Skip to main content
Log in

Association mapping for quality traits in soft winter wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Improvement of end-use quality in bread wheat (Triticum aestivum L.) depends on a thorough understanding of the genetic basis of important quality traits. The main goal of our study was to investigate the genetic basis of 1,000-kernel weight, protein content, sedimentation volume, test weight, and starch concentration using an association mapping approach. We fingerprinted 207 diverse European elite soft winter wheat lines with 115 SSR markers and evaluated the genotypes in multi-environment trials. The principal coordinate analysis revealed absence of a clear population but presence of a family structure. Therefore, we used linear mixed models and marker-based kinship matrices to correct for family structure. In genome-wide scans, we detected main effect QTL for all five traits. In contrast, epistatic QTL were only observed for sedimentation volume and test weight explaining a small proportion of the genotypic variation. Consequently, our findings suggested that integrating epistasis in marker-assisted breeding will not lead to substantially increased selection gain for quality traits in soft winter wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernardo R (1993) Estimation of coefficient of coancestry using molecular markers in maize. Theor Appl Genet 85:1055–1062

    Article  CAS  Google Scholar 

  • Blanco A, Bellomo MP, Lotti C, Maniglio T, Pasqualone A, Simeone R, Troccoli A, Di Fonzo N (1998) Genetic mapping of sedimentation volume across environments using recombinant inbred lines of durum wheat. Plant Breed 117:413–417

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Breseghello F, Finney PL, Gaines C, Andrews L, Tanaka J, Penner G, Sorrells ME (2005) Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci 45:1685–1695

    Article  CAS  Google Scholar 

  • Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG, Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci 39:1184–1195

    Article  CAS  Google Scholar 

  • Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  CAS  PubMed  Google Scholar 

  • Carrillo JM, Rousset M, Qualset CO, Kasard DD (1990) Use of recombinant inbred lines of wheat for the study association of high molecular-weight glutenin subunit alleles to quantitative traits 1. Grain yield and quality prediction tests. Theor Appl Genet 79:321–330

    Article  CAS  Google Scholar 

  • Cuthbert JL, Somers DJ, Brule-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608

    Article  CAS  PubMed  Google Scholar 

  • Galande AA, Tiwari R, Ammiraju JSS, Santra DK, Laga MD, Rao VS, Gupta VS, Misra BK, Nagarajan S, Ranjekar PK (2001) Genetic analysis of kernel hardness in bread wheat using PCR-based markers. Theor Appl Genet 103:601–606

    Article  CAS  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml User Guide Release 2.0. VSN International, Hemel Hempstead

    Google Scholar 

  • Goldringer I, Brabant P, Gallais A (1997) Estimation of additive and epistatic genetic variances for agronomic traits in a population of doubled-haploid lines of wheat. Heredity 79:60–71

    Article  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Groos C, Robert N, Bervas E, Charmet G (2003) Genetic analysis of grain protein-content, grain yield, and thousand-kernel weight in bread wheat. Theor Appl Genet 106:1032–1040

    CAS  PubMed  Google Scholar 

  • Groos C, Bervas E, Charmet G (2004) Genetic analysis of grain protein content, grain hardness and dough rheology in a hard × hard bread wheat progeny. J Cereal Sci 40:93–100

    Article  CAS  Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161

    Article  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Huang X-Q, Cloutier S, Lycar L, Radovanovic N, Humphreys DG, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a double haploid population derived from two Canadian wheats (Triticum aestivium L.). Theor Appl Genet 113:753–766

    Article  CAS  PubMed  Google Scholar 

  • Kolster P, Van Eeuwijk FA, Van Gelder WMJ (1991) Additive and epistatic effects of allelic variation at the high-molecular-weight glutenin subunit loci in determining the bread-making quality of breeding lines of wheat. Euphytica 55:277–285

    Article  Google Scholar 

  • Kuchel H, Langridge P, Mosionek L, Williams K, Jefferies SP (2006) The genetic control of milling yield, dough rheology and baking quality of wheat. Theor Appl Genet 112:1487–1495

    Article  CAS  PubMed  Google Scholar 

  • Kulwal PL, Kumar N, Gaur A, Khurana P, Khurana JP, Tyagi AK, Balyan HS, Gupta PK (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Kunert A, Naz AA, Dedeck O, Pillen K, Leon J (2007) AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides + T. tauschii) as a source of favorable alleles for milling and baking quality traits. Theor Appl Genet 115:683–695

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Song Y, Zhou R, Branlard G, Jia J (2009) Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population. Plant Breed 128:235–243

    Article  Google Scholar 

  • Liang D, Tang J, Pena RJ, Singh R, He X, Shen X, Yao D, Xia X, He Z (2010) Characterization of CIMMYT bread wheats for high- and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172:235–250

    Article  CAS  Google Scholar 

  • Lynch M (1988) Estimation of relatedness by DNA fingerprinting. Mol Biol Evol 5:584–599

    CAS  PubMed  Google Scholar 

  • Ma W, Appels R, Bekes F, Larroque O, Morell MK, Gale KR (2005) Genetic characterization of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. Theor Appl Genet 111:410–422

    Article  CAS  PubMed  Google Scholar 

  • Mann G, Diffey S, Cullis B, Azanza F, Martin D, Kelly A, McIntyre L, Schmidt A, Ma W, Nath Z, Kutty I, Leyne PE, Rampling L, Quail KJ, Morell MK (2009) Genetic control of wheat quality: interactions between chromosomal regions determining protein content and composition, dough rheology, and sponge and dough baking properties. Theor Appl Genet 118:1519–1537

    Article  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Lukow O, Ames N, Noll J, Cloutier S, Humphreys DG, McCallum BD (2006) QTL analysis of quality traits in the spring wheat cross RL4452 x  AC Domain. Plant Breed 125:565–575

    Article  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403

    CAS  PubMed  Google Scholar 

  • Miedaner T, Würschum T, Maurer HP, Korzun V, Ebmeyer E, Reif JC (2010) Association mapping for Fusarium head blight resistance in soft European winter wheat. Mol Breed (in press)

  • Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2010) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed. doi:10.1007/s11032-010-9411-7

  • Patil RM, Oak MD, Tamhankar SA, Rao VS (2009) Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L. ssp. durum). J Cereal Sci 49:378–386

    Article  CAS  Google Scholar 

  • Prasad M, Kumar N, Kulwal P, Röder M, Balyan H, Dhaliwal H, Gupta P (2003) QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet 99:341–345

    Article  Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Hallauer AR, Melchinger AE (2005) Heterosis and heterotic patterns in maize. Maydica 50:215–223

    Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2010) Genetic architecture of grain yield and heading time in soft winter wheat (in review)

  • Rousset M, Brabant P, Kota RS, Dubcovsky J, Dvorak J (2001) Use of recombinant substitution lines for gene mapping and QTL analysis of bread making quality in wheat. Euphytica 119:81–87

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Stich B, Mohring J, Piepho H-P, Heckenberger M, Buckler ES, Melchinger AE (2008) Comparison of mixed-model approaches for association mapping. Genetics 178:1745–1754

    Article  PubMed  Google Scholar 

  • Sun X-Y, Wu K, Zhao Y, Kong F-M, Han G-Z, Jiang H-M, Huang X-J, Li R-J, Wang H-G, Li S-S (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Sun X, Marza F, Ma H, Carver BF, Bai G (2010) Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet 120:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Suprayogi Y, Pozniak CJ, Clarke FR, Clarke JM, Knox RE, Singh AK (2009) Identification and validation of quantitative trait loci for grain protein content in adapted Canadian durum wheat populations. Theor Appl Genet 119:437–448

    CAS  PubMed  Google Scholar 

  • Tsilo TJ, Hareland GA, Simsek S, Chao S, Anderson JA (2010) Genome mapping of kernel characteristics in hard red spring wheat breeding lines. Theor Appl Genet 121:717–730

    Article  CAS  PubMed  Google Scholar 

  • Utz HF, Melchinger AE, Schon CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Wright S (1978) Evolution and genetics of populations, variability within and among natural populations, vol 4. The University of Chicago Press, Chicago, p 91

    Google Scholar 

  • Würschum T, Maurer HP, Schulz B, Möhring J, Reif JC (2010) Genome-wide association mapping reveals epistasis and genetic interaction networks in sugar beet (in review)

  • Yang DL, Jing R, Chang XP, Li W (2007) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang Z, Zhu C, Tabanao DA, Pressoir G, Tuinstra MR, Kresovich S, Todhunter RJ, Buckler ES (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63–77

    Article  CAS  Google Scholar 

  • Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120:13–19

    Article  CAS  Google Scholar 

  • Zhang Y, Wu Y, Xiao Y, Yan J, Zhang Y, Zhang Y, Ma C, Xia X, He Z (2009) QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese soft × hard wheat cross. Crop Pasture Sci 60:587–597

    Article  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:71–82

    Article  CAS  Google Scholar 

  • Zhao L, Zhang K-P, Liu B, Deng Z, Qu H-L, Tian J-C (2010) A comparison of grain protein content QTLs and flour protein content QTLs across environments in cultivated wheat. Euphytica 174:325–335

    Article  CAS  Google Scholar 

  • Zhu C, Gore MA, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was conducted within the Biometric and Bioinformatic Tools for Genomics based Plant Breeding project supported by the German Federal Ministry of Education and Research (BMBF) within the framework of GABI–FUTURE initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen C. Reif.

Additional information

Communicated by X. Xia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. S1.

Histogram of the proportion of marker loci with shared variants (Sij) among the 207 soft winter wheat lines. Moreover, optimum values for the average probability that two alleles are alike in state, given that they are not identical by descent are indicated by arrows for 1000-kernel weight (TA), protein content (TB), sedimentation volume (TC), test weight (TD), and starch concentration (TE) (EPS 670 kb)

Supplementary Fig. S2.

Associations among the average probability that two alleles are alike in state, given that they are not identical by descent (T values) and the fit of the mixed model based on the phenotypic data for A protein content (%), B sedimentation volume (ml), C test weight (kg hL−1), and D starch concentration (%). Associations among T values and the number of (1) significant (P < 0.01) main effect QTL and (2) significant (P < 0.05 applying a Bonferroni-Holm correction for multiple tests) epistatic QTL detected in the genome-wide scan (EPS 1710 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reif, J.C., Gowda, M., Maurer, H.P. et al. Association mapping for quality traits in soft winter wheat. Theor Appl Genet 122, 961–970 (2011). https://doi.org/10.1007/s00122-010-1502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-010-1502-7

Keywords

Navigation