Skip to main content
Log in

Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Modern genomics approaches rely on the availability of high-throughput and high-density genotyping platforms. A major breakthrough in wheat genotyping was the development of an SNP array. In this study, we used a diverse panel of 172 elite European winter wheat lines to evaluate the utility of the SNP array for genomic analyses in wheat germplasm derived from breeding programs. We investigated population structure and genetic relatedness and found that the results obtained with SNP and SSR markers differ. This suggests that additional research is required to determine the optimum approach for the investigation of population structure and kinship. Our analysis of linkage disequilibrium (LD) showed that LD decays within approximately 5–10 cM. Moreover, we found that LD is variable along chromosomes. Our results suggest that the number of SNPs needs to be increased further to obtain a higher coverage of the chromosomes. Taken together, SNPs can be a valuable tool for genomics approaches and for a knowledge-based improvement of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploid wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    Article  PubMed  CAS  Google Scholar 

  • Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N et al (2010) Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 11:702

    Article  PubMed  CAS  Google Scholar 

  • Alheit KV, Maurer HP, Reif JC, Tucker MR, Hahn V et al (2012) Genome-wide evaluation of genetic diversity and linkage disequilibrium in winter and spring triticaleTriticosecale Wittmack). BMC Genomics 13:235

    Article  PubMed  CAS  Google Scholar 

  • Barrett BA, Kidwell KK (1998) AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38:1261–1271

    Article  CAS  Google Scholar 

  • Bonjean AP, Angus WJ (2001) The world wheat book: a history of wheat breeding. Lavoisier Publishing, Rue Lavoisier

    Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Calus MPL, Meuwissen THE, de Roos APW, Veerkamp RF (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178:553–561

    Article  PubMed  CAS  Google Scholar 

  • Cavanagh C, Chao S, Wang S, Huang BA, Stephen S et al Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars (in review)

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  CAS  Google Scholar 

  • Chao S, Zhang W, Akhunov E, Sherman J, Ma Y et al (2009) Analysis of gene-derived SNP marker polymorphism in US wheat (Triticum aestivum L.) cultivars. Mol Breed 23:23–33

    Article  CAS  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J, Luo M-C, Baenziger SP et al (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727

    Article  PubMed  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582

    Article  PubMed  Google Scholar 

  • Dreisigacker S, Zhang P, Warburton ML, Skovmand B, Hoisington D, Melchinger AE (2005) Genetic diversity among and within CIMMYT wheat landrace accessions investigated with SSRs and implications for plant genetic resources management. Crop Sci 45:653–661

    Article  CAS  Google Scholar 

  • Eathington SR, Crosbiea TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47(S3):54–163

    Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2012) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet. doi:10.1007/s00122-012-1964-x

    Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Ann Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Hamblin MT, Warburton ML, Buckler ES (2007) Empirical comparison of simple sequence repeats and single nucleotide polymorphisms in assessment of maize diversity and relatedness. PLoS One 2(12):e1367

    Article  PubMed  Google Scholar 

  • Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS One 6(2):e17279

    Article  PubMed  CAS  Google Scholar 

  • Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME (2009) Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443

    Article  PubMed  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  Google Scholar 

  • Jones ES, Sullivan H, Bhattramakki D, Smith JSC (2007) A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theor Appl Genet 115:361–371

    Article  PubMed  CAS  Google Scholar 

  • Laval G, San Cristobal M, Chevalet C (2002) Measuring genetic distances between breeds: use of some distances in various short term evolution models. Genet Sel Evol 34:481–507

    Article  PubMed  Google Scholar 

  • Maurer HP, Melchinger AE, Frisch M (2008) Population genetic simulation and data analysis with Plabsoft. Euphytica 161:133–139

    Article  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  PubMed  CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Reif JC, Zhang P, Dreisigacker S, Warburton ML, Van Ginkel M, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    Article  PubMed  CAS  Google Scholar 

  • Reif JC, Gowda M, Maurer HP, Longin CFH, Korzun V et al (2011a) Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122:961–970

    Article  PubMed  Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T et al (2011b) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292

    Article  PubMed  Google Scholar 

  • Röder MS, Korzun V, Gill BS, Ganal MW (1998) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  Google Scholar 

  • Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170

    Article  PubMed  CAS  Google Scholar 

  • Sako K, Takeda K (2009) An application of high-throughput SNP genotyping for barley genome mapping and characterization of recombinant chromosome substitution lines. Theor Appl Genet 119:613–619

    Article  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF et al (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci USA 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Van Inghelandt D, Melchinger AE, Lebreton C, Stich B (2010) Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 120:1289–1299

    Article  PubMed  Google Scholar 

  • Van Inghelandt D, Reif JC, Dhillon BS, Flament P, Melchinger AE (2011) Extent and genome-wide distribution of linkage disequilibrium in commercial maize germplasm. Theor Appl Genet 123:11–20

    Article  PubMed  Google Scholar 

  • Weir BS (1996) Genetic data analysis II, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, variability within and among natural populations, Vol 4. The University of Chicago Press, Chicago

    Google Scholar 

  • Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210

    Article  PubMed  Google Scholar 

  • Würschum T, Maurer HP, Kraft T, Janssen G, Nilsson C et al (2011) Genome-wide association mapping of agronomic traits in sugar beet. Theor Appl Genet 123:1121–1131

    Article  PubMed  Google Scholar 

  • Yan J, Yang X, Shah T, Sánchez-Villeda H, Li J et al (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breeding 25:441–451

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted within the BMBF-funded HYWHEAT project (Grant ID: FKZ0315945D). S.M. Langer was supported by the Deutsche Forschungsgemeinschaft under Grant number WU 658/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Würschum.

Additional information

Communicated by X. Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Würschum, T., Langer, S.M., Longin, C.F.H. et al. Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 126, 1477–1486 (2013). https://doi.org/10.1007/s00122-013-2065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2065-1

Keywords

Navigation