Skip to main content

Advertisement

Log in

Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose nanocrystals (CNCs) can be used as building blocks for the production of many renewable and sustainable nanomaterials. In this work, CNCs were produced from bleached eucalyptus kraft pulp with a high yield over 75 % via FeCl3-catalyzed formic acid (FA) hydrolysis process. It was found that the particle size of resultant CNC products (F-CNC) decreased with the increase of FeCl3 dosage in FA hydrolysis, and a maximum crystallinity index of about 75 % could be achieved when the dose of FeCl3 was 0.015 M (i.e. about 7 % based on the weight of starting material). Thermogravimetric analyses revealed that F-CNC exhibited a much higher thermal stability (the decomposition temperature was over 260 °C) than S-CNC prepared by typical sulfuric acid hydrolysis. In the FeCl3-catalyzed FA hydrolysis process, FA could be easily recovered and reused, and FeCl3 could be transferred to Fe(OH)3 as a high value-added product. Thus, the FeCl3-catalyzed FA hydrolysis process could be sustainable and economically feasible. In addition, F-CNC could be well dispersed in DMSO and its dispersibility in water could be improved by a cationic surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adharvanachari M, Syamasundar K (2005) Polymer (PVP) supported ferric chloride: an efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation. Catal Commun 6:67–70. doi:10.1016/j.catcom.2004.10.009

    Article  Google Scholar 

  • Biyani MV, Foster EJ, Weder C (2013) Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals. ACS Macro Lett 2:236–240. doi:10.1021/mz400059w

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169. doi:10.1016/j.carbpol.2013.01.033

    Article  CAS  Google Scholar 

  • Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230. doi:10.1021/bm400219u

    Article  CAS  Google Scholar 

  • Cao Y et al (2015) Combined bleaching and hydrolysis for isolation of cellulose nanofibrils from waste sackcloth. Carbohydr Polym 131:152–158. doi:10.1016/j.carbpol.2015.05.063

    Article  CAS  Google Scholar 

  • Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762. doi:10.1007/s10570-015-0615-1

    Article  CAS  Google Scholar 

  • Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342. doi:10.1039/b611568c

    Article  CAS  Google Scholar 

  • de Castro DO, Frollini E, Ruvolo-Filho A, Dufresne A (2015) “Green polyethylene” and curaua cellulose nanocrystal based nanocomposites: effect of vegetable oils as coupling agent and processing technique. J Polym Sci Pol Phys 53:1010–1019. doi:10.1002/polb.23729

    Article  Google Scholar 

  • de Oliveira Taipina M, Ferrarezi MMF, Yoshida IVP, Gonçalves MdC (2012) Surface modification of cotton nanocrystals with a silane agent. Cellulose 20:217–226. doi:10.1007/s10570-012-9820-3

    Google Scholar 

  • Demarchis L, Sordello F, Minella M, Minero C (2015) Tailored properties of hematite particles with different size and shape. Dyes Pigments 115:204–210. doi:10.1016/j.dyepig.2014.11.024

    Article  CAS  Google Scholar 

  • Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15:2327–2346. doi:10.1021/bm500524s

    Article  CAS  Google Scholar 

  • Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8:287–298. doi:10.2217/nnm.12.211

    Article  CAS  Google Scholar 

  • Eyholzer C, Tingaut P, Zimmermann T, Oksman K (2012) Dispersion and reinforcing potential of carboxymethylated nanofibrillated cellulose powders modified with 1-Hexanol in extruded poly(lactic acid) (PLA) composites. J Polym Environ 20:1052–1062. doi:10.1007/s10924-012-0508-4

    Article  CAS  Google Scholar 

  • Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresour Technol 100:2259–2264. doi:10.1016/j.biortech.2008.09.062

    Article  CAS  Google Scholar 

  • Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11:1808–1814. doi:10.1039/B915746H

    Article  CAS  Google Scholar 

  • Fortunati E et al (2012) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605. doi:10.1016/j.carbpol.2011.09.066

    Article  CAS  Google Scholar 

  • Gong W, Liu C, Mu X, Du H, Lv D, Li B, Han S (2015) Hydrogen peroxide-assisted sodium carbonate Pretreatment for the Enhancement of Enzymatic Saccharification of Corn Stover. ACS Sustain Chem Eng. doi:10.1021/acssuschemeng.5b01278

    Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. doi:10.1039/c3cs60204d

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  CAS  Google Scholar 

  • Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4:2238. doi:10.1039/b806789a

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576. doi:10.1021/bm900520n

    Article  CAS  Google Scholar 

  • Jack RS, Ayoko GA, Adebajo MO, Frost RL (2015) A review of iron species for visible-light photocatalytic water purification. Environ Sci Pollut Res Int 22:7439–7449. doi:10.1007/s11356-015-4346-5

    Article  CAS  Google Scholar 

  • Jasmani L, Eyley S, Wallbridge R, Thielemans W (2013) A facile one-pot route to cationic cellulose nanocrystals. Nanoscale 5:10207–10211. doi:10.1039/c3nr03456a

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh YL (2014) Assembling and redispersibility of rice straw nanocellulose: effect of tert-butanol. ACS Appl Mater Interfaces 6:20075–20084. doi:10.1021/am505626a

    Article  CAS  Google Scholar 

  • Jonoobi M, Oladi R, Davoudpour Y, Oksman K, Dufresne A, Hamzeh Y, Davoodi R (2015) Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review. Cellulose 22:935–969. doi:10.1007/s10570-015-0551-0

    Article  CAS  Google Scholar 

  • Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci. doi:10.1002/app.41719

    Google Scholar 

  • Fan J-S, Y-h Li (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88:1184–1188. doi:10.1016/j.carbpol.2012.01.081

    Article  CAS  Google Scholar 

  • Kabel MA, Bos G, Zeevalking J, Voragen AG, Schols HA (2007) Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour Technol 98:2034–2042. doi:10.1016/j.biortech.2006.08.006

    Article  CAS  Google Scholar 

  • Kamireddy SR, Li J, Tucker M, Degenstein J, Ji Y (2013) Effects and mechanism of metal chloride salts on pretreatment and enzymatic digestibility of corn Stover. Ind Eng Chem Res 52:1775–1782. doi:10.1021/ie3019609

    Article  CAS  Google Scholar 

  • Leung AC, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JH (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305. doi:10.1002/smll.201001715

    Article  CAS  Google Scholar 

  • Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules 12:650–659. doi:10.1021/bm101315y

    Article  CAS  Google Scholar 

  • Li B, Mou H, Li Y, Ni Y (2013a) Synthesis and thermal decomposition behavior of zircoaluminate coupling agents. Ind Eng Chem Res 52:11980–11987. doi:10.1021/ie400888p

    Article  CAS  Google Scholar 

  • Li F, Biagioni P, Bollani M, Maccagnan A, Piergiovanni L (2013b) Multi-functional coating of cellulose nanocrystals for flexible packaging applications. Cellulose 20:2491–2504. doi:10.1007/s10570-013-0015-3

    Article  CAS  Google Scholar 

  • Li J, Xiu H, Zhang M, Wang H, Ren Y, Ji Y (2013c) Enhancement of cellulose acid hydrolysis selectivity using metal ion catalysts. Curr Org Chem 17:1617–1623

    Article  CAS  Google Scholar 

  • Li Y, Li G, Zou Y, Zhou Q, Lian X (2013d) Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21:301–309. doi:10.1007/s10570-013-0146-6

    Article  Google Scholar 

  • Li J, Zhang X, Zhang M, Xiu H, He H (2014) Optimization of selective acid hydrolysis of cellulose for microcrystalline cellulose using FeCl3. Bioresources 9:1334–1345

    Google Scholar 

  • Li B et al (2015a) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612. doi:10.1016/j.carbpol.2015.07.033

    Article  CAS  Google Scholar 

  • Li J, Zhang X, Zhang M, Xiu H, He H (2015b) Ultrasonic enhance acid hydrolysis selectivity of cellulose with HCl-FeCl3 as catalyst. Carbohydr Polym 117:917–922. doi:10.1016/j.carbpol.2014.10.028

    Article  CAS  Google Scholar 

  • Liu C, Wyman CE (2006) The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 degrees C. Carbohydr Res 341:2550–2556. doi:10.1016/j.carres.2006.07.017

    Article  CAS  Google Scholar 

  • Liu Z-T, Yang Y, Zhang L, Liu Z-W, Xiong H (2007) Study on the cationic modification and dyeing of ramie fiber. Cellulose 14:337–345. doi:10.1007/s10570-007-9117-0

    Article  CAS  Google Scholar 

  • Liu L, Sun J, Li M, Wang S, Pei H, Zhang J (2009) Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment. Bioresour Technol 100:5853–5858. doi:10.1016/j.biortech.2009.06.040

    Article  CAS  Google Scholar 

  • Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym 110:415–422. doi:10.1016/j.carbpol.2014.04.040

    Article  CAS  Google Scholar 

  • Lu P, Hsieh Y-L (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. doi:10.1016/j.carbpol.2010.04.073

    Article  Google Scholar 

  • Lu P, Hsieh Y-L (2012) Preparation and characterization of cellulose nanocrystals from rice straw. Carbohydr Polym 87:564–573. doi:10.1016/j.carbpol.2011.08.022

    Article  CAS  Google Scholar 

  • Lu Q, Tang L, Lin F, Wang S, Chen Y, Chen X, Huang B (2014) Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl3-catalyzed hydrolysis. Cellulose 21:3497–3506. doi:10.1007/s10570-014-0376-2

    Article  CAS  Google Scholar 

  • Lyubimova O, Stoyanov SR, Gusarov S, Kovalenko A (2015) Electric interfacial layer of modified cellulose nanocrystals in aqueous electrolyte solution: predictions by the molecular theory of solvation. Langmuir 31:7106–7116

    Article  CAS  Google Scholar 

  • Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40:149–167. doi:10.1016/j.tifs.2014.09.009

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents–a critical review. J Hazard Mater 142:1–53. doi:10.1016/j.jhazmat.2007.01.006

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Mou H, Li B, Fardim P (2014) Pretreatment of corn stover with the modified hydrotropic method to enhance enzymatic hydrolysis. Energy Fuel 28:4288–4293. doi:10.1021/ef5001634

    Article  CAS  Google Scholar 

  • Mueller S, Sapkota J, Nicharat A, Zimmermann T, Tingaut P, Weder C, Foster EJ (2015) Influence of the nanofiber dimensions on the properties of nanocellulose/poly(vinyl alcohol) aerogels. J Appl Polym Sci. doi:10.1002/app.41740

    Google Scholar 

  • Ng H-M, Sin LT, Tee T-T, Bee S-T, Hui D, Low C-Y, Rahmat AR (2015) Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Compos Part B Eng 75:176–200. doi:10.1016/j.compositesb.2015.01.008

    Article  CAS  Google Scholar 

  • Nicharat A, Sapkota J, Weder C, Foster EJ (2015) Melt processing of polyamide 12 and cellulose nanocrystals nanocomposites. J Appl Polym Sci. doi:10.1002/app.42752

    Google Scholar 

  • Ning N, Wang Z, Yao Y, Zhang L, Tian M (2015) Enhanced electromechanical performance of bio-based gelatin/glycerin dielectric elastomer by cellulose nanocrystals. Carbohydr Polym 130:262–267. doi:10.1016/j.carbpol.2015.03.083

    Article  CAS  Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-3-10

    Article  Google Scholar 

  • Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29:105–118

    Article  CAS  Google Scholar 

  • Ren L, Cao Q, Xie X (2012) Hydrolysis kinetics of microcrystalline cellulose catalyzed by Fe~(3+) and dilute hydrochloric acid. Chem Ind For Prod 32:117–122

    CAS  Google Scholar 

  • Sapkota J, Kumar S, Weder C, Foster EJ (2015) Influence of processing conditions on properties of poly (vinyl acetate)/cellulose nanocrystal nanocomposites. Macromol Mater Eng 300:562–571. doi:10.1002/mame.201400313

    Article  CAS  Google Scholar 

  • Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 11:4686–4694. doi:10.1039/c5sm00745c

    Article  CAS  Google Scholar 

  • Shateri Khalil-Abad M, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157. doi:10.1007/s10570-009-9351-8

    Article  CAS  Google Scholar 

  • Shen Z, Jin C, Pei H, Shi J, Liu L, Sun J (2014) Pretreatment of corn stover with acidic electrolyzed water and FeCl3 leads to enhanced enzymatic hydrolysis. Cellulose 21:3383–3394. doi:10.1007/s10570-014-0353-9

    Article  CAS  Google Scholar 

  • Shi Z, Phillips GO, Yang G (2013) Nanocellulose electroconductive composites. Nanoscale 5:3194–3201. doi:10.1039/c3nr00408b

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi:10.1021/bm801193d

    Article  CAS  Google Scholar 

  • Siqueira G, Tapin-Lingua S, Bras J, da Silva Perez D, Dufresne A (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17:1147–1158. doi:10.1007/s10570-010-9449-z

    Article  CAS  Google Scholar 

  • Song J, Tang A, Liu T, Wang J (2013) Fast and continuous preparation of high polymerization degree cellulose nanofibrils and their three-dimensional macroporous scaffold fabrication. Nanoscale 5:2482–2490. doi:10.1039/c3nr33615h

    Article  CAS  Google Scholar 

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443. doi:10.1038/nrg2336 (Retracted article. See vol 11, p 308, 2010)

    Article  CAS  Google Scholar 

  • Sun Y, Lin L (2010) Hydrolysis behavior of bamboo fiber in formic acid reaction system. J Agric Food Chem 58:2253–2259. doi:10.1021/jf903731s

    Article  CAS  Google Scholar 

  • Sun Y, Lin L, Deng H, Li J, He B, Sun R, Ouyang P (2008) Structural changes of bamboo cellulose in formic acid. Bioresources 3:297–315

    CAS  Google Scholar 

  • Tang Y, Yang S, Zhang N, Zhang J (2013) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21:335–346. doi:10.1007/s10570-013-0158-2

    Article  Google Scholar 

  • Tang Y, He Z, Mosseler JA, Ni Y (2014) Production of highly electro-conductive cellulosic paper via surface coating of carbon nanotube/graphene oxide nanocomposites using nanocrystalline cellulose as a binder. Cellulose 21:4569–4581. doi:10.1007/s10570-014-0418-9

    Article  CAS  Google Scholar 

  • Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366. doi:10.1016/j.carbpol.2015.02.063

    Article  CAS  Google Scholar 

  • Therien-Aubin H, Lukach A, Pitch N, Kumacheva E (2015) Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles. Nanoscale 7:6612–6618. doi:10.1039/c5nr00660k

    Article  CAS  Google Scholar 

  • Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53:11007–11014. doi:10.1021/ie501672m

    Article  CAS  Google Scholar 

  • Xie K, Hou A, Sun Y (2007) Chemical and morphological structures of modified novel cellulose with triazine derivatives containing cationic and anionic groups. Carbohydr Polym 70:285–290. doi:10.1016/j.carbpol.2007.04.005

    Article  CAS  Google Scholar 

  • Yang J, Han CR, Xu F, Sun RC (2014) Simple approach to reinforce hydrogels with cellulose nanocrystals. Nanoscale 6:5934–5943. doi:10.1039/c4nr01214c

    Article  CAS  Google Scholar 

  • Yang X, Shi K, Zhitomirsky I, Cranston ED (2015) Cellulose nanocrystal aerogels as universal 3D lightweight substrates for supercapacitor materials. Adv Mater. doi:10.1002/adma.201502284

    Google Scholar 

  • Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93 % through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem 1:3938. doi:10.1039/c3ta01150j

    Article  CAS  Google Scholar 

  • Zaman M, Xiao H, Chibante F, Ni Y (2012) Synthesis and characterization of cationically modified nanocrystalline cellulose. Carbohydr Polym 89:163–170. doi:10.1016/j.carbpol.2012.02.066

    Article  CAS  Google Scholar 

  • Zhang Y, Li M, Zhang Q (2015) Silicon-modified ferric hydroxide for catalytic ozonation of nitrobenzene in aqueous solution. Desalin Water Treat 54:2902–2908. doi:10.1080/19443994.2014.905979

    Article  CAS  Google Scholar 

  • Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600. doi:10.1126/science.1141199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science foundation of China (Grant No. 21306216, Grant No. 31170541, Grant No. 31470609, and Grant No. 21433001), the Natural Science Foundation of Tianjin City (Grant No. 13JCZDJC29400, Grant No. 13JCZDJC33700), and Shandong Provincial Natural Science Foundation for Distinguished Young Scholar (China) (Grant No. JQ201305).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuanling Si or Bin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Liu, C., Mu, X. et al. Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23, 2389–2407 (2016). https://doi.org/10.1007/s10570-016-0963-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0963-5

Keywords

Navigation