Skip to main content

Advertisement

Log in

Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Intracellular NADPH/NADP+ ratio in cells grown on various production media with different carbon and nitrogen sources had a positive correlation with the thymidine production. To improve thymidine production in a previously engineered E. coli strain, NAD+ kinase was overexpressed in it resulting in the NADPH/NADP+ ratio shifting from 0.184 to 0.267. The [NADH + NADP+]/[NAD+ + NADPH] ratio was, however, not significantly altered. In jar fermentation, 740 mg thymidine l−1 was produced in parental strain, while 940 mg l−1 of thymidine was produced in NAD+ kinase-expressing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Berrios-Rivera SJ, San KY, Bennett GN (2002) The effect of NAPRTase overexpression on the total levels of NAD, the NADH/NAD+ ratio, and the distribution of metabolites in Escherichia coli. Metab Eng 4:238–247

    Article  CAS  PubMed  Google Scholar 

  • Boonstra B, French CE, Wainwright I, Bruce NC (1999) The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181:1030–1034

    CAS  PubMed  Google Scholar 

  • Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase udhA. FEMS Microbiol Lett 204:247–252

    Article  CAS  PubMed  Google Scholar 

  • Fraenkel DG (1987) Glycolysis, pentose phosphate pathway, and Entner-Doudoroff pathway. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, vol 1. American Society of Microbiology, Washington, DC, pp 142–150

    Google Scholar 

  • Furman PA, Fyfe JA, St Clair MH, Weinhold K, Rideout JL, Freeman GA, Lehrman SN, Bolognesi DP, Broder S, Mitsuya H et al (1986) Phosphorylation of 3′-azido-3′-deoxythymidine and selective interaction of the 5′-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA 83:8333–8337

    Article  CAS  PubMed  Google Scholar 

  • Grose JH, Joss L, Velick SF, Roth JR (2006) Evidence that feedback inhibition of NAD kinase controls responses to oxidative stress. Proc Natl Acad Sci USA 103:7601–7606

    Article  CAS  PubMed  Google Scholar 

  • Lee JN, Shin HD, Lee YH (2003) Metabolic engineering of pentose phosphate pathway in Ralstonia eutropha for enhanced biosynthesis of poly-beta-hydroxybutyrate. Biotechnol Prog 19:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Kim JH, Kim JS, Jang W, Kim SY (2009) Fermentative production of thymidine by a metabolically engineered Escherichia coli strain. Appl Environ Microbiol 75:2423–2432

    Article  CAS  PubMed  Google Scholar 

  • Møllgaard H, Neuhard J (1983) Biosynthesis of deoxythymidine triphosphate. In: Munch-Petersen A (ed) Metabolism of nucleotides. Nucleosides and nucleobases in microorganisms. Academic Press, London, pp 149–198

    Google Scholar 

  • Neuhard J, Nygaard P (1987) Purines and pyrimidines. In: Neidhardt FC, Ingraham JL, Low KB, Magasanik B, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella typhimurium. Cellular and molecular biology, vol 1. American Society of Microbiology, Washington, DC, pp 446–473

    Google Scholar 

  • Panagiotou G, Grotkjaer T, Hofmann G, Bapat PM, Olsson L (2009) Overexpression of a novel endogenous NADH kinase in Aspergillus nidulans enhances growth. Metab Eng 11:31–39

    Article  CAS  PubMed  Google Scholar 

  • Poulsen BR, Nohr J, Douthwaite S, Hansen LV, Iversen JJ, Visser J, Ruijter GJ (2005) Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J 272:1313–1325

    Article  CAS  Google Scholar 

  • San KY, Bennett GN, Berrios-Rivera SJ, Vadali RV, Yang YT, Horton E, Rudolph FB, Sariyar B, Blackwood K (2002) Metabolic engineering through cofactor manipulation and its effects on metabolic flux redistribution in Escherichia coli. Metab Eng 4:182–192

    Article  CAS  PubMed  Google Scholar 

  • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases udhA and pntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619

    Article  CAS  PubMed  Google Scholar 

  • Zerez CR, Moul DE, Gomez EG, Lopez VM, Andreoli AJ (1987) Negative modulation of Escherichia coli NAD kinase by NADPH and NADH. J Bacteriol 169:184–188

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon Cheol Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 256 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.C., Kim, J.S., Jang, W. et al. Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain. Biotechnol Lett 31, 1929–1936 (2009). https://doi.org/10.1007/s10529-009-0097-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0097-z

Keywords

Navigation