doi, S. Negoro, I. Urabe, and H. Okada. 1989. Structure and properties of malic enzyme from Bacillus stearothermophilus. J. Biol. Chem. 264, 3200–3205.

    PubMed  CAS  Google Scholar 

  • Lamed, R. and J.G. Zeikus. 1981. Thermostable, ammonium-activated malic enzyme of Clostridium thermocellum. Biochim. Biophys. Acta. 660, 251–255.

    PubMed  CAS  Google Scholar 

  • Lance, C. and P. Rustin. 1984. The central role of malate in plant metabolism. Physiol. Veg. 22, 625–641.

    CAS  Google Scholar 

  • Lerondel, G., T. Doan, N. Zamboni, U. Sauer, and S. Aymerich. 2006. YtsJ has the major physiological role of the four paralogous malic enzyme isoforms in Bacillus subtilis. J. Bacteriol. 188, 4727–4736.

    Article  PubMed  CAS  Google Scholar 

  • Mitsch, M.J., R.T. Voegele, A. Cowie, M. Osteras, and T.M. Finan. 1998. Chimeric structure of the NAD(P)+ — and NADP+- dependent malic enzymes of Rhizobium (Sinorhizobium) meliloti. J. Biol. Chem. 273, 9330–9336.

    Article  PubMed  CAS  Google Scholar 

  • Murai, T., M. Tokushige, J. Nagai, and H. Katsuki. 1971. Physiological functions of NAD- and NADP-linked malic enzymes in Escherichia coli. Biochem. Biophys. Res. Commum. 43, 875–881.

    Article  CAS  Google Scholar 

  • Neidhardt, F.C., P.L. Bloch, and D.F. Smith. 1974. Culture medium for enterobacteria. J. Bacteriol. 119, 736–747.

    PubMed  CAS  Google Scholar 

  • Oh, M.K., L. Rohlin, K.C. Kao, and J.C. Liao. 2002. Global expression profiling of acetate-grown Escherichia coli. J. Biol. Chem. 277, 13175–13183.

    Article  PubMed  CAS  Google Scholar 

  • Sender, P.D., M.G. Martin, S. Peiru, and C. Magni. 2004. Characterization of an oxaloacetate decarboxylase that belongs to the malic enzyme family. FEBS Lett. 570, 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Seo, S.H., C.H. Rhee, and H.D. Park. 2007. Degradation of malic acid by Issatchenkia orientalis KMBL 5774, an acidophilic yeast strain isolated from Korean grape wine pomace. J. Microbiol. 45, 521–527.

    PubMed  CAS  Google Scholar 

  • Song, Y.D., J.P. Wynn, Y.H. Li, D. Grantham, and C. Ratledge. 2001. A pre-genetic study of the isoforms of malic enzyme associated with lipid accumulation in Mucor circinelloides. Microbiology 147, 1507–1515.

    PubMed  CAS  Google Scholar 

  • Spencer, C.C., M. Bertrand, M. Travisano, and M. Doebeli. 2007. Adaptive diversification in genes that regulate resource use in Escherichia coli. PLoS Genet. 3, 83–88.

    Article  CAS  Google Scholar 

  • Stols, L. and M.I. Donnelly. 1997. Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl. Environ. Microbiol. 63, 2695–2701.

    PubMed  CAS  Google Scholar 

  • Stueland, C.S., K. Gorden, and D.C. LaPorte. 1988. The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step. J. Biol. Chem. 263, 19475–19479.

    PubMed  CAS  Google Scholar 

  • Suye, S.I., Y. Okada, A. Funada, M. Kawagoe, and S. Inuta. 1992. Purification and properties of malic enzyme from Pseudomonas diminuta IFO-13182. J. Ferment. Bioeng. 73, 343–347.

    Article  CAS  Google Scholar 

  • Voegele, R.T., M.J. Mitsch, and T.M. Finan. 1999. Characterization of two members of a novel malic enzyme class. Biochem. Biophys. Acta. 1432, 275–285.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, M.C.G., M.A. Tronconi, M.F. Drincovich, C.S. Andreo, U.I. Flugge, and V.G. Maurino. 2005. A comprehensive analysis of the NADP-malic enzyme gene family of arabidopsis. Plant Physiol. 139, 39–51.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, G., G.B. Golding, and A.M. Dean. 2005. The selective cause of an ancient adaptation. Science 307, 1279–1282.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Zhu.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Wang, P., Zheng, E. et al. Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli . J Microbiol. 49, 797–802 (2011). https://doi.org/10.1007/s12275-011-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-0487-5

Keywords

Navigation