Skip to main content
Log in

Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A basic requirement for the efficiency of reductive whole-cell biotransformations is the reducing capacity of the host. Here, the pentose phosphate pathway (PPP) was applied for NADPH regeneration with glucose as the electron-donating co-substrate using Escherichia coli as host. Reduction of the prochiral β-keto ester methyl acetoacetate to the chiral hydroxy ester (R)-methyl 3-hydroxybutyrate (MHB) served as a model reaction, catalyzed by an R-specific alcohol dehydrogenase. The main focus was maximization of the reduced product per glucose yield of this pathway-coupled cofactor regeneration with resting cells. With a strain lacking the phosphoglucose isomerase, the yield of the reference strain was increased from 2.44 to 3.78 mol MHB/mol glucose. Even higher yields were obtained with strains lacking either phosphofructokinase I (4.79 mol MHB/mol glucose) or phosphofructokinase I and II (5.46 mol MHB/mol glucose). These results persuasively demonstrate the potential of NADPH generation by the PPP in whole-cell biotransformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akinterinwa O, Cirino PC (2011) Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways. Appl Environ Microbiol 77:706–709

    Article  CAS  Google Scholar 

  • Blank LM, Ebert BE, Bühler B, Schmid A (2008) Metabolic capacity estimation of Escherichia coli as a platform for redox biocatalysis: constraint-based modeling and experimental verification. Biotechnol Bioeng 100:1050–1065

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bühler B, Park JB, Blank LM, Schmid A (2008) NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain. Appl Environ Microbiol 74:1436–1446

    Article  Google Scholar 

  • Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204:247–252

    Article  CAS  Google Scholar 

  • Chin JW, Cirino PC (2011) Improved NADPH supply for xylitol production by engineered Escherichia coli with glycolytic mutations. Biotechnol Prog 27:333–341

    Article  CAS  Google Scholar 

  • Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102:209–220

    Article  CAS  Google Scholar 

  • Eguchi T, Kuge Y, Inoue K, Yoshikawa N, Mochida K, Uwajima T (1992) NADPH regeneration by glucose dehydrogenase from Gluconobacter scleroides for l-leucovorin synthesis. Biosci Biotechnol Biochem 56:701–703

    Article  CAS  Google Scholar 

  • Ernst M, Kaup B, Müller M, Bringer-Meyer S, Sahm H (2005) Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl Microbiol Biotechnol 66:629–634

    Article  CAS  Google Scholar 

  • Fasan R, Crook NC, Peters MW, Meinhold P, Buelter T, Landwehr M, Cirino PC, Arnold FH (2010) Improved product-per-glucose yields in P450-dependent propane biotransformations using engineered Escherichia coli. Biotechnol Bioeng 108:500–510

    Article  Google Scholar 

  • Fraenkel DG, Levisohn SR (1967) Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J Bacteriol 93:1571–1578

    CAS  Google Scholar 

  • Fraenkel DG, Kotlarz D, Buc H (1973) Two fructose 6-phosphate kinase activities in Escherichia coli. J Biol Chem 248:4865–4866

    CAS  Google Scholar 

  • Fuhrer T, Sauer U (2009) Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol 191:2112–2121

    Article  CAS  Google Scholar 

  • Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581–1590

    Article  CAS  Google Scholar 

  • Grose JH, Joss L, Velick SF, Roth JR (2006) Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci U S A 103:7601–7606

    Article  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  Google Scholar 

  • Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113

    Article  CAS  Google Scholar 

  • Heuser F, Schroer K, Lütz S, Bringer-Meyer S, Sahm H (2007) Enhancement of the NAD(P)(H) pool in Escherichia coli for biotransformation. Eng Life Sci 7:343–353

    Article  CAS  Google Scholar 

  • Holm AK, Blank LM, Oldiges M, Schmid A, Solem C, Jensen PR, Vemuri GN (2010) Metabolic and transcriptional response to cofactor perturbations in Escherichia coli. J Biol Chem 285:17498–17506

    Article  CAS  Google Scholar 

  • Hua Q, Yang C, Baba T, Mori H, Shimizu K (2003) Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. J Bacteriol 185:7053–7067

    Article  CAS  Google Scholar 

  • Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for D-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339

    Article  CAS  Google Scholar 

  • Kaup B, Bringer-Meyer S, Sahm H (2005) D-Mannitol formation from D-glucose in a whole-cell biotransformation with recombinant Escherichia coli. Appl Microbiol Biotechnol 99:397–403

    Article  Google Scholar 

  • Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6:236–246

    Article  CAS  Google Scholar 

  • Lee HC, Kim JS, Jang W, Kim SY (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149:24–32

    Article  CAS  Google Scholar 

  • Lee JN, Shin HD, Lee YH (2003) Metabolic engineering of pentose phosphate pathway in Ralstonia eutropha for enhanced biosynthesis of poly-beta-hydroxybutyrate. Biotechnol Prog 19:1444–1449

    Article  CAS  Google Scholar 

  • Liljeblad A, Kallinen A, Kanerva LT (2009) Biocatalysis in the preparation of the statin side chain. Curr Org Synth 6:362–379

    Article  CAS  Google Scholar 

  • Lim SJ, Jung YM, Shin HD, Lee YH (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93:543–549

    CAS  Google Scholar 

  • Link AJ, Phillips D, Church GM (1997) Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol 179:6228–6237

    CAS  Google Scholar 

  • Lundquist R, Olivera BM (1971) Pyridine nucleotide metabolism in Escherichia coli. I. Exponential growth. J Biol Chem 246:1107–1116

    CAS  Google Scholar 

  • Matsumura H, Miyachi S (1980) Cycling assay for nicotinamide adenine dinucleotides. Meth Enzymol 69:465

    Article  CAS  Google Scholar 

  • Miller, J (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 352–355

  • Morita T, El-Kazzaz W, Tanaka Y, Inada T, Aiba H (2003) Accumulation of glucose 6-phosphate or fructose 6-phosphate is responsible for destabilization of glucose transporter mRNA in Escherichia coli. J Biol Chem 278:15608–15614

    Article  CAS  Google Scholar 

  • Nor'Aini AR, Shirai Y, Hassan MA, Shimizu K (2006) Investigation on the metabolic regulation of pgi gene knockout Escherichia coli by enzyme activities and intracellular metabolite concentrations. Malays J Microbiol 2:24–31

    Google Scholar 

  • Panke S, Wubbolts M (2005) Advances in biocatalytic synthesis of pharmaceutical intermediates. Curr Opin Chem Biol 9:188–194

    Article  CAS  Google Scholar 

  • Park J, Gupta RS (2008) Adenosine kinase and ribokinase—the RK family of proteins. Cell Mol Life Sci 65:2875–2896

    Article  CAS  Google Scholar 

  • Poulsen RB, Nøhr J, Douthwaite S, Hansen LV, Iversen JJL, Visser J, Ruijter GJG (2005) Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J 272:1313–1325

    Article  CAS  Google Scholar 

  • Roehl RA, Vinopal RT (1976) Lack of glucose phosphotransferase function in phosphofructokinase mutants of Escherichia coli. J Bacteriol 126:852–860

    CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Santamaría B, Estevez AM, Martinez-Costa OH, Aragon JJ (2002) Creation of an allosteric phosphofructokinase starting with a nonallosteric enzyme. The case of Dictyostelium discoideum phosphofructokinase. J Biol Chem 277:1210–1216

    Article  Google Scholar 

  • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619

    Article  CAS  Google Scholar 

  • Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Review of cellular metabolism. In: Stephanopoulos GN, Aristidou AA, Nielsen J (eds) Metabolic engineering: principles and methodologies. Academic, San Diego, pp 21–79

    Google Scholar 

  • Vinopal RT, Fraenkel DG (1975) PfkB and pfkC loci of Escherichia coli. J Bacteriol 122:1153–1161

    CAS  Google Scholar 

  • Vinopal RT, Clifton D, Fraenkel DG (1975) PfkA locus of Escherichia coli. J Bacteriol 122:1162–1171

    CAS  Google Scholar 

  • Walton AZ, Stewart JD (2004) Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol Prog 20:403–411

    Article  CAS  Google Scholar 

  • Zerez CR, Moul DE, Gomez EG, Lopez VM, Andreoli AJ (1987) Negative modulation of Escherichia coli NAD kinase by NADPH and NADH. J Bacteriol 169:184–188

    CAS  Google Scholar 

  • Zhang W, O'Connor K, Wang DI, Li Z (2009) Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms. Appl Environ Microbiol 75:687–694

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the BIO.NRW Cluster Biotechnology North Rhine-Westphalia, Germany (support code: W0805wb001b).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephanie Bringer or Michael Bott.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1A

Intracellular concentrations of NADPH and NADP+ and ratios of [NADPH]/[NADP+] in E. coli reference strain and deletion mutants at three time points during biotransformation. All strains expressed the plasmid-encoded alcohol dehydrogenase gene from Lactobacillus brevis. Samples taken at the time point zero did not yet contain the biotransformation substrate MAA. Results were derived from at least two independent experiments (PDF 16 kb)

Table S1B

Intracellular concentrations of NADH and NAD+ and ratios of [NADH]/[NAD+] in E. coli reference strain and deletion mutants at three time points during biotransformation. All strains expressed the plasmid-encoded alcohol dehydrogenase gene from Lactobacillus brevis. Samples taken at the time point zero did not yet contain the biotransformation substrate MAA. Results were derived from at least two independent experiments (PDF 16 kb)

Fig. S1

Correlation of the [NADPH]/[NADP+] ratios before MAA addition to the biotransformation test mixtures (t 0) and the biotransformation yield (mole MHB per mole glucose) (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siedler, S., Bringer, S. & Bott, M. Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation. Appl Microbiol Biotechnol 92, 929–937 (2011). https://doi.org/10.1007/s00253-011-3374-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3374-4

Keywords

Navigation