Skip to main content
Log in

Genetic dissection of ten photosynthesis-related traits based on InDel- and SNP-GWAS in soybean

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A total of 416 InDels and 112 SNPs were significantly associated with soybean photosynthesis-related traits. GmIWS1 and GmCDC48 might be related to chlorophyll fluorescence and gas-exchange parameters, respectively.

Abstract

Photosynthesis is one of the main factors determining crop yield. A better understanding of the genetic architecture for photosynthesis is of great significance for soybean yield improvement. Our previous studies identified 5,410,112 single nucleotide polymorphisms (SNPs) from the resequencing data of 219 natural soybean accessions. Here, we identified 634,106 insertions and deletions (InDels) from these 219 accessions and used these InDel variations to perform principal component and linkage disequilibrium analysis of this population. The genome-wide association study (GWAS) were conducted on six chlorophyll fluorescence parameters (chlorophyll content, light energy absorbed per reaction center, quantum yield for electron transport, probability that a trapped exciton moves an electron into the electron transport chain beyond primary quinone acceptor, maximum quantum yield of photosystem II primary photochemistry in the dark-adapted state, performance index on absorption basis) and four gas-exchange parameters (intercellular carbon dioxide concentration, stomatal conductance, net photosynthesis rate, transpiration rate) and revealed 416 significant InDels and 112 significant SNPs. Based on GWAS results, GmIWS1 (encoding a transcription elongation factor) and GmCDC48 (encoding a cell division cycle protein) with the highest expression in the mapping region were determined as the candidate genes responsible for chlorophyll fluorescence and gas-exchange parameters, respectively. Further identification of favorable haplotypes with higher photosynthesis, seed weight and seed yield were carried out for GmIWS1 and GmCDC48. Overall, this study revealed the natural variations and candidate genes underlying the photosynthesis-related traits based on abundant phenotypic and genetic data, providing valuable insights into the genetic mechanisms controlling photosynthesis and yield in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ao K, Tong M, Li L et al (2021) SCFSNIPER7 controls protein turnover of unfoldase CDC48A to promote plant immunity. New Phytol 229:2795–2811

    Article  CAS  PubMed  Google Scholar 

  • Bae H, Choi SM, Yang SW et al (2009) Suppression of the ER-localized AAA ATPase NgCDC48 inhibits tobacco growth and development. Mol Cells 28:57–65

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y et al (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Gao Y, Xie W et al (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46:714–721

    Article  CAS  PubMed  Google Scholar 

  • Chu S, Wang J, Zhu Y et al (2017) An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genet 13:e1006770

    Article  PubMed  PubMed Central  Google Scholar 

  • Coste S, Baraloto C, Leroy C et al (2010) Assessing foliar chlorophyll contents with the SPAD-502 chlorophyll meter: a calibration test with thirteen tree species of tropical rainforest in French Guiana. Ann for Sci 67:607–607

    Article  Google Scholar 

  • Dai K, Wang X, Liu H et al (2024) Efficient identification of QTL for agronomic traits in foxtail millet (Setaria italica) using RTM- and MLM-GWAS. Theor Appl Genet 137:18

    Article  CAS  PubMed  Google Scholar 

  • De Souza AP, Burgess SJ, Doran L et al (2022) Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection. Science 377:851–854

    Article  PubMed  Google Scholar 

  • Dong S-S, He W-M, Ji J-J et al (2021) LDBlockShow: a fast and convenient tool for visualizing linkage disequilibrium and haplotype blocks based on variant call format files. Brief Bioinform 22:bbaa227

    Article  PubMed  Google Scholar 

  • Erzberger JP, Berger JM (2006) Evolutionary relationships and structural mechanisms of AAA+ proteins. Annu Rev Biophys Biomol Struct 35:93–114

    Article  CAS  PubMed  Google Scholar 

  • Eskandari M, Cober ER, Rajcan I (2013) Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield. Theor Appl Genet 126:1677–1687

    Article  CAS  PubMed  Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean development. Special report 80, cooperative extension service, agriculture and home economic experiment station. Iowa State University, Ames, Lowa. pp 1–11.

  • Fekih R, Tamiru M, Kanzaki H et al (2015) The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genom 290:611–622

    Article  CAS  Google Scholar 

  • Guan J, Zhang J, Gong D et al (2022) Genomic analyses of rice bean landraces reveal adaptation and yield related loci to accelerate breeding. Nat Commun 13:5707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman P, Diers BW, Neece D et al (2007) QTL associated with yield in three backcross-derived populations of soybean. Crop Sci 47:111–122

    Article  CAS  Google Scholar 

  • Hao D, Chao M, Yin Z et al (2012) Genome-wide association analysis detecting significant single nucleotide polymorphisms for chlorophyll and chlorophyll fluorescence parameters in soybean (Glycine max) landraces. Euphytica 186:919–931

    Article  CAS  Google Scholar 

  • Han C, Wang L, Lyu J et al (2023) Brassinosteroid signaling and molecular crosstalk with nutrients in plants. J Genet Genom 50:541–553

    Article  Google Scholar 

  • He Q, Tang S, Zhi H et al (2023) A graph-based genome and pan-genome variation of the model plant Setaria. Nat Genet 55:1232–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hibberd JM, Sheehy JE, Langdale JA (2008) Using C4 photosynthesis to increase the yield of rice-rationale and feasibility. Curr Opin Plant Biol 11:228–231

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Li X, Yang Z et al (2022a) Downregulation of a gibberellin 3β-hydroxylase enhances photosynthesis and increases seed yield in soybean. New Phytol 235:502–517

    Article  CAS  PubMed  Google Scholar 

  • Hu D, Zhang H, Du Q et al (2020) Genetic dissection of yield-related traits via genome-wide association analysis across multiple environments in wild soybean (Glycine soja Sieb. and Zucc.). Planta 251:39

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Chen B, Zhao J et al (2022b) Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat Genet 54:694–704

    Article  CAS  PubMed  Google Scholar 

  • Huang QN, Shi YF, Zhang XB et al (2016) Single base substitution in OsCDC48 is responsible for premature senescence and death phenotype in rice. J Integr Plant Biol 58:12–28

    Article  CAS  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M et al (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  • Kabelka E, Diers B, Fehr W et al (2004) Putative alleles for increased yield from soybean plant introductions. Crop Sci 44:784–791

    Article  Google Scholar 

  • Kim H-K, Kang S-T, Cho J-H et al (2005) Quantitative trait loci associated with oligosaccharide and sucrose contents in soybean (Glycine max L.). J Plant Biol 48:106–112

    Article  CAS  Google Scholar 

  • Knapp S, Stroup W, Ross W (1985) Exact confidence intervals for heritability on a progeny mean basis 1. Crop Sci 25:192–194

    Article  Google Scholar 

  • Li G, Li H, Cheng L et al (2010a) QTL analysis for dynamic expression of chlorophyll content in soybean (Glycine max L. Merr.). Acta Agron Sin 36:242–248

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, He X, Gao Y, Liu W et al (2023) Integrative analysis of transcriptome, proteome, and phosphoproteome reveals potential roles of photosynthesis antenna proteins in response to brassinosteroids signaling in maize. Plants 12:1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Yuan J, Li Y et al (2022a) The CDC48 complex mediates ubiquitin-dependent degradation of intra-chloroplast proteins in plants. Cell Rep 39:110664

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ye H, Guo H et al (2010b) Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proc Natl Acad Sci 107:3918–3923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Hu D, Cai L et al (2022b) CALCIUM-DEPENDENT PROTEIN KINASE38 regulates flowering time and common cutworm resistance in soybean. Plant Physiol 190:480–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang T, Hu Y, Xi N et al (2023) GWAS across multiple environments and WGCNA suggest the involvement of ZmARF23 in embryonic callus induction from immature maize embryos. Theor Appl Genet 136:93

    Article  CAS  PubMed  Google Scholar 

  • Liang T, Shi C, Peng Y et al (2020) Brassinosteroid-activated BRI1-EMS-SUPPRESSOR 1 inhibits flavonoid biosynthesis and coordinates growth and UV-B stress responses in plants. Plant Cell 32:3224–3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu S, Dong L, Fang C et al (2020) Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52:428–436

    Article  CAS  PubMed  Google Scholar 

  • Mahati K, Padmasree K (2023) Brassinolide promotes interaction between chloroplasts and mitochondria during the optimization of photosynthesis by the mitochondrial electron transport chain in mesophyll cell protoplasts of Arabidopsis thaliana. Front Plant Sci 14:1099474

    Article  PubMed  PubMed Central  Google Scholar 

  • Mian M, Bailey M, Tamulonis J, Shipe E et al (1996) Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet 93:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Nolan T, Chen J, Yin Y (2017) Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. Biochem J 474:2641–2661

    Article  CAS  PubMed  Google Scholar 

  • Orf J, Chase K, Jarvik T et al (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Article  Google Scholar 

  • Pathan SM, Vuong T, Clark K et al (2013) Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci 53:765–774

    Article  CAS  Google Scholar 

  • Qiao S, Sun S, Wang L et al (2017) The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell 29:292–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    Article  CAS  PubMed  Google Scholar 

  • Rozhon W, Akter S, Fernandez A et al (2019) Inhibitors of brassinosteroid biosynthesis and signal transduction. Molecules 24:4372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas P, Oyarzo-Llaipen J, Wang D et al (2006) Genetic mapping of seed shape in three populations of recombinant inbred lines of soybean (Glycine max L. Merr.). Theor Appl Genet 113:1459–1466

    Article  CAS  PubMed  Google Scholar 

  • Severin AJ, Woody JL, Bolon Y-T et al (2010) RNA-Seq Atlas of Glycine max: a guide to the soybean transcriptome. BMC Plant Biol 10:160

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi J, Shi J, Liang W et al (2021) Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice. Theor Appl Genet 134:3553–3562

    Article  CAS  PubMed  Google Scholar 

  • Sitonik C, Suresh L, Beyene Y et al (2019) Genetic architecture of maize chlorotic mottle virus and maize lethal necrosis through GWAS, linkage analysis and genomic prediction in tropical maize germplasm. Theor Appl Genet 132:2381–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song G, Kwon C-T, Kim S-H et al (2019) The rice SPOTTED LEAF4 (SPL4) encodes a plant spastin that inhibits ROS accumulation in leaf development and functions in leaf senescence. Front Plant Sci 9:1925

    Article  PubMed  PubMed Central  Google Scholar 

  • Strasser BJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP test. Photosynthesis: from light to biosphere:977–980.

  • Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis, advances in photosynthesis and respiration. Springer, Dordrecht, pp 321–362

  • Su P, Kang H, Peng Q et al (2024) Microbiome homeostasis on rice leaves is regulated by a precursor molecule of lignin biosynthesis. Nat Commun 15:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Xiong H, Jiang C et al (2022) Natural variation of DROT1 confers drought adaptation in upland rice. Nat Commun 13:4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xu X, Vieira FG et al (2016a) The power of inbreeding: NGS-based GWAS of rice reveals convergent evolution during rice domestication. Mol Plant 9:975–985

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang Y, Yang Z et al (2023) GmFtsH25 overexpression increases soybean seed yield by enhancing photosynthesis and photosynthates. J Integr Plant Biol 65:1026–1040

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Yang Y, Zhang S et al (2020) GWAS reveals two novel loci for photosynthesis-related traits in soybean. Mol Genet Genom 295:705–716

    Article  CAS  Google Scholar 

  • Wang X, Wang H, Liu S et al (2016b) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang X, Sun S et al (2022a) GWAS, MWAS and mGWAS provide insights into precision agriculture based on genotype-dependent microbial effects in foxtail millet. Nat Commun 13:5913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Deng Z, Kong X et al (2022b) InDels identification and association analysis with spike and Awn length in chinese wheat mini-core collection. Int J Mol Sci 23:5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Z, Zhang H, Fang M et al (2023) The Dof transcription factor COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. Mol Plant 16:1759–1772

    Article  CAS  PubMed  Google Scholar 

  • Wendler P, Ciniawsky S, Kock M et al (2012) Structure and function of the AAA+ nucleotide binding pocket. Biochimica Et Biophys Acta (BBA-)Mol Cell Res 1823:2–14

    Article  CAS  Google Scholar 

  • Wu T, Wen H, Zhang X et al (2023) Genome-wide association study for temperature response and photo-thermal interaction of flowering time in soybean using a panel of cultivars with diverse maturity groups. Theor Appl Genet 136:245

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Zhou Z, Cheng Z et al (2023) A transcription factor ZmGLK36 confers broad resistance to maize rough dwarf disease in cereal crops. Nat Plants 9:1720–1733

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Zhu M, Yang Y et al (2022) CDC48B facilitates the intercellular trafficking of SHORT-ROOT during radial patterning in roots. J Integr Plant Biol 64:843–858

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chu C, Qian Q et al (2023) Leveraging brassinosteroids towards the next Green Revolution. Trends Plant Sci 29:86–98

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Zhang H, Tang Z et al (2021) rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom Proteom Bioinform 19:619–628

    Article  Google Scholar 

  • Yin Z, Meng F, Song H et al (2010) Mapping quantitative trait loci associated with chlorophyll a fluorescence parameters in soybean (Glycine max (L.) Merr.). Planta 231:875–885

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Wang J, Sun C et al (2020) High-density QTL mapping of leaf-related traits and chlorophyll content in three soybean RIL populations. BMC Plant Biol 20:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhan C, Zhu P, Chen Y et al (2023) Identification of a key locus, qNL3.1, associated with seed germination under salt stress via a genome-wide association study in rice. Theor Appl Genet 136:58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Dong S-S, Xu J-Y et al (2019) PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35:1786–1788

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Guan Z, Li Z et al (2020) A combination of linkage mapping and GWAS brings new elements on the genetic basis of yield-related traits in maize across multiple environments. Theor Appl Genet 133:2881–2895

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, van Treuren R, Yang T et al (2023) A comprehensive lettuce variation map reveals the impact of structural variations in agronomic traits. BMC Genom 24:659

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported in partly by the Major Project in Agricultural Biological Breeding (2022ZD0400701), the National Natural Science Foundation of China (32090065, 32301831, 31871649, 32072080, 32101742), the National Key Research and Development Program of China (2021YFF1001204), Jiangsu Agriculture Science and Technology Innovation Fund [CX(22)2003], Hainan Yazhou Bay Seed Lab (B23YQ1503, B23CQ153P), the China Postdoctoral Science Foundation (2022M721656) and the Bioinformatics Center of Nanjing Agricultural University.

Author information

Authors and Affiliations

Authors

Contributions

DY and FH designed this research; D Hu and XL conducted the GWAS; D Hu, YZ, LZ, JZ, XC, WL, D Hao and ZY performed the field experiments and collected the phenotypic data; D Hu, FW, SD and XS conducted the haplotype analysis; D Hu, XL and DY wrote this manuscript. All authors approved this manuscript.

Corresponding authors

Correspondence to Fang Huang or Deyue Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors declare that no ethical standards have been violated during the course of the study.

Additional information

Communicated by Dechun Wang.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18718 kb)

Supplementary file2 (XLSX 175 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Zhao, Y., Zhu, L. et al. Genetic dissection of ten photosynthesis-related traits based on InDel- and SNP-GWAS in soybean. Theor Appl Genet 137, 96 (2024). https://doi.org/10.1007/s00122-024-04607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-024-04607-y

Navigation